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Abstract
Lately, post-training quantization methods have
gained considerable attention, as they are simple
to use, and require only a small unlabeled cali-
bration set. This small dataset cannot be used
to fine-tune the model without significant over-
fitting. Instead, these methods only use the cali-
bration set to set the activations’ dynamic ranges.
However, such methods always resulted in sig-
nificant accuracy degradation, when used below
8-bits (except on small datasets). Here we aim
to break the 8-bit barrier. To this end, we mini-
mize the quantization errors of each layer or block
separately by optimizing its parameters over the
calibration set. We empirically demonstrate that
this approach is: (1) much less susceptible to over-
fitting than the standard fine-tuning approaches,
and can be used even on a very small calibration
set; and (2) more powerful than previous methods,
which only set the activations’ dynamic ranges.
We suggest two flavors for our method, parallel
and sequential aim for a fixed and flexible bit-
width allocation. For the latter, we demonstrate
how to optimally allocate the bit-widths for each
layer, while constraining accuracy degradation or
model compression by proposing a novel integer
programming formulation. Finally, we suggest
model global statistics tuning, to correct biases
introduced during quantization. Together, these
methods yield state-of-the-art results for both vi-
sion and text models. For instance, on ResNet50,
we obtain less than 1% accuracy degradation —
with 4-bit weights and activations in all layers, but
first and last. The suggested methods are two or-
ders of magnitude faster than the traditional Quan-
tize Aware Training approach used for lower than
8-bit quantization. We open-sourced our code
https://github.com/papers-submission/CalibTIP.
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1. Introduction
The pursuit of advanced Deep Neural Networks (DNNs)
causes researchers to construct deeper and wider networks,
making them expensive to use in terms of power and time.
This increases the need for efficient implementations of
these networks. Efficient networks reduce cloud-vendor
costs and make it possible to run them on low-power devices
such as smartphones and wearable devices. The most com-
mon off-the-shelf approach to improving network efficiency
is quantization, which reduces the numerical precision of
the network and its complexity and memory footprint.

DNN quantization techniques can be classified as either
post-training or quantization-aware training (QAT) tech-
niques (Han et al., 2015; Courbariaux et al., 2015; Hubara
et al., 2017; Zhou et al., 2016). Although QAT techniques,
in general, achieve better results, there are important real-
world scenarios in which they are not applicable. These
are the cases where the training data is sensitive or simply
unavailable at the time of deployment. For instance, when
off-the-shelf or legacy models are being used, or when med-
ical records are involved. Therefore, much attention has re-
cently been dedicated to post-training quantization methods
(Nagel et al., 2019; Banner et al., 2018; Zhao et al., 2019),
which can be more easily applied in practice. These meth-
ods allow for network quantization to happen seamlessly
when deployed, without requiring additional information
from the user except a small unlabeled calibration set.

Unfortunately, post-training quantization below 8-bit usu-
ally incurs significant accuracy degradation, and in some
cases even higher numerical precision is required. In this
paper, our goal is to break this barrier by distilling all the
information the pre-trained model and calibration set en-
code. Our goal is to find an optimal scheme for the current
state of the art hardware which usually supports 16,8,4 bits
data types with per-channel quantization of the weights. To
that end, we suggest a three-stage pipeline that consists of
methods applied solely on a small calibration set to reduce
the local error introduced during the quantization process
(e.g., round-off errors) followed by integer programming
to determine the bit-width of different layers so that the
overall accuracy degradation is minimized. Even without
using mixed-precision, the suggested method is much less
prone to over-fitting than current methods and yields best in
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class results for 8-bits Mobilenet-V2 and BERT-base trained
on ImageNet and SQuAD1.1 datasets, respectively. Our
paper suggests several contributions for mixed-precision
post-training quantization:

1. AdaQuant (section 3.1): A layer-by-layer optimiza-
tion method that minimizes the error between the quan-
tized layer output and the full-precision layer output.
This method can consume only a small calibration
dataset from training data without overfitting. In a
comprehensive study, we show that AdaQuant defines
a new state-of-the-art for post-training quantization
on several networks and tasks, including vision mod-
els (Resnet18, Resnet50, MobilenetV2) and language
(BERT).

2. Integer programming (section 3.2): As some parts
of the network may allow lower precision compared
to other layers, we suggest an integer-linear program-
ming based approach for determining the precision
level of different layers. This method aims at maximiz-
ing either the expected speedup or savings in power
consumption without violating a predefined constraint
on network accuracy degradation or compression.

3. Para-normalization (section 3.3): Following quanti-
zation, we observe an inherent bias in the mean and
the variance of batch norm statistics. We show that by
employing the re-estimated statistics in batch normal-
ization, much of the quantized network degradation
can be recovered.

4. Light and Advanced pipelines (section 4): We ana-
lyze the advantages and disadvantages of each of the
given methods and suggest two pipelines: (1) light
pipeline that does not require a backward pass, thus
can be invoked even on inference-only hardware; and
(2) Advanced pipeline that includes also AdaQuant and
bias tuning.

2. Related work
There has been a significant effort to accelerate inference
via quantization (Courbariaux et al., 2015; Han et al., 2015;
Rastegari et al., 2016; Zhou et al., 2017). These works in-
volve re-training in order to compensate for the degradation
due to the quantization process. Post-training quantization,
on the other hand is applied to a model after it was trained.
Thus, it avoids re-training and as such it is much simpler to
use. However, naively quantizing a full-precision model to
INT4 or lower to accelerate computation usually incurs sig-
nificant accuracy degradation (Krishnamoorthi, 2018; Jacob
et al., 2018).

AdaQuant: A recent post-training quantization method
(Nagel et al., 2020), termed AdaRound, suggested optimiz-

ing the rounding policy. Instead of using the predominant
rounding-to-nearest approach, they suggest formulating a
per-layer quadratic optimization problem to optimize the
round-off error. Our proposed method, AdaQuant, takes an-
other step and relaxes AdaRound’s implicit constraint which
forces the quantized weights to be within ±1 of their round-
to-nearest value. This is done by optimizing the weights and
quantization parameters of each layer separately, over the
calibration set, to minimize the MSE between the layer’s
original and quantized outputs. As oppose to AdaRound
we apply AdaQuant to find optimal quantization not only to
weights but also to activations. In addition we suggest two
flavors for AdaQuant: (1) parallel-AdaQuant suited for
mixed-precision setting; (b) sequential-adaquant which
suited for fixed configuration.

Integer programming: Early work by Lin et al. (2016)
used a convex optimization formulation which results in a
simple greedy compression scheme. Aflalo et al. (2020)
used a combinatorial optimization approach for network
pruning. Their problem was formulated as a Knapsack
problem that optimizes the trade-off between the channels
importance and their associated computational cost. Cai
et al. (2020) finds a mixed-precision configuration with a
guaranteed Pareto efficient allocation with respect to model
size and accuracy degradation. While this provides a ”best-
effort” standard (e.g., the configuration cannot be further
compressed without hurting accuracy), it does not suggest
which of all possible outcomes is best. To the best of our
knowledge, this work is the first to formalize a generic
integer program, which can easily be adapted to various
types of models and requirements with a clear objective and
constraints.

Batch norm tuning: Finkelstein et al. (2019) were the first
to recognize that a significant source of degradation is a shift
in the mean activation value. They show a simple method to
compensate for this bias by updating the bias terms. Nagel
et al. (2019) suggest equalizing the weight ranges in the
network and correct biases in the error that are introduced
during quantization. Recently Sun et al. (2019) suggested
batch norm tuning for FP8 models. Here we detail how to
perform this procedure on a per-channel quantized (PCQ)
model with fused batch-norm layers. The procedure is light
as it only requires to invoke the quantized model a few
times (on the calibration set) and adjust the quantization
parameters. Moreover after re-tuning the BN layers can be
reabsorbed which reduces the inference complexity. To the
best of our knowledge, this work is the first to suggest it.

3. Optimizing The Quantization Pipeline
In most post-training quantization settings, a model and a
small unlabeled calibration set are given. To avoid overfit-
ting the calibration set, most studies utilize it only to extract
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the network’s internal statistics, which is later used to set
the quantization parameters.

Here we suggest using the calibration set much more exten-
sively to tune the model while avoiding over-fitting the data.
In the following subsections, we detail three different opti-
mization methods over the calibration set: (1) AdaQuant,
a layerwise optimization of weights and quantization pa-
rameters; (2) an integer programming formulation for a
mixed-precision setting; and (3) Para Normalization (PN),
for tuning the model’s internal statistics to match the numer-
ical precision setting. We discuss the strengths and weak-
nesses of each method and suggest an optimization flow that
exploits all the additive merits and leads to state-of-the-art
results.

3.1. AdaQuant - Layer/Block - wise Optimization over
the Calibration Set

A per-tensor optimization for reducing the quantization er-
ror have been suggested (Nahshan et al., 2019; Banner et al.,
2018; Jacob et al., 2018). Their goal was to find an opti-
mized quantization step size ∆̂ obtained by

∆̂ = arg min
∆

||X −Q∆(X)||2

Q∆(X) = ∆ ·
⌊
X

∆

⌉
,

(1)

where Q(·) is the quantization function. Although these
methods are fast and easy to use, they often result in an
inferior solution — the loss in eq. (1) is sub-optimal, as
it penalizes all the quantization errors equally. Whereas
it should penalize more quantization errors that affect the
classification. Accordingly, researchers (Hubara et al., 2017;
Zhou et al., 2016) suggested Quantization-Aware-Training
(QAT) methods to fix this error by training the entire model
at once. However, those methods have three limitations:
(a) they require a large training set to avoid over-fitting, (b)
they approximate the back-propagation gradients through
discrete function (the quantizer), and (c) they have high
computational and memory footprints. We suggest a modi-
fied objective for per-layer joint optimization of the weights
and quantization parameters.(

∆̂w, ∆̂x, V̂
)

=

arg min
∆w,∆x,V

||WX −Q∆w
(W ′)Q∆x

(X)||2 ,
(2)

where W ′ = W + V and V is a continuous variable added
to W . The quantized network weights are defined as Wq =

Q∆̂w
(W + V̂ ). In this new objective, the quantized tensor is

not required to be ”close” to the original tensor, as in eq. (1),
and thus benefits from the flexibility that QAT methods
have. Yet, it can be executed in parallel over all layers and
is much less prone to over-fitting. Moreover, under a fixed

configuration we can optimize the model globally and infer
the error between layers. Thus, instead of running AdaQuant
on all layers in parallel we can run it sequentially and fix
the error induced by quantizing previous layers. Thus, we
suggest a second objective:(

∆̂wl
, ∆̂xl

, V̂l

)
= arg min

∆wl
,∆xl

,Vl

||WlXl −Q∆wl
(W ′l ) ·Q∆xl

(Xq
l )||2

Xq = σ(Q∆wl−1
(Wl−1 + Vl−1) ·Q∆xl

(Xq
l−1)) ,

(3)

where σ(·) is some activation function.

Note, that sequential AdaQuant should not be applied before
the bit allocation was set as it optimizes over noisy inputs
obtained from predecessor quantized layers. We evaluate
both flavors of adaquant named, AdaQuant and sequential-
AdaQuant and detail our finding in section 5.1. We note
that AdaQuant also optimizes over biases and offsets and
optimized fused conv-bn-relu layers when present; these
were removed from the formulation in Equation 2 for sim-
plicity. In the short time since we release the first version
of the paper Yuhang et al. (2021) published their results.
They cites our method and extends it to Block-wise opti-
mization. In section 5.1 we apply block optimization as well
and compare our results.

Figure 1. Comparison of different optimization methods over
ResNet-50 quantized to 4 bit except the first and the last layers
which were kept in 8bit. Even optimizing on a single image dras-
tically improves the results but as expected have a high variance
(red bar). The variance decreases rapidly as the calibration set size
increases.

Size of calibration set Perhaps surprisingly, although we
experiment with a very small calibration set, no over-fitting
is observed.
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In fig. 1 we compare AdaQuant to current state-of-the-art
methods including QAT with knowledge distillation (QAT-
KLD) (Kim et al., 2019) and AdaRound (Nagel et al., 2020).
For each method, we measured the top-1 accuracy with
respect to the number of samples in the calibration set over
five runs and present the mean and standard deviation. As
can be seen, AdaQuant is superior to previous methods and
specifically excels on small calibration sets. Remarkably,
AdaQuant does not overfit even when optimized on a single
image. Additional details can be found in sections (1) and
(4) of the supplementary material.

3.2. Per-layer bit allocations with integer programming

AdaQuant significantly enhances network accuracy at lower
bit widths. However, it is often not sufficient by itself to
attain acceptable accuracy. Therefore, in practical use cases,
the user would like to balance between accuracy and per-
formance (e.g., power and speed), by setting several lay-
ers to higher precision. Our high-level goal in this section
would be to optimize the overall network performance while
maintaining a predefined accuracy degradation or a model
compression constraint.

In the following, we provide an integer-programming (IP)
formulation for optimizing per-layer bit allocations. De-
pending on the needs, our performance metrics P would
be either the execution time of the network or its power
consumption. Also, with every layer quantization, there is
an associated quantization error that affects the training loss
L. We chose the latter to be our penalty metric. Integer
programming is applied in those situations where a given
problem can clearly be represented in the form of a linear
relationship between different decision variables. Unlike
other previous works on compression, it attains a global op-
timum. For example, (Lin et al., 2016) suggested a convex
optimization problem, but the constraints and the objective
are not linear. This typically has a drastic impact on conver-
gence time, and the quality of the results since the Simplex
method can no longer be applied (Van Doormaal & Raithby,
1984).

Basic formulation We are given a neural network with L
layers. For each layer l, we have weights Wl that need to be
multiplied with activations of the previous layerXl−1. Such
lower bit width multiplications can be executed by quantiz-
ing the weights and activations to achieve higher throughput
and energy-efficient solutions. Let W k

l and Xn
l−1 represent

a quantized version of Wl and Xl−1 to k and n bits, re-
spectively. For each layer i, a low-bit width multiplication
W k

l ·Xn
l−1 results in a loss degradation ∆Lk,n

l and in per-
formance improvement ∆Pk,n

l with respect to the original
productWl ·Xl−1. This performance improvement measure
needs to be additive and sum up to a total benefit in end-
to-end network performance (e.g., power, model size, etc.).

Our goal would be to maximize the total performance im-
provement without exceeding the total network degradation
∆L.

We now turn to solve the above problem using an integer
program. We define a binary variable Ik,nl , which is set to
one if and only if the weights W k

l are multiplied with the
activations Xn

l−1 at layer l; otherwise we set the indicator to
zero i.e., Ik,nl = 0. Then, the basic bit allocation problem
can be formulated as follows:

Maximize
L−1∑
l=0

∆Pl (4a)

Subject to
∑
l

∆Ll ≤ ∆L, (4b)

∀l ∈ {1, ..., L} :∆Pl =
∑
k,n

Ik,nl ·∆Pk,n
l ,∆Ll

=
∑
k,n

Ik,nl ·∆Lk,n
l (4c)

∀l ∈ {1, ..., L} :
∑
k,n

Ik,nl = 1, Ik,nl ∈ {0, 1} (4d)

The objective function (3a) maximizes the total performance
improvement. Constraints (3b) and (3c) ensure that the total
degradation in loss and the total improvements in perfor-
mance due to the quantization of layer l to k-bit-weights
and n-bit-activations would be ∆Ll and ∆Pl, respectively.
Eq (3d) states that the restriction on total degradation of
∆L is obeyed and ensures that only one configuration (of
quantized weights and activation) per layer is selected.

3.3. Para-Normalization Tuning

A common practice is fusing BN layers into their predeces-
sor weight layers before applying post-training quantization
to reduce the amount of Multiply-Accumulate (MAC) opera-
tions. However, the reduction in bit-width after quantization
can cause the model’s internal statistics to deviate further
from those of the full precision model. To compensate for
this deviation, we suggest new method, we called Para-
Normalization1 for updating the BN statistics.

This Para-Normalization (PN) method has a few steps. First,
we need to reconstruct the BN layers then re-tune the BN
layers’ statistics (by a few iterations of running-mean to
re-collect the statistics). Finally, re-absorb (re-fuse) the BN
layers into the weight layers (this is possible only in a per-
channel weights quantization setting, which is the current
standard). Next, we give more details on each phase.

Reconstructing BN layers Assume the original (pre-
fusing) BN parameters γo, βo and ε are known, as is usually

1Name meaning: This ”paranormal” method ”resurrects” the
absorbed BN.
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the case. We would like to initialize µ, σ2, as well as the
BN parameters γr and βr (r for ”reconstructed”) so that the
reconstructed BN

BNr(x) = γr
x− µ√
σ2 + ε

+ βr ≈ x (5)

will re-adjust the model statistics. To do so, first we ini-
tialize the reconstructed BN layers by setting the following
parameters (denoted by r):

µ = βr = βo; σ2 = γ2
o ; γr =

√
γ2
o + ε (6)

so that BNr(x) = x. Then, we update µ and σ2 by col-
lecting running mean and running variance on the calibra-
tion data. We stress that the BN parameters, γr, βr, do
not change while applying PN, as we only invoke forward
propagation.

Re-fusing BN layers Due to the per-channel quantization
setting we use, the collected statistics can be fused back into
the current quantization scale as follows:

W ′i = Wi
γr
σ

; b′i =
γr
σ

(bi − µ) + βr; ∆′wi
=
γr
σ

∆wi

Thus, in addition to the regular BN fusion, the quantization
step is adjusted by γrσ−1. Additional details are given in
section (2) of the supplementary material.

Bias tuning Much like Finkelstein et al. (2019), we sug-
gest applying a global bias-tuning procedure on the fi-
nal mixed-precision model by applying quantization-aware
training to minimize the Knowledge Distillation (KD) loss
(which does not require labels). Since we restrict the train-
able variables to be the biases only, we can train only on the
calibration set without experiencing overfitting.

4. Quantization Flow
Past years have seen the rapid development of efficient de-
ployment techniques (Nagel et al., 2019; Haroush et al.,
2019). Deployment flows can vary based on the user set-
ting such as hardware constraints, deployment time and
task/dataset availability. While some users are willing to
pay at initialization the time and effort to gain another frac-
tion of accuracy, others require a simple and fast solution.
We address this by suggesting two novel pipelines, light
and advanced. Our pipelines are designed to the current,
most common setting: per-channel quantization with a small
calibration set.

Our light pipeline requires three steps: (1) Fuse layers and
define quantization parameters; (2) Find optimal mixed-
precision configuration using IP; and (3) Use BN tuning
to correct the internal statistics. We note that all steps

Table 1. Comparing the light and advanced pipelines building
blocks

METHOD/PIPELINE LIGHT ADVANCED

ADAQUANT × X
MIXED PRECISION (IP) X X
BN TUNING X X
BIAS TUNING × X

do not require back-propagation and thus are very light
and fast. In addition to the light setting, in the advanced
pipeline we apply AdaQuant to reduce each layer’s output
distortion from its full precision counterpart before invoking
the IP algorithm. A detailed comparison between the two
pipelines is given in table-1. Models that were optimized
using AdaQuant to different bit-widths can be seamlessly
stitched thus having the ability to create an optimized model
in a mixed-precision setting. Subsequently, global meth-
ods such as tuning both BN statistics and the layers’ biases
can be applied to reduce a Knowledge Distillation loss. Al-
though there are additional post-training quantization tech-
niques that could be potentially combined with our methods,
such as bias correction (Banner et al., 2018), equalization
(Meller et al., 2019), and outlier channel splitting (Zhao
et al., 2019), we did not find it necessary: our results demon-
strate that our relatively simple pipeline yields state of the
art accuracy on both vision and text models, even without
combining such methods. In the following sections, we
show our findings and give an ablation study that highlights
the importance of each method and their combination.

5. Experiments
In this section, we demonstrate our methods and pipelines
on several models and datasets. We first start by analyzing
image recognition models such as ResNet18/50, MobileNet-
V2, which were trained over the ImageNet dataset. Next, we
demonstrate our method robustness by applying it on ques-
tion answering task using the popular BERT model (Devlin
et al., 2018), which was fine-tuned on the SQuAD1.1 dataset
(Rajpurkar et al., 2016). In all our experiments, we used a
small calibration set taken from the training dataset. Unless
stated otherwise, we applied asymmetric per-channel quan-
tization (i.e. GEMLOWP (Wu et al., 2016)) with quantized
offset (i.e., zero point). Next, we analyze each method’s
strengths and weaknesses separately and argue for its va-
lidity. Additional implementation details can be found in
section and the code are given in sections (5) of the supple-
mentary material.

5.1. AdaQuant

Recently several researchers suggested different types of
MSE optimization. In most cases, the optimization was done
per-tensor (i.e., for the weights and activations separately).
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Here we argue that by optimizing both quantization param-
eters and the weights jointly we can reduce the MSE even
further and hence improve the accuracy as demonstrated in
fig. 2. In contrast to AdaRound (Nagel et al., 2020) which re-
stricted the change of the weights to be within ±1 we allow
the weights to change as needed. As can be seen in fig. 3 the
weights indeed change their quantized value by more than
one. Since our pipeline is focused on the mixed-precision
setting we optimize each layer separately to enable maxi-
mum flexibility when stitching the optimized models. Under
that setting AdaQuant can be performed in parallel across all
layers. However, since most recent papers do not show full
compression-accuracy curves and only a few attempt 4-bit
compression, we also compare our results to common fixed
configurations using our sequential-AdaQuant flavor. While
sequential AdaQuant cannot be parallelized or used for the
mixed-precision setting it yields best-in-class results for
per-layer optimization on all models tested as can be seen
in table-2 and 3. For instance, on the extensively studied
8bit MobileNet-V2 (MobileNet-V2) topology we achieved
71.6% top-1 accuracy — less than 0.5% degradation com-
pared to the full precision counterparts (71.9%). If the
system at hand supports more extensive fine-tuning process
and the calibration set is large enough, one can optimize per-
block (Yuhang et al., 2021). A block is a set of sequential
layers. For ResNet we used the ”Bottleneck/Basic Residual
Block” for BERT we used a ”transformer layer”. Block
sequential-Adaquant minimize the Adaquant objective per-
block output by optimizing all the weights and quantization
parameters in the block. As expected this approach yields
even better result and currently hold the state-of-art accuracy
for ResNet-50. Note, that Block Seq AdaQuant as opposed
to BRECQ (Yuhang et al., 2021) carries the errors from one
layer to the next thus, can potentially fix the quantization er-
rors introduced by previous layers. Using BRECQ baseline
model we achieved 75.18% top-1 on ResNet50.

5.2. Integer Programming

Our Integer programming formulation requires us to have
two quantities per-layer: (1) loss degradation and; (2) perfor-
mance improvement. Obtaining those quantities requires in-
voking the model over a small calibration set L times (once
per layer) and measure the loss degradation and the perfor-
mance gain. In our experiments, we set the performance
value to be the number of parameters, but this measure could
be changed to any additive measure. In all experiments, we
used 1000 samples from the training set as our calibration
set. Our setting considers only a mixture of 8-bit and 4-
bit layers; to further test IP capabilities, we investigate a
mixture of 2-4-8 bits as well. Unfortunately, since 2-bits
quantization in post-training setting results in high degrada-
tion, the IP algorithm chose only a mixture of 4-8 bits for
compression ratio higher than 12.5%. Yet for 12.5% com-

Figure 2. AdaQuant vs. AdaRound. (a) A histogram of ∆W dis-
tribution. AdaRound restricts this additive term to be ∆W = ±1.
Relaxing this constraint provides a more powerful optimization.

Figure 3. AdaQuant vs. AdaRound. Ablation study on parameters
optimization for ResNet50 over ImageNet. AdaRound is based
exclusively on weight optimization, while AdaQuant optimizes the
weights, biases, and other quantization parameters jointly.

pression ratio, the IP method found that by setting one layer
to 2-bits while setting 8 smaller layers to 8-bits accuracy
gains over 5.5% with respect to uniform 4-bit quantization.
Also, by allowing a less hardware friendly setting where nu-
merical precision can have the form of any integer between
2-8, yields the highest compression-accuracy ratio (fig. 4 -
relaxed advanced pipeline).

5.3. Para-Normalization

Para-Normalization (PN) has a significant advantage, as
it does not require any weight optimization (section 3.3).
Since PN is applied by invoking the entire model, we must
apply it only after setting the mixed-precision bit-width
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RN-18 RN-34 RN-50 RN-101 RNext-50 Inc-V3
ACIQ* (Banner et al., 2018) 64.5% 69.1% 68.1% 68.1% 68.6% 60.4%
DFQ* (Nagel et al., 2019) 57.1% 59.4% 64.5% 64.6% 65.5% 58.2%
BRECQ† (Yuhang et al., 2021) 69.6% N/A 75.05% N/A N/A N/A
AdaQuant 67.4% 70.3% 73.7% 74.4% 74.0% 72.6%
Sequential-AdaQuant 69.4% 71.7% 75.1% 75.5% 75.6% 73.4%
Block-Sequential-AdaQuant 69.6% 73.2% 75.9% 76.4% 76.6% 74.5%
FP32 71.97% 73.3% 77.2% 77.3% 79.22% 77.4%

Table 2. INT-4 quantization of weights and activations. Top-1 score over ImageNet dataset for different post-training quantization methods.
All layers were quantized to 4-bit except the first and last layers which were set to 8-bit. (*) These methods were implemented according
to the paper. (†) the results of this method could not be reproduced and extended to other models (their open sourced code has a bug); thus
we were only able to add their reported results. In all our experiments we apply per-channel quantization of the weights.

configuration. This is the case for all global optimization
methods including bias-tuning. Notably, PN requires only
a few (at most 10) forward passes over the calibration set
and yield significant gains (fig. 4). In this study, we applied
PN on models trained with BN layers only. However, it
might be possible to extend this method to models without
BN layers by reconstructing them from the statistics. We
encourage the reader to investigate this path.

MobileNet BERT-Base
V2 (top-1) SQuad1.1 (F1)

min-max 70.9% 87.83%
DFQ (Nagel et al., 2019) 71.2% N/A
ZeroQ (Cai et al., 2020) 72.91% N/A
AdaQuant 73.03% 88.35%
Seq-AdaQuant 72.94% 88.45%
Block Seq-AdaQuant 72.96% 88.7%
FP32 73.03% 88.81%

Table 3. INT-8 quantization of weights and activations. For min-
max quantization we use average min/max values based on the
calibration set (Krishnamoorthi, 2018). A comparison with DFQ
and naive quantization methods (which uses the channel’s full
dynamic range). In all our experiments we apply per-channel
quantization of the weights and quantized all layers to 8-bit.

Testing the strength of this method on both vision and text
topologies resulted in state-of-the-art results. As can be seen
in table 3, on BERT-base model over SQuAD1.1 dataset
(BERT-Base-SQuAD1.1) we managed to obtain 88.45%
F1 score using just AdaQuant — less than 0.5% of its full
precision counterpart (81.3%). Throughout our experiments,
we avoided using any augmentation technique and follow
the standard (He et al., 2016) validation set prepossessing.

5.4. Full pipeline and ablation study

Several researchers suggested different methods for post-
training mixed-precision quantization yet, none offer their
code. Each paper focuses on a different quantization setting

(e.g., quantizing only the weights, per-tensor quantization,
etc.). Therefore, to demonstrate our pipeline strength, we
created two different baselines based on common practices:

Greedy-accuracy: recent studies suggested measuring
each layer sensitivity and, based on the compression target,
reduce the precision for the most robust layers.
Greedy-compression: the complementary greedy ap-
proach (Lin et al., 2016) to sort the layers by their number
of parameters and increase the precision of the layers from
the smallest to the largest layer until the compression budget
is reached.

In fig. 4 we present ab ablation study results over
ResNet50/18 and MobileNet. As detailed in table 1 our
advanced pipeline is consist of AdaQuant, IP-mixed-
precision, para-normalization (PN) and bias-tuning while
our light pipeline consists of only IP-mixed-precision and
PN. For ResNet-50, fig. 4a, we removed the greedy accu-
racy plot as it yields far inferior results and added two ad-
ditional plots instead, greedy-c seq-adaquant and relaxed
advanced pipeline. The former decides the bit allocation
using a greedy compression scheme and apply on top of it
Sequential AdaQuant. The latter is similar to the advanced
pipeline but allows the integer-programming to choose any
bit-width between 2-8 and not just 4-bit or 8-bit.

Surprisingly, although the size of the layer should correlate
with its sensitivity to quantization, the two greedy meth-
ods yield entirely different configurations. Investigating
the configuration greedy-compression found that sorting by
compression correlates with the location of the layers in the
model. In most vision models, the layers closer to the input
have fewer parameters. This aligns with current common
practice (Banner et al., 2018). For high and low compres-
sion rates IP has limited power as most of the layers are in
8bit or 4bit. Thus, the interesting part lies in the middle.
Fig 4 demonstrates that for ResNet50 and MobileNet-V2:
when compression rates are 0.15-0.18, IP results improves
by 10over greedy-c which stress its importance.
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(a) ResNet-50 ablation study.

(b) ResNet-18 ablation study.

(c) MobileNet V2 ablation study.

Figure 4. Ablation study over ResNet-50/18 and MobileNet-V2 -
compression-accuracy curves. The compression ratio is measured
as the ratio between the compressed model and the full-precision
(32-bit) mode thus 0.25 compression rate indicate that the entire
model uses 8-bit precision and respectively for 4-bit the compres-
sion rate is 0.125

Next, we turn to consider the light and advanced pipelines.
Under challenging compression rates, our light-pipeline re-
sults highlight the importance of para-normalization. As
can be seen in our experiment fig. 4, by merely invoking
the model at inference mode for a few iterations and fix-
ing the intermediate statistics, one can recover more than
1.5% of the accuracy (73.7% v.s 75.37%). As expected, by
applying the advanced pipeline, one can obtain state-of-the-
art accuracy. Arguably, our most impressive results are at
0.13% compression rate in which we managed to stay within
1% of the full precision accuracy while converting 96% of
the model to 4-bit. For the challenging MobileNet-V2 we
managed to switch 25% of the layers to 4bit (weights and
activations) while maintaining less than 2% degradation;
Additionally, we achieved, for the first time, reasonable
top-1 accuracy of 65% when almost the entire model is in
4-bit. While one can explore many additional combinations
of the suggested method, perhaps the most effortless yet
promising one would harness the greedy compression sim-
plicity and sequential-Adaquant strength. We explore this
setting and reported the results in fig. 4a as expected this
method mostly benefits the highly compressed models as
Sequential-AdaQuant optimizes each layer with respect to
the error induced by quantaizing former layers. When the
model is less compressed the rule of sequential-AdaQuant
is less important and the nonoptimal bit-allocation harms
the results.

6. Conclusion
Most techniques for obtaining quantized neural networks
require the entire training set. This approach can be imprac-
tical due to a lack of data or a time-consuming process. In
this paper, we attempt to open the door to enabling 4-bits
post-training-quantization of Deep Neural Networks with a
small, unlabeled calibration set. The performance gain on
currently available hardware using 4-bits instead of 8-bits
can be significant, even if applied only for a subset of the
network’s layers. Hence, we believe this is a highly practical
scenario. We present a novel method, named AdaQuant and
its flavor sequential-AdaQuant both require only a small
calibration set and enable 4-bit vision models to achieve
near full-precision accuracy. In addition, we demonstrate
how classical integer programming formulation leads to
optimal bit allocation solution. Finally, we suggest two
pipelines, light and advanced. The former does not require
further training of the model and thus can be executed on a
computationally bound hardware (light pipeline). The latter
performs slight model optimization, but does not require
high memory or compute capabilities and does not prone
to over-fitting. All our methods are relatively light and re-
quire only few minutes (see sec 4.4 of the supplementary
material). As an example, for ResNet50, even the most
time-consuming version, seq-AdaQuant, takes less than 5
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minutes on one device (GeForce 1080). Thus, our methods
are two orders of magnitude faster than QAT. We believe
further research in that path would ensure 4-bit data type to
be a first-class-citizen for post training quantization.
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