
Supplementary Material: Accurate Post Training Quantization With Small
Calibration Sets

Itay Hubara * 1 2 Yury Nahshan * 1 Yair Hanani 1 Ron Banner 1 Daniel Soudry 2

1. Size of calibration set
Fully Connected layers Let’s assume that we have
weights of size W ∈ RM×N and input and output are of
sizes N and M respectively. Recalling Eq. (2) and setting
Y = WX and W ′ = W + V results in:

(
∆̂w′ , ∆̂x, V̂

)
= arg min

∆w,∆x,V
||Y −Q∆w′ (W

′) ·Q∆x
(X)||2,

For simplicity we assume that ∆x is fixed and define Xq =
Q∆x

(X), Wq = Q∆w′ (W
′). Therefore, if we have B

unique samples, then the problem we aim to solve have the
following structure:


w11x11 ... w1NxN1

w11x11 ... w1NxN2

· · ·
. . . · · ·

wM1x1B ... wMNxNB

 =


y11

y12

...
yMB


Notice that in the above equations, for each output we have
a different set of parameters, therefore we can examine
each output separately. For a single output we are in scalar
linear regression with N parameters and B equations. If
B ≥ N we are under-parameterized, and if B < N we are
over-parameterized.

Convolution layers layers Similarly, for convolution lay-
ers with Co output channels, Ci input channels, and ker-
nel size k each element of the output is a dot product of
Ci ·k ·k parameters. We have in total Co×H ×W outputs
where H,W is the output height and width. Thus we need
B ≥ Ci·k2

HW samples to avoid over-fitting, where B is the
number of unique samples.

*Equal contribution 1Habana Labs – An Intel company,
Caesarea, Israel 2Department of Electrical Engineering - Tech-
nion, Haifa, Israel. Correspondence to: Itay Hubara <itay-
hubara@gmail.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

2. Reconstruction and re-fusing of Batch
Normalization

In this section, we provide more details on Batch Normal-
ization reconstruction and re-fusing procedure.

Reconstructing BN layers: Consider a Batch Normaliza-
tion layer with parameters γo, βo that fused into previous
convolutional layer weight and bias. Fusing batch normal-
ization layer transforms weights and bias as following:

W ′i = Wi
γo
σ

; b′i =
γo
σ

(bi − µ) + βo; (1)

To reconstruct the batch normalization, we would like to
initialize µ, σ2, as well as the BN parameters γr and βr (r
for ”reconstructed”) so that the reconstructed BN is approx-
imately identity fig. 1.

BNr(x) = γr
x− µ√
σ2 + ε

+ βr ≈ x (2)

Figure 1.

To do so, first we initialize the reconstructed BN layers by
setting the following parameters (denoted by r):

µ = βr = βo; σ2 = γ2
o γr =

√
γ2
o + ε (3)

so that BNr(x) = x.

Now, we can update µ and σ2 by collecting running mean
and running variance on the calibration data. We stress that
the BN parameters, γr, βr, do not change while applying
BN tuning, as we only invoke forward propagation.

Supplementary Material: Accurate Post Training Quantization With Small Calibration Sets

Re-fusing BN layers: After BNT phase we need to fuse
Batch Normalization layer again into convolution weights
and bias. Regular batch normalization fusing will cause
degradation due to quantization of the weights. To resolve
this issue we can leverage per-channel quantization setting
we use.

Denote swi
, zwi

scale and zero point of the weigh, the
quant/dequant operation defined as:

Wq = swi

⌊ W
swi

−
⌊
zwi

swi

⌉⌉
+

⌊
zwi

swi

⌉ (4)

We can fuse parameters of the batch normalization layer as
following:

W ′i = Wi
γr
σx

; b′i =
γr
σr

(bi − µx) + βr

s′wi
=
γr
σx
swi

; z′wi
=
γr
σx
zwi

(5)

Finally we can show that transformations Eq. (5) equivalent
to γr

σr
Wq

W ′q = s′wi


W ′
s′wi

−

⌊
z′wi

s′wi

⌉+

⌊
z′wi

s′wi

⌉
=
γr
σr
swi

⌊ W
swi

−
⌊
zwi

swi

⌉⌉
+

⌊
zwi

swi

⌉
=
γr
σr
Wq

(6)

3. Additive loss assumption for
integer-programming

Suppose the loss function of the network L depends on a
certain set of variables (weights, activations, etc.), which we
denote by a vector v. We would like to measure the effect
of adding quantization noise to this set of vectors.

Since the quantization is emulated with additive noise, the
loss is smooth and thus can be expanded to the Taylor series:

∆L = L(v + ε)− L(v) = (7)

=
∂LT

∂v
ε+ εT

∂2L
∂2v

ε+O
(
‖ε‖3

)
. (8)

One can see from Eq 7 that when the quantization error
ε is sufficiently small, the overall degradation ∆L can be
approximated as a sum of N independent degradation pro-
cesses by neglecting the quadratic terms ε2:

∆L ≈ ∂LT

∂v
ε =

n∑
i

∂L
∂vi
· εi (9)

We note that (Lin et al., 2016; Choukroun et al., 2019)
used a similar assumption with respect to the additivity of
quantization noise.

Figure 2. Calibration size ablation study with additional early-stop
plot.

4. Experimental Details
In all our experiments, we used a small subset of the training
set to run our methods. Specifically, for vision models, we
used 1000 unlabeled images from the ImageNet training set
(single image for each class) as a calibration set. For the
Bert model, we used one paragraph from the training set. All
presented methods AdaQuant, BNT, BT, and IP, performed
well on such small calibration set producing SOTA results.
Next we detail our setting for each of the technique in our
pipelines

4.1. AdaQuant

AdaQuant optimization problem defined as following except
zero-point of the quantizer which we omitted from eq.(3):(

∆̂w, ∆̂x, V̂W , V̂b

)
=

arg min
∆w,∆x
Vw,Vb

||WX + b−Q∆w (W + VW) ·Q∆x(X)−Q(b + Vb)||

Technically to find a solution for eq.(3), we use Adam opti-
mizer with different learning rates per type of parameters.
We set different learning rates for weight, bias, and quantiza-
tion parameters of input and weights. After experimenting
with different models, we found that the same set of LR
parameters worked for each model. The learning rates are
1e− 5, 1e− 3, 1e− 1, 1e− 3 for weight, bias, quantization
parameters of the inputs, and weights, respectively.

For vision models, we used 1000 unlabeled images from
the ImageNet training set (single image for each class),
running Adam optimizer for 100 iterations and a batch-size
of 50 unless otherwise stated. For BERT-base model, we
used one paragraph from the training set, running Adam
optimizer for 50 - 100 iterations depending on the type of
layer. Learning rates and batch size are the same as of
vision models. In fig-(1) we aimed to answer the following
question: Assuming you have a small calibration set and
no resources constraints (time,power) which method is the
most accurate and robust Out method were evaluated by

Supplementary Material: Accurate Post Training Quantization With Small Calibration Sets

running each experiments five times and reporting mean and
standrad deviation. Here, in fig. 2, we add an additional
naive early-stop plot on top of QAT-KLD experiment. We
split the calibration data into two equal sets and train on half
the examples while evaluation our performance on the other
half Both KLD experiments used an SGD optimizer over
10 epochs; starting with learning rate of 0.1 and decreasing
it by 1e-2 factor after 2 and 8 epochs. We also conducted
KLD experiments with Adam optimizer and learning rate of
1e-3 where performed but their results were inferior. As can
be seen in the plot AdaQuant is superior to other methods
and remarkably excels on small calibration sets. As can
be seen in fig. 2 the early exit results were inferior to the
QAT-KLD as they use much smaller training set. However,
other types of training-validation splits (e.g. 80-20) may
boost the results.

4.2. Integer Programming

Our IP method requires two steps, the first is measuring
the properties of each layer, and the second is applying the
program based on these measurements with user defined
constraint. As reference, we measure the loss (can also be
accuracy) of the base precision model on the calibration set.
Next, we measure the sensitivity of each layer by evaluating
a model where all layers are qunatize to the base-precision
but one layer that is quantized to lower precision (e.g., all
8-bit but one layer with 4-bit). The ∆Ll in Eq. 3 is defined
as the difference between the reference model loss and the
measured loss. If a layer is robust to quantization, ∆Ll
will be small, and if a layer is sensitive to quantization,
∆Ll will be large. The performance gain in the case of
compression, is simply the model parameters size difference
when lowering the precision of the examined layer. Hence,
if a layer has N parameters, the performance gain when
changing from 8-bit to 4-bit result in compression gain
of ∆Pl = N ∗ 8 − N ∗ 4 = 4N . In the second stage,
we run the integer program based on the sensitivity and
compression measured on each layer along with the user
defined constraint.

4.3. Batch Normalization and Bias Tuning

The Batch Norm tuning phase is the most lightweight phase
of the pipeline. We found empirically less than ten iterations
of statistics update are sufficient. We also found that as
compression growth, more iterations of batch norm tuning
are required. At the bias tuning phase, we perform 200
iterations of fine-tuning with the learning-rate of 0.1.

4.4. Methods complexity

We experimented with several methods each with its own
complexity. For integer programming we used pulp library
optimized for CPU, thus running IP for layer-wise bit al-

location takes seconds at most. As stated in section 3.3,
para-norm requires only a few model iterations (we used
100). AdaQuant complexity is slightly higher as it requires
tuning the weight parameters. Yet, only 100 training iter-
ations per layer are needed. Thus for ResNet50, even the
most time-consuming version, seq-AdaQuant, takes less
than 5 minutes on one device (GeForce 1080). Thus, our
methods are two orders of magnitude faster than QAT.

Num of Requires time
iterations BP (min)

Integer programming - No 0.1-0.2
Para-Normalization 100 No 1-2
Seq-AdaQuant 100 Yes 5

Table 1. Methods complexity in terms of number of iterations re-
quired, whether or no back-propagation (BP) is required, and the
time as measured over one GeForce 1080 GPU.

5. Code
For all our vision dataset we used the default torchvision
pre-trained model. For BERT-base experiment we fined-
tuned on SQUAD1.1 dataset and provide the script for
that as a part of our repository. Our code can be found
at: https://github.com/papers-submission/CalibTIP.

References
Choukroun, Y., Kravchik, E., Yang, F., and Kisilev, P. Low-

bit quantization of neural networks for efficient inference.
In 2019 IEEE/CVF International Conference on Com-
puter Vision Workshop (ICCVW), pp. 3009–3018. IEEE,
2019.

Lin, D., Talathi, S., and Annapureddy, S. Fixed point quan-
tization of deep convolutional networks. In International
conference on machine learning, pp. 2849–2858, 2016.

