FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning Convergence Analysis

Appendix

Roadmap: In Appendix A, we list several probability results. In Appendix B we prove our convergence result of FL-NTK.
In Appendix C, we prove our generalization result of FL-NTK.

A. Probability Tools

Lemma A.1 (Bernstein inequality (Bernstein, 1924)). Let X1,...,X,, be independent zero-mean random variables.
Suppose that | X;| < M almost surely, for all i € [n]. Then, for all positive t,

Pr iX'<t <exp | — t?/2
P an Il W VAN e ES VY

Lemma A.2 (Anti-concentration inequality of Gaussian). Let X ~ N(0,0?), then forany 0 <t < o

Priix|<fe (o2 4.

g m™ o

Proof. For completeness, we provide a short proof. Since X ~ N (0, §?), the CDF of X? is Pr[X? < 2] = %jé)%?)

where 7(-, ) is the incomplete lower gamma function. This can be further simplified to Pr[X? < 2] = erf(,/t2/202)

where erf is the error function. For z < 1, we can sandwich the erf function by 2z/3 < erf(z/v/2) < \/2/7z, thus letting
z = t/o complete the proof.

O

B. Convergence of Neural Networks in Federated Learning

This section is organized as follows:

* In Appendix B.1, we introduce some definitions.

* In Appendix B.2, we present the convergence result of FL-NTK.

* In Appendix B.3, we upper bound C1, C, Cs3, Cy that appear in the proof.
* In Appendix B.4, we present the property at initialization of FL-NTK.

e In Appendix B.5, we show the properties of local steps.

* In Appendix B.6, we present several technical claims used in the proof.

B.1. Definitions

Definition B.1. We let k to denote the condition number of Gram matrix H (0).
Assumption B.2. We assume ||x;||2 = 1 and A = A\nin(H(0)) € (0, 1].

B.2. Convergence Result

Theorem B.3. Recall that A\ = Apin(H(0)) > 0. Let m = Q(A"*n*log(n/d)), we iid initialize u,(0) ~ N(0,1),
a, sampled from {—1,+1} uniformly at random for r € [m], and we set the step size Mocal = O(N/(kKn?)) and
Nglobal = O(1), then with probability at least 1 — § over the random initialization we have fort =0,1,2,- -

. nglobal Mocal )\K

t 2
ool 22 ) ly(0) — 3. ©)

ly(t) =l < (1
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Notation | Dimension | Meaning
N N #clients
c [N] its index
T N #communication rounds
t [T] its index
K N #local update steps
k [K] its index
y(t) R" aggregated server model after global round ¢
Ye RI%] ground truth of c-th client
ygk) (t) RISl c-th client’s model in global round ¢ and local step k
y (1) R" all client’s model in global round ¢ and local step k
Wi (1) RP™ c-th client’s model parameter in global round ¢ and local step &
u(t) RP™ aggregated server model parameter in global round ¢ and local step k
Table 1: Summary of several notations
Proof. We prove by induction. The base case is t = 0 and it is trivially true. Assume for 7 = 0, - -- , ¢ we have proved

Eq. (6) to be true. We show Eq. (6) holds for 7 = ¢ + 1.

Recall that the set Q); C [m] is defined as follow
Q; = {r € [m]:Vwe R? s.t. lw—w,(0)|l2 < R, 1y (0)Tai>0 = 1mei20} ,

and @, denotes its complement.

Let vy ;, v2 ; be defined as follows

V1,i =

ar <¢>((ur(t) + Nglobat Aur () T @) — ¢>(ur(t)%~i)> ,

i

re

Q

V2, =

- 3l-

Qr <¢((ur(t) + nglobalAur(t))TIi) - ¢(Ur(t)TI1)> .

Ql

re

Let H(t, k,c)ij, H(t, k, c);; be defined as follows

1 m
H _ T
(tvkvc)i,j - m E Z; 'Tjlu;,rw20,urk,c,7.(t)—rwj207

r=1

1
1 T
H(tvkvc)i,j - E § Z; xj1u:xi20,wk_yc,r(t)—rwj20'

7‘6@1;
Define H (t) and H(t)* € R"*" as
1 m
H(t)ij = — D wl w57, 50, (1) T2y 50
r=1
1
H(t)i; = — ] @iy ()T w20, (6) T2y 50
rEQi

Let y¥) (1), (j € S.) be defined by

Y () = f(wre(t), z;).
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We can write Au,.(t) as follow

a Mocal
Aur == Z Z \;ﬁ lewch(t)TI]>O

ce[N] ke[K] JES

Thus we have

globalnlocal k
V1,4 = E E E ( ) CL’ €z E ]-uTx >0,wp,c,r(t)T2;>0

ke[K] ce[N]jES. r€Q;

nglobamlocal Z Z Z (k) ( (t k, C)z] —H(t,k,c)il,j).

k€[K] ce[N]jES.

We can therefore write —2(y — y(t)) T (y(t + 1) — y(t)) as follow

=20y —y(®) (Wt +1) - y(t))
= — 2y —y) " (v1 + v2)

_ 277global7hoca1 Z Z Z Z _ _yg )( 1)) (H(t, k, c)ig — H(t,k,c)l{‘j)

[n] k€[K] cE[N] jES.

-2 Z - yz U2,i-

i€[n]

Let
277 lobalTllocal
Oy = — TR N0 N S D = ()~ uP () H (k)
i€[n] kE[K] cE[N] jESe
277 lobalMlocal
C’Q:gTZ > Y 3 - )~y 0 H
i€[n] k€[K] c€[N] jES.
= -2 Z U2 K
1€[n]

Cy = [ly(t+1) —y(®)|3-

Then

ly —y(t+1)|3
=lly—y®3 =2y —y®) " ((t+1) —yt)) + |yt + 1) —y@®)[3
=ly —y(@®)[3 + C1 + C2 + C3 + Cu.

By Claim B.4, Claim B.5, Claim B.6 and Claim B.7 we have

2NglobalMocal
ly =yt + 1[5 < =ERRE (KN - 4nRE (1 + 2oca Kn) + 2hocar iAK ) [y — y(v) 3
16010balMoc:
o+ RO (1 4+ 2poca KRy — y(y)3
16
WK(l + 2nlocalKn)nRHy - y(y)”%

AN b Toear™ K2 (1 4 2mocal Kn)?
e ly = y(@)I13-

By the choice of 1jpca1 < m and 7iocalMglobal < m and R < \/(1000n) we come to

ly —y(t+ D)3 < lly —y@®)l3
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nglobalnlocal)\K
R A

Nglobal nlocalKnR
40 MO S0, 1)

y(®)ll3 (7)

nglobalnlocalKnR
=y

2 2 2 772
Mocalglobal I8
o eeallgone ™y — y(t)3
<y —y@®)l3

—(1-1/10)

+ 40 t)|12

nglobalnlocal)\K

N ly — y()])2
n, lobalnlocalKnR
Aebstoesl S0y — y6)]3

1 nglobalnlocal)\K 2
e - — t
5 N ly —y@)llz

+ 80

<|ly — y(®)|I5 - (8)

where the second step follows from 7j5ca < W, the third step follows from R < A\/(1000n). O

B.3. Bounding Cl, CQ, 03, Cy

Claim B.4. We have with probability at least 1 — n* - exp(—mR/10) over random initialization

2
) < % ly — y(Ol2(=KX + 4nRK (1 + 2i0cat K1) + 2ocat EAK 210).

Proof. We first calculate

232:}:}: —y B (1)) H(t, k. c)i

i€[n] kE[K] c€[N] jES.

=> > Z > (i y; —yP();)(H(t, k,¢)iy — H(0); ;)

i€[n] kE[K] cE[N] jES.

DI ID IS NERAONHOEIOR (O

i€[n] kE[K] c€E[N] jES.

K S (- i)y — () H(O),

i€[n] j€ln]

From Lemma B.12 and Lemma B.9 we have ||u, () —u(0)||2 < R and |wg, ¢, (t) —u(0)||2 < R. Let H(¢, k) be defined by
H(t, k)i ; =H(t k,c)i;
for j € S.. Then from Lemma B.11 we obtain
|H(t, k) — H(O)|lx < 2nR
with probability at least 1 — n? - exp(—mR/10) over random initialization.

Therefore from direct calculations we have

Z Z Z Z )y =y (1)) (H(t, k, ¢)ij — H(0); ;)

i€[n] k€[K] ce[N] jES.

= > (y—y®) " (H(t, k) — H0)(y —y™ (1))

ke[K]

o ly=yOlally =y @)l H(t k) = HO)

ke[K]

IN
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< 4nRK (1 + 2moca K n)|ly — y(1)]3-
where the last step comes from Eq (15).

By Lemma B.10 we have

Z > > W (y;(t) =y () H < D Iy = y@IH©O)ly () =y ™ @)l

[n] k€[K] ce[N] jES. kE[K]

S 277100&15)\-[( nHy - y( )”%

Finally we have
K > (i —wil)(ys —yi(6)H(0)iy > KXy — y(t)13.
i€[n] j€[n]

Combining the above we conclude the proof with

(&
2 oba. oca.
- By S S0 ~ 0
[n] k€[K] cE[N] jES.
2NglobalMocal 2 2 2 2 2
S - =5 CIREQ+ 2ok n)lly = y(@)llz + KAy = y@)Il2 = 2mocarAK " nlly — y(@)[2)
2
< 7@0‘}3%% ly = y(B)13(—=KA + 4nRK (1 + 2mocal K *n) + 2niocalkAK *n).

Claim B.5. The following holds with probability at least 1 — n exp(—mR) over random initialization

16 lobal’/local
Oy < RO K (14 2pocan K )R]y — y(1) 3

Proof. We define matrix H (t, k)= € R™*" such that H(t, k)i, = H(t,k,c);;, j € S.. Notice that
277 lobal’]local
Oy = Tl S S~ S S ), 0 k0
i€[n] ke[K] ce[N]j€ES.

. 277g10ba177100a1 T €L (k)
S 5 (0= 0) H A 0=y )

IA

2NglobalMocal n (k)
— N kez[l:q ly —y(@ll2l[H (k) Flly — v (@)

4 lobal’/local
< 2ol (1 4 dipoeain )y — y(OIZIE (1) ¢

where the last step comes from Eq (15).
It thus suffices to upper bound || H (¢, k)| 7.

For each ¢ € [n], we define ¢; as follows

It then follows from direct calculations that

IH (k) = D0 Y (H(tk)i)?

i=1 j=1
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1 T 2
(E Z €Ly xjlur(t)Twi207wk,c,r(t)Tl'j20)

(]
(]
(]

=1 cE[N] JES. Te@{,
n m
1 2
= Z Z Z (E Zx;rxjlur(t)TIiZO»wk.c.r(t)TIj20 ) 17'6@)
i=1 c€[N] jES. r=1
n T 2
X, T
S S T (S e a0 1)
i=1 c€[N]j€Se r=1
1< -
D IPIPD (Zlu 7 50 (072,30 1T, )
i=1 ce[N] jES.
n n m 2
=32 (Z 1re@)
i=1 r=1

Fix i € [n]. The plan is to use Bernstein inequality to upper bound ¢; with high probability.
First by Eq. (10) we have E[1, ] < R. We also have

Finally we have |1re§. -Eil,ll=1

Notice that {1, q, 7= are mutually independent, since 1, a, only depends on w,.(0). Hence from Bernstein inequality
(Lemma A.1) we have forallt > 0,

2
Pr[Ci>m-R—|—t]§exp(—m-;ft/3>.

By setting t = 3mR, we have

Pr[¢; > 4mR] < exp(—mR). )
Hence by union bound, with probability at least 1 — nexp(—mR),

| H (t, k)% < % -n - (4mR)? = 16n2R2.
Putting all together we have
|H(t, k)" ||p < 4nR

with probability at least 1 — n exp(—mR) over random initialization. O
Claim B.6. With probability at least 1 — n exp(—mR) over random initialization the following holds

1677g10ba17710ca1K

C3 < N

(1 + 2mocarn K )nRlly — y(t)II3

Proof. We can upper bound ||vz]|2 in the following sense

n

lobal
sl < Z Y A ()

i=1 reQ;
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B nglobal L 1 A T 2
= =25 (D Leg [Aun(t) Ta

i=1 r=1
2 2 n m 2
NglobalThocal 2K(1 + 2nlocaan)f
< 28 . ( ) 1.5
< Tl ety - y0l)” 3 (St

where the last step comes from Lemma B.10.

It is previously shown that > 1,.5. < 4mR holds with probability at least 1 —n exp(—mR) over random initialization,

thus with probability at least 1 — n exp(—mR) over random initialization

nglobalnlzocal ) 4K2(1 + 27710(:&1”1()277'
m N2m,

8 obal ocaK ’
(Staorattiocstk 4oy i inBly - yio)])

IN

lv213 ly = y(®)I3 - n(4mR)*

IA

Using Cauchy-Schwarz inequality, we complete the proof with

:—22 ’U21

i€[n]
<2/ly = y(@)ll2 - vzl

16ng10baiMocal KX
< bl Nocal 2 (1 1 gyeunIC)nRlly — y(1)|3.

- N
O
Claim B.7. We have
47720 772 a n2K2(1 + 277100a1nK)2
Oy 5 ocetlgiobnt” = Iy - y(0) 13
Proof. Recall that y(t + 1) — y(t) = v1 + va, we have
2
Tglobal
e+ 1) - m<z(g 3" a0
Uglobal Z (Z | Ay (£) xl‘)
nglobalnlocal (2K(1 + 27]100a1nK)\/ﬁ )2 2
< . _
47’1200a177§10ba1n2 K? (1 + 277100a1nK)2 2
< e ly —y(@®)2
where the penultimate step comes from Lemma B.10. O

B.4. Random Initialization

Lemma B.8. Let events E1, Es, E5 be defined as follows

Ey = { (w,(0) "2;) < \/2log(6mn/d),Vr € [m], Vi € [n]}
m 1 .

E2 = {‘ Z \/m ( (O)Txi)lwr(())TIiS\/m‘ S 210g(2mn/6) . log(8n/5),Vz € [TL]}
r=1

By = { Y 1,5 <4mRYVie [n]}.

r=1
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Then Fy N Es N E3 is true with probability at least 1 — § over the random initialization. Furthermore given Ey N Es N E3
the following holds

ly = y(0)|3 = O(nlog(m/3)log*(n/3)).

Proof. First we bound Pr [-E3]. For each ¢ € [n], we define (; as follows

We use w as shorthand for w(0). Define the event
Ay = {Bu o= w2 < R g, 50 # Loyuso ) -

Note this event happens if and only if |w,” z;| < R. Recall that w,. ~ N(0, I). By anti-concentration inequality of Gaussian
(Lemma A.2), we have

2R
Pr[A; .| = z| <R < — 10
Air] = Pr llel <Rl < T (10)
It thus follows from Eq. (10) that E[1, ] < R. We also have
E|(1,5, —E[1T€§i])2 = E[lie@i] — E[1Te@]2
2
< E[lre@]
<R.
Therefore |1, .5 —E[1,.5 ][ < 1.
Notice that {1, 5 }7=; are mutually independent, since 1, 2, only depends on w,.. Hence from Bernstein inequality
(Lemma A.1) we have forallt > 0,
t2/2
Pr (¢ > R4+t < _ .
PG> m - R+1] —eXp( m~R+t/3>
By setting t = 3mR, we have
Pr[¢; > 4mR] < exp(—mR). (11)

Taking union bound and note the choice of R and m we have

Pr[—Es] < nexp(—mR) < §/3.

Next we bound Pr[-F}]. Fix r € [m] and i € [n]. Since w,. ~ N(0, 1) and ||z; |2 = 1, w,’ z; follows distribution A/ (0, 1).
From concentration of Gaussian distribution, we have

Prw]z; > /2log(Gmn/d)] < 6L

Let E; be the event that for all » € [m] and i € [n] we have ¢(w, z;) < /2log(6mn/). Then by union bound,
PI‘[_‘El] > 3

Finally we bound Pr[—FE3]. Fix ¢ € [n]. For every r € [m], we define random variable z; , as

Zi,'r’ =

.
“ar Wy 2i) v < SogGmnye):

3=
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Then z; , only depends on a, € {—1,1} and w, ~ N(0, I). Notice that E,, ., [2;r] = 0, and |z; | < \/2log(6mn/$).
Moreover,

1
21 _ L9 9, T
a,,.]},zw,.[zi’r] o a,.IEiw,, [mard) (wr xl)lea: <\/2log(6mn/5):|
— 1 2 2 T 2
= Bl B [l a1l ENe o]

where the second step uses independence between a,. and wy., the third step uses a, € {—1,1} and ¢(t) = max{¢t,0}, and
the last step follows from w,” z; ~ N(0,1).

Now we are ready to apply Bernstein inequality (Lemma A.1) to get for all ¢ > 0,

- t2/2
Zz“ >t| <exp| — 1 .
m - — ++/2log(6mn/d) - t/3

r=1

Setting t = y/2log(6mn/¢) - log(8n/d), we have with probability at least 1 — 8%,

Z zir < +/2log(6mn/d) - log(8n/d).
r=1

Pr

Notice that we can also apply Bernstein inequality (Lemma A.1) on —z; , to get

m t2/2
Pr|)_ zir < 1| < exp “m- L+ \/2log(6mn/d) - t/3 )
—i - g(6mn/d) -t/

Let F be the event that for all 7 € [n],

< /2log(2mn/é) - log(8n/0).

By applying union bound on all i € [n], we have Pr[-FE2] < 6/3.

By union bound, 4 N E5 N E3 will happen with probability at least 1 — 4.
If both F; and E5 happen, we have

ly — u(0)]3 = Z(yi — F(W(0),a,,))?

i=1
= zz:; (yi - % i aré(w:xi))Z

=1

= Z%Q*QZyzzszrZ(ZZw)
< Zyl +22|y1|\/210g 2mn/9) - log(4n/d) + Z <\/210g 2mn /) - log(4n/d) )

=1

= vt =23y Yot + 3 (3 o =)

= 0("10g(m/5) log?(n/9)),
where the first step uses E, the second step uses F, and the last step follows from |y;| = O(1),Vi € [n].
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B.5. Local Steps

The following theorem is standard in neural tangent kernel theory (see e.g. (Song & Yang, 2019)).

Lemma B.9. With probability at least 1 — & over the random initialization, the following holds for all k € [K] and ¢ € [N]
andr € [m] in step t

5 () = yell3 < (1= MocatA/2)F - [lyE (£) — yel13, (12)

4/al|y (t) — y.
it + 1) = . ()] < 2Ol (13)
Iy () =y D113 < nfpeaan® - 108 (1) — vell3- (14)

We then prove a Lemma that controls the updates in local steps.
Lemma B.10. Given Eq (14) for all k € [K],c € [N] in step t the following holds for all k. € [K],c € [N]

lye(t) = 4 (@)l2 < 2mocarn K [lye () = yell,

277100&1K(1 + 2nloca1nK)\/ﬁ
Au, (D) < — ()]s
1w, (1) < o Iy = y(0)l

Proof. For the first inequality, from Eq (14) we have

lye =y ()12 <y (8) = gD @)l]2 + 1S () = well2
(nlocaln + 1)||yc ck 1)( )”2
> (nlocaln + 1) Hyc - yc(t)HQ

Therefore

lye(t) = 5 (@)1 < ley(’) (1)l

< anocaln||yc gj 1)( )||2
i=1

k

< Z nlocaln(nlocaln + 1)j_1||yc - yc(t)H?
=1

S 2nlocaan||yc(t) - ycHQ
where the last step comes from the choice of 79jocal-

For the second inequality, notice that

||Au7‘( )”2 Mocal

= Z Z \ﬁ Z () _y(k) t)j)%; L, kc(t)Tx]>OH2

cE [N] k€[K] jES.

_]@i;‘iZZZIyJ—y );]

k€[K] ce[N]jES.

nlocal
f2|\y s B (0)]

ke[K]

where the second step comes form triangle inequality and ||z;||2 = 1 and the last step comes from Cauchy-Schwartz
inequality. From the ||y.(t) — ygk)(t)Hg < 2Miocal K ||ye(t) — yel|2 we have

ly =y ®)13 = Zl\yc yP O = 2(lye — ye®I3 + llye(t) — v (@)]3)

c€[N]
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< Z (Iye = ye @3 + CmocarnF)?||ye(t) — yell3)

< 2<1+2mmmK> ly = y(@®)]l3- (15)

It thus follows that

Moca
1Au (8)] < f Sy —s® )]s
ke [K]

27710calK(1 + 2f’7localn}’{)\/H
< Nm ly — y()]]2-
m

B.6. Technical Lemma

Lemma B.11. For any set of weight vectors @1, - - - , Wm € R and @1, - - - , W, € R? define H(w,w) € R"*" as

1 m
~ o~ o T
H(w,w);; = o E 172,007 2,;>0-
r=1

Let R € (0,1) and wy, - - - ,w,, be iid generated from N'(0, I). Then we have with probability at least 1 —n?-exp(—mR/10)
the following holds

|H (w,w) — H(w,®)||r < 2nR
forany @y, - -+ , Wy, € R and @y, - - - , Wy, € R such that |, — w, |2 < R and ||, — w,|s < R forany r € [m)].
Proof. Foreachr € [m]and i, j € [n], we define
Srig = 1T e, >0,@7 2,20 — LwTe;>0wlz;>0-
The random variable we consider can be rewritten as follows

|H (w, @) ; — H(w,w); ;|

NE

«
Il
-

<
Il

=1

m 2
E 1gre,>0072;50 = LwTe;>0wl ;>0

IN
3 -
M:

>

i=1 j=1 \r=1
1 n o n m 2
=22 (i)
i=1j=1 r=1

1m 2
It thus suffices to bound —5 (> /" 57.4,5)°.

Fix ¢, j and we simplify s, ; ; to s,. Then {s, }I", are mutually independent random variables.

‘We define the event

Aiﬂ" = {HU : ”u - w7“||2 S R’ 1wTw,.ZO 7& 1w7u20} .

If = A;, and - A; , happen, then
llmjxizo,wjszo - 1qu7-,20,w,Tx,-zo| = 0.
If A; , or A, happen, then

llﬁjxizo,mjzjzo - 1w;r:ri2(],w:a:j20’ <L
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So we have
E[Sr] < o []-A rVA; T] < P [Az r] +PT[A ]
< 4R
T N27
<2R,
and

IA

e
o
R

IN
=
—~
o

>

3

<

>

4

S~—
A

We also have |s,.| < 1. So we can apply Bernstein inequality (Lemma A.1) to get for all ¢ > 0,

lz —E[s;]) > mt]
r=1
2t2/2

= e ( 2mR+mt/3)

| /\

Pr lz s, > 2mR + mt
r=1

Choosing t = R, we get

isr > 3mR

r=1

p < m2R?/2
. __ mR2
= P\ TR Y mR/3

exp (—mR/10).

IN

It follows that

< exp(—mR/10).

1 m
L=
Similarly

1 m
- Z sr < =3R| < exp(—mR/10).

r=1

Therefore we complete the proof.

Lemma B.12. If Eq. (6) holds fori = 0, - -- | k, then we have for all r € [m)

< 8Vally—yOll: _

[[ur () — ur (0)]|2 < NG

Proof. We have

t
s (£) = (0) 12 < Mlgioar Y 1w (7)]l2

7=0
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2m 1K 1—|—2 localP K )y/1
<ngbbalz Roca KL Zoct Iy — g1l

inocalK 1+ 27710ca1nK \/7 n lobalnlocal)\K
< o 22 L T Z - Aol A2 7y — y (o)

< 8vrlly —y(0)]2
< —\FA :

where the second step comes from Lemma B.10 and the last step comes from the choice of 7iocal. O

C. Generalization

In this section, we generalize our initialization scheme to each w,.(0) ~ N (0, 0%I). Notice that this just introduces an extra
o2 term to every occurrence of m. In addition, we use U(t) = [u1(t), -+ ,um(t)]T € R¥*™ to denote parameters in a
matrix form. For convenience, we first list several definitions and results which will be used in the proof our generalization
theorem. Our setting mainly follows (Arora et al., 2019a). This section is organized as follows:

* In Appendix C.1, we introduce several definitions.

* In Appendix C.2, we list some tools from previous work.

* In Appendix C.3, we upper bound the movement of weights which corresponds to the complexity of our model.
* In Appendix C.4, we present some technical claims used in the proof.

* In Appendix C.5, we show the generalization result of FL-NTK.

C.1. Definitions

Definition C.1 (Non-degenerate Data Distribution, Definition 5.1 in (Arora et al., 2019a)). A distribution D over R? x R is
(A, 8, n)-non-degenerate, if with probability at least 1 — 0, for n iid samples {(x;,y;) }_, chosen from D, Apin(H>) >
A > 0.

Definition C.2 (Loss Functions). Let £ : R x R — R be the loss function. For function f : R* — R, for distribution D
over R? x R, the population loss is defined as

Lp(f):= E _[((f(x),y)]-

(z,y)~D

Let S = {(x4,y:)}1—, be n samples. The empirical loss over S is defined as

1 n
= ;af(x

Definition C.3 (Rademacher Complexity). Let F be a class of functions mapping from R? to R. Given n samples

S ={x1, -+, 2.} where z; € R? fori € [n], the empirical Rademacher complexity of F is defined as
Rs(F) = sup ef(ai)|.
-

where ¢ € R and each entry of € are drawn from independently uniform at random from {+1}.

C.2. Tools from Previous Work

Theorem C.4 (Theorem B.1 in (Arora et al., 2019a)). Suppose the loss function {(-,-) is bounded in [0, c| for some ¢ > 0
and is p-Lipschitz in its first argument. Then with probability at least 1 — § over samples S of size n,
log(2/4)

2n

]bglelg{LD(f) —Ls(f)} <2pRs(F) +3c
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Lemma C.5 (Lemma 5.4 in (Arora et al., 2019a)). Given R > 0, with probability at least 1 — § over the random initialization
on U(0) € R™*? and a € R™, for all B > 0, the function class

m

rp = {/(U-a Zw ulw) s fur = (0)|2 < RVr € [m:||lU ~U(0)]|r < B
has bounded empirical Rademacher complexity

0),a O, 1/ 2 m
Rs(Fag™) < \/1;” (1+ (21 %512/5)) 4) L 2BVm L g aToa(2)9).

g

Lemma C.6 (Lemma C.3 in (Arora et al., 2019a)). With probability at least 1 — § we have
|H(0) — H*||r < O(ny/log(n/d)/vm).

C.3. Complexity Bound
To simplify the proof in the following sections, we define p := niocalfglobal K /N .

Now we prove a key technical lemma which will be used to prove the main result.

Lemma C.7. Let A = Apin(H®) > 0. Fix o0 > 0, let m = Q(A\"*0"2n*log(n/?)), we iid initialize w, ~ N(0,0%I),
a, sampled from {—1,+1} uniformly at random for r € [m] and set Mocal = O(n;}(’i)7 Nglobal = O(1). For weights
wy, Wy € RY, let vee(W) = [w] wg ---w]]T € R™? be the concatenation of wy, - -, wy,. Then with probability
at least 1 — 69 over the random initialization, we have for all t > 0,

o [Ju(t) = u.(0)||2 < &Fn\l\yﬁ%
- no n7/2
< U@ —UO)|lr < (yT(H®)"'y)2+0 ((T o) .poly(log(m/(;))).

Proof. Similarly to Appendix B, ||u,(t) — u,(0)||2 < W‘UF% and ||wg,cr () — u(0)]|2 < W”ﬁ%. For integer
k > 0, define J(k,t) € R™AX"™ a5 the matrix

alwl]‘wk,cl,l(t)ThZO o alxnlwk,cn,,l(t)TznZO

am:'rllwk,cl,m(t)-rzlzo T amxnlwk,cnnn(t)-rmnzo

where ¢; € [N] denotes the unique client such that i € ¢;. We claim that

n\/log(m/é) log2(n/§)))1/2.

17(k,t) = T (0,0 < O(n - (6 + S

In fact, we can calculate ||.J(k,t) — J(0,0)||% in the following

1 & 2
||J(k7t)—J(070)||%=EZ Z D (lwille - @il 97220 = Lu,0)7220))

NJ]i€Se
1 m
“m Z Z Z Wr,e,r (£)T2;>0 1ur(0)7xi20>2
r=1ce }’LGS

m
1
Ez Z Z wkwcwr(t)—r:ni20¢174,7‘(0)T.7:i20.

r=1cg[N]i€S.
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Fix ¢ € [N],i € S, and for r € [m] define ¢, as follows

tr = llwk,cﬂ,(t)—rmiZO;élur((J)Tm,iZO.
Consider the event

Ai,T = {Ew : ||uT(0> - U)||2 <R, 1szi20 7é 1uT(O)TziZO}

108(m/3) 10g2(n/3) ) .
where R = <" log(:tL\//%log (/9 for sufficiently small constant C' > 0. If ¢, = 1 then either A, , happens or ||wg, cr(t) —
ur-(0)]|2 < R, otherwise ¢, = 0. Therefore

E[t,] < Pr[A;,] + Pr[[|us(0) — wp.cr(t)||l2 < R] < Ro—' + 4.

And similarly E[(t, — E[t,])?] < E[t?] = Ro~! + §. Applying Bernstein inequality, we have for all t > 0,

m m2t2
P tr > mRo~? 5 t| < - .
r[; 2 mito "~ +m +m} _eXp( 2(mR01+m5+mt/3))

Choosing t = Ro~1 46,
Pr {Ztr > 2m(Ro~* + 5)] < exp(—m(Ro ™t +§)/10).

By applying union bound over i € [n], we have with probability at least 1 — nexp(—m(Ro~! + §)/10), || J(k,t) —
J(0,0)||r < 2n(Ro~! + §). This is exactly what we need.

Notice that we can rewrite the update rule in federated learning as

vee(U(t+ 1)) = vee(U (1)) - "Tb 3 el (050) )

= vec( p— Z J(k,e)(y™® () —y) (16)
ke[K

where the last step follows from definition of p = NgiobaiMocal K /N .

Recall from Appendix B that

a 1 1
AU/’I‘ = ~ Z Z noca Z _yc )lewk,C,r(t)TIjZ()’

CE[N] ke[K] JGS
and
1 m
H(t k, )iy = — ZwT%luw»oM cr (72,205
H(t,k,c)f: = Z Ty 5Lyt 00,0y 0 0 (8) T 2,0
’I"GQ
We have

V1,i = \/7 Z ar< ) + nglobalAur( ))Tl'z) - ¢(ur(t)Tx1)>

reQ;

MocalMglobal /£ 0o ) 1771b1 o
= T N (1), — ) Y (- ) 3T S (M (0 — () H

JES. k€[K] ce[N]jES.
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+( nloca»lnglobal Z Z Z (k) ( (t k C) Hoo)

ke[K] ce[N]j€ES.

+( nlocalnglobal Z Z Z k) i —Yj H(t k C)vj’

ke[K] ce[N]j€ES.

V2, = \/7 Z ar( )+ nglobalAur( ))TZEZ) - ¢(ur(t)—rxz)>

reQ;

Following the proof of Appendix B, let

Ez(t) :’Ugyi(t)—f—( nlocalnglobal Z Z (k) y(t)g)Ho;

k€[K] ce[N]j€S.

+( nlocalnglobal Z Z Z(y k)(t fyj)( (t k C) HOO)

ke[K] ce[N]jES.

+( nlocalnglobal Z Z Z (k) H(f, kvc)ij-

k€[K] c€[N] jESe

Notice that

Hence by Eq. (9), with probability at least 1 — n exp(—mRo ') we have

and

Similar to Appendix B, by the choice of R = Wyﬁw

Iy~ 5(0)ll> = O(\/nlog(m/3) log(n/5) ),

we can bound £(t) = [¢1(2), -+ ,&,] T € R™ as

1@l < O (nglobalnlocaln5/2[(ﬁ\/log(m/é) log?(n/d) ly y(t)||2>
Noly/m
pn®/2 [log(m /5) log? (n/5)
~o( s o= w0l ) (1)
where the last step follows from definition of p = ngiobaMocal K /N.
Notice that with probability at least 1 — §, for all ¢ € [n],
yi(0)] < o - \/2log(2mn/6) - log(4n/9),
which implies
ly(0)[13 < no® - 21og(2mn/é) - log® (4n /). (18)

Therefore we can explicitly write the dynamics of the global model as

nglobal Mocal K

y(t) —y = - N H>)(y(t—1) —y) +&(t - 1)
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= —pH™)(y(t—1) —y) + &t - 1)

=(I—pH>®)'(y(0) —y)+ > (I = pH>)E(t —1—7)
7=0

— (I — pH®) 'y + e(t).

where the second step follows from definition of p = giobai?ocal &K /N, the third step comes from recursively applying the
former step.y.

By Eq (17) and Eq (18) we have

e(t) = (I — pH™)'y +ZI pH®)E(t—1—7)

=0 <<1 )t - /TTog(@mn ) - log(8n/6) + 1(1 — p)t - P log(%%)g Wé)>

where we used ||y(t) — y|3 < (1 — ZeballlocatMCye 1)) — ||2 from Theorem B.3.

By Eq (16),
T-1
vec(U(T)) = vee(U(0)) = Y (vec(U(t + 1)) — vee(U(t)))
t=0
T—1 1
=2 | 20 kDM ~y)
t=0 ke[K]
T-1
=" p-J0,0)(I - pH™)'y
3 0w S (kt) — J0.0)(I — pH®)'y
t=0 ke[K]
_Zp fZJk:t (™ () — y(t) + e(k))
t=0 ke[K]
=B+ By + B3
where

N
L

By:=+p- J(0,0)(I — pH™)'y,

t=0
T-1

B, 1=+P'ZE Z (k,t) 0,0)(I = pH™)'y
t=0 €[K]
T—1 1 k)

Bs:= —p- }Z (k, )y (t) — y(t) + e(k)).
t=0 €[K]

We bound these terms separately.
Putting Claim C.8, C.9 and C.10 together we have
IU(T) = U(0)llr

= || vec(U(T)) — vec(U(0))|l2
=DB1+ By + B3
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n3/2 no n7/2

9mm¢mpm+'A+A%vm*Pdﬂbﬂm”D)

<(y'(HX)T'y'2+0 <(n ”;20%/5))”2 +
n7/2
< (y'(H®) )1/2+0< L - poly(log(m/6)) + — 75—z -p01Y(10g(m/5)))

which completes the proof of Lemma C.7.

C.4. Technical Claims

Claim C.8 (Bounding By). With probability at least 1 — 0 over the random initialization, we have
*(/log(n/9)
Bi|2 <y DTH®Dy + (180
where D = 1" " p(I — pH™)" € R™™,

Proof. Recall D = Zt 0 p([ pH>)t € R"*" then we have

an§=H§jpuumm-u—p-er4L
t=0

=4 D".J(0,0)".J(0,0)Dy
=y ' D'"H®Dy+y D" (H(0) — H®)Dy
<y 'D'H*Dy+ |H(0) — H*||r - | D3]ly|I”

n+/log(n/d) = ’
<y'DTH®D +0()< (1-— )\)t> n
Y y — ;p p

mawm
<y'DTH>D
where the penultimate step comes from Lemma C.6 and y; = O(l).

Claim C.9 (Bounding Bs). With probability at least 1 — & over the random initialization, we have

n3/2 poly (log(m/9))
[1B2]l2 < mi/4g1/2)\3/2

Proof. For By, we have

nBﬂg—H§jp4— (J(kst) = J(0,00)(I = pH™)'

o,
k:e[K]
T-1 1
PR D Tk t) = J(0,0)][ - [T = pH> |5 - |1yl
t= ke[K]

IN

npoly(log(m/4)) = &
0 mi/agi/zaijz P (1—=pN)"-Vn
k=0

n3/2 poly(log(m/§))
ml/is1/2)3/2 :

@)

where in the third step we use

n\/log(m/é) log®(n/9) )) 1/2

19(k,t) = J(O,0)lr < O(n- (5+ "

and without loss of generality, we can set § sufficiently small.
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Claim C.10 (Bounding Bs). With probability at least 1 — 0 over the random initialization, we have

no n7/?

(7 + Aa/m

Proof. Notice that for k,t > 0, ||J(k,t)||% < 2 = n. By Eq (17) and Eq (18) we have

I1Bsll2 < ) - poly (log(m/d)).

() = y(t) + e(k))

-Vno? - /2log(2mn/d) - log(8n/J)

(m/d)log” (n/5))
Ao/m

) - poly(log(m/d)),

T—-1
IBslla = |[= > p-
t=0

Z

t=0

pn
p)' -

Pl
(0=
3log

(1 —

no n/?

< (Lt
_()\ +)\3a\/ﬁ

here in the first step — Y1 p- & Zke[K] J(k,t)e(k) is the dominant term.

C.5. Main Results

Now we can present our main result in this section.

Theorem C.11. Fix failure probability 6 € (0,1). Set ¢ = O(Apoly(logn,log(1/0))/n), m =
Q (o7%(n'* poly(log m, log(1/8),A™1))), let the two layer neural network be initialized with w, i.i.d sampled from
N(0,0%1) and a, sampled from {—1,+1} uniformly at random for r € [m]. Suppose the training data S = {(z;,y;)}",
are i.i.d samples from a (X, § /3, n)-non-degenerate distribution D. Let p = Mocalfglobal KX /N and train the two layer neural
network f(U(t), -, a) by federated learning for

T > Q(p~ A ! poly(log(n/d)))

iterations. Consider loss function ¢ : R x R — [0, 1] that is 1-Lipschitz in its first argument. Then with probability at
least 1 — & over the random initialization on U(0) € R™™ and a € R™ and the training samples,the population loss
Lp(f) := E@y)~pll(f(U(T),x,a),y)] is upper bounded by

Lp(f)

IN

2yT(H>) " y/n+ O(y/log(n/(X8))/(2n)).

Proof. We will define a sequence of failing events and bound these failure probability individually, then we can apply the
union bound to obtain the desired result.

Let E; be the event that A\, (H*°) < A. Because D is (A, 0/3, n)-non-degenerate, Pr[E;] < €/3. In the remaining of the
proof we assume F; does not happen.

Let E5 be the event that Ls(f(U(T),-,a)) = 230 L(f(U(T),zi,a),y;) > ﬁ By Theorem B.3 with scaling §
properly, with probability 1 — 6/9 we have Lg(f(U(T),-,a)) < % So we have Pr[Es] < §/9.

Set R, B > 0 as

n\/log(m/é) log?(n/d)
A\/m )7

/2
B = (7 (H)79)72 4 0 (7 - poly(log(rm/0) + 7o - poly(l(m/a) )
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Notice that ||y|2 = O(y/n) and ||(H*®)~!||5 = 1/. By our setting of o = O(2pe¥losnlog/9)y yng 2 > plt > pl2)

n

B = O(y/n/A). Let E3 be the event that there exists € [m] so that ||u, — u,(0)]l2 > R, or ||[U — U(0)||r > B. By
Lemma C.7, Pr[E3] < §/9.

Fori=1,2,.---,, let B; =i. Let E, be the event that there exists ¢ > 0 so that
B; 21og(18/6) 2R?\/m
Rs(Faght) > (1+ V) 4 22V 4 Ry/210g(18/9).
S( R,B; ) m ( m ) p g( / )

By Lemma C.5, Pr[Ey] < 1—4/9.

Assume neither of F5, 4 happens. Let i* be the smallest integer so that B;» = ¢* > B, then we have B;» < B + 1 and
i* = O(4/n/)). Since E3 does not happen, we have f(U(T),-,a) € fgﬁgz;a. Moreover,

w. B+1 21og(18/6 2R?
Rs(Frgit) < - (1+( 8 /))1/4>+0‘/%+R log(18/6)

T V2n m
y'(H>)'y 1 V/no - poly(log(m/9))
= ™ + Tn + O( 3 )
n3 poly(logm,log(1/8),A71) 2R?>\/m
+ i 51”‘%52 /%) ) + a\/> + R+/log(18/96)
_JyEE) Ty O(\/ﬁa : poly(log(m/d))) | npoly(logm. log(1/6), A7)
B 2n vn A ml/ig1/2
_ frETy 2
2n Vn

where the first step follows from F,4 does not happen and the choice of B, the second step follows from the choice of R, and
the last step follows from the choice of m and o.

Finally, let E5 be the event so that there exists ¢ € {1,2,--- ,0(y/n/\)} so that

swp {Lo(f) = Ls()} > 2Rs(FyY") + 0 ( 1g<m>> |

reFgQe 2n

By Theorem C.4 and applying union bound on i, we have Pr[Es5] < 6/3.
In the case that all of the bad events E, Fs, E5, E4, E5 do not happen,

Lo(f(U(T). a)) < Ls(FU(T), ) + 2Rs(FLE) + 0 ( bg;f))

2yT(H>)"ly 5 log(5)
<=z 7 J .y 7
< - + NG + 0 55
_ 2y T (H>) 1y Lo ( log(/(g)> .
n 2n

which is exactly what we need. O



