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Abstract
Generative adversarial networks (GANs) are of-
ten billed as "universal distribution learners",
but precisely what distributions they can repre-
sent and learn is still an open question. Heavy-
tailed distributions are prevalent in many differ-
ent domains such as financial risk-assessment,
physics, and epidemiology. We observe that ex-
isting GAN architectures do a poor job of match-
ing the asymptotic behavior of heavy-tailed dis-
tributions, a problem that we show stems from
their construction. Additionally, when faced with
the infinite moments and large distances between
outlier points that are characteristic of heavy-
tailed distributions, common loss functions pro-
duce unstable or near-zero gradients. We ad-
dress these problems with the Pareto GAN. A
Pareto GAN leverages extreme value theory and
the functional properties of neural networks to
learn a distribution that matches the asymptotic
behavior of the marginal distributions of the fea-
tures. We identify issues with standard loss func-
tions and propose the use of alternative metric
spaces that enable stable and efficient learning.
Finally, we evaluate our proposed approach on a
variety of heavy-tailed datasets.

1. INTRODUCTION
Heavy-tailed, and particularly power-law, distributions are
regularly encountered in a diverse set of applications such
as spectroscopy, particle motion, finance, geological pro-
cesses, epidemiology, etc. (Michel & Chave, 2007; Fortin
& Clusel, 2015; Gilli & këllezi, 2006; Caers et al., 1999;
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Evans & Erlandson, 2004). Analysis of these distributions
is often focused on the prevalence (i.e., risk) of rare events.
Models that can fit sample data while accurately predict-
ing the probabilities of extreme events are useful for risk
assessment in these fields.

How suitable are GANs to serve as these models? They
have proven to be wildly successful at learning complex
distributions in the image domain, without simply memo-
rizing the data (Brock et al., 2018). They can famously
generate convincing images of the faces of non-existent
celebrities (Karras et al., 2017). Can they also convincingly
generate samples of the default rates of mortgages and the
features of 100-year floods?

The universal approximation theorem (Hornik et al., 1989)
and effective loss functions like Wasserstein distance (Ar-
jovsky et al., 2017) suggest that GANs can learn to gener-
ate an arbitrary dataset, regardless of the distribution it was
drawn from. Of course, simple bootstrap sampling from the
dataset can do the same. It is the ability of GANs (or any
generative model) to appropriately generalize from training
examples that separates them from a static dataset.

In the case of heavy-tailed distributions, this generalization
is not effective. As we will show in section 4, the asymp-
totic behavior of a GAN marginals is predictable based
solely on the combination of input distribution and acti-
vation function, irrespective of the training data. In most
cases, the generator is able to fit the training data closely
and interpolate between these points, but it does not ex-
trapolate in a reasonable fashion.

This does not have to be the case, however. In their ex-
tremes, most naturally occurring marginal distributions fol-
low one of a handful of asymptotic behaviors (Balkema &
de Haan, 1974). These behaviors are all captured by the
generalized Pareto distribution. Since we are able to pre-
dict the asymptotic behavior of a GAN from its architec-
ture, we can therefore also design our GAN to take on a
particular belief about the tail behavior of its marginals. To
create such a generator, we feed a standard neural network
a noise function with heavy-tailed characteristics and pro-
vide a few mechanisms for controlling how heavy the tails



Pareto GAN

should be.

Given such a generator, we must be able to find a reli-
able gradient to train it. Heavy-tailed distributions intro-
duce challenges to learning. In section 5, we show that
common metrics, such as Wasserstein distance (Arjovsky
et al., 2017) and energy distance (Bellemare et al., 2017)
are infinite between sufficiently heavy-tailed distributions.
In these cases, sample gradients do not converge and mini-
batch gradient estimates are unstable. We propose a solu-
tion to this problem where we evaluate the loss function
over a metric space on which the distributions are better
behaved.

We name the combined approach Pareto GAN. Pareto GAN
uses methods from extreme value theory to estimate the tail
index of the marginal input distributions. It uses this tail in-
dex to construct a generator with matching tails and a loss
metric that ensures a useful gradient for training. We show
how Pareto GAN can be used to generate multivariate dis-
tributions that have different marginal tail indexes, which
suggests a high degree of flexibility in future applications.

2. PRELIMINARIES
2.1. Generative adversarial networks

A GAN consists of a generator and a discriminative loss
function. The generator is represented as a neural network
f that transforms a random variable Z with a known distri-
bution (e.g., uniform, normal) into a new random variable
in some output space:

X = f(Z) (1)

The generator network f is trained to minimize a loss func-
tion that discriminates between samples from two distribu-
tions. The ideal training outcome is that X matches a par-
ticular target distribution over the output space and the loss
function cannot discriminate between the two distributions.
Popular GAN loss functions include Wasserstein distance
(Arjovsky et al., 2017) and maximum mean discrepancy
(MMD) (Gretton et al., 2012; Li et al., 2017). This paper
focuses on Wasserstein distance and energy distance (Se-
jdinovic et al., 2013), which is a type of MMD loss function
(see section 5).

2.2. Tail distributions and extreme value theory

Definition 1. Let X be a random variable. Define F (x) =
P (X ≤ x) as the cumulative distribution function (CDF)
of X. Define F̄ (x) = 1 − F (x) as the complementary cu-
mulative distribution function (CCDF). For random vari-
able X, the conditional excess distribution function is de-
fined

Fu(y) = P (X − u ≤ y|X > u)

=
F (u+ y)− F (u)

1− F (u)

(2)

Definition 2. The generalized Pareto distribution (GPD),
parameterized by tail index ξ ∈ R and scaling parameter
σ ∈ R+, has the following CCDF, which is defined over
R+:

S(z; ξ, σ) =

{
(1 + ξz/σ)−

1
ξ , for ξ 6= 0

e−z/σ, for ξ = 0.
(3)

The Pickands–Balkema–de Haan theorem (Balkema &
de Haan, 1974) states that the conditional excess of a broad
class of distributions converge to the GPD as u → ∞.
These distributions include bounded distributions, expo-
nential family distributions (e.g., Gaussian, Laplacian), sta-
ble distributions (e.g., Cauchy, Levy), and power law dis-
tributions (Student-t, Pareto). There are a variety of defini-
tions in the literature for what constitutes a "heavy-tailed"
distribution, but we will use the term to denote distributions
with a tail index ξ > 0.

3. RELATED WORK
Works using GANs on heavy-tailed data (Lin et al., 2019;
Wiese et al., 2019b) often train on logarithmically trans-
formed data, and exponentiate the GAN output to get back
to the original data domain. While this can help the learn-
ing process, the learned distribution does not meet our
definition of heavy tailed, as we will show in section 4.
Other works have used heavy tailed input distributions on
bounded domains (e.g., images) (Sun et al., 2018; Upad-
hyay & Awate, 2019). These works focus on representa-
tions with non-Gaussian characteristics, but are not con-
cerned with the tails of the output domain (since it is
bounded). (Wiese et al., 2019a) presents a proof that a gen-
erator network cannot make the tails of its input distribution
heavier. Our work mirrors some of the arguments in (Wiese
et al., 2019a), but presents a viable solution to the problem
in the Pareto GAN. Concurrent work (Feder et al., 2020)
uses a Student-t prior to produce unbounded heavy-tailed
data, which has similar tail characteristics to our GPD prior.
However, their choices for tail index and loss function were
chosen through trial and error. We present an approach for
choosing these parameters grounded in theory and existing
extreme value literature.
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4. THE ASYMPTOTIC BEHAVIOR OF
GAN GENERATORS

We now examine the asymptotic behavior of GAN genera-
tors. To do so, we draw heavily on a property of most neu-
ral networks (including all those which we will consider):
Lipschitz continuity. Roughly speaking, a Lipschitz con-
tinuous function has bounded slope; for brevity, we place a
full definition of Lipschitz continuity in Appendix B.

4.1. Generators with bounded support

Proposition 1. Let ZA be a random variable in metric
space (Z, dZ). Let f : Z → X be a Lipschitz continuous
neural network with respect to metrics dZ and dX . If ZA
lies within ball of radius c centered around z0,Bc[z0] ⊆ Z ,
with probability 1, then there exists a ballBd[x0] ⊆ X such
that P (f(ZA) ∈ Bd(x0)) = 1.

In short, a Lipschitz continuous function always maps a
bounded distribution to another bounded distribution. Gen-
erators with a standard uniform input distribution, there-
fore, must be bounded. So are generators with a bounded
intermediate layer such as a tanh or sigmoid activation,
since such a layer produces a bounded random variable that
serves as input to the rest of the network. While a gener-
ator of this type can potentially fit an arbitrary training set
(regardless of the distribution that generated it), the prob-
ability of producing a sample outside of Bd[x0] is exactly
zero.

The left side of Figure 1 illustrates this phenomenon. We
trained a GAN with uniform input noise on a heavy tailed
data set, namely samples from a mixture of two Cauchy
distributions. The GAN matches the modes of the distribu-
tion somewhat, but as predicted, the tails have a hard cutoff:
every sample we generated was between +/- 15.

4.2. Generators with zero tail index marginals

A generator that would seem to address this problem com-
bines an unbounded input distribution with an unbounded
neural network, such as XN defined below.

Definition 3. Let fPWL : Rn → R be a piecewise linear
(PWL) function with a finite number of linear regions.

Remark 1. fPWL is Lipschitz continuous with respect to
Minkowski distances (metrics which generate the p-norms).

Definition 3 encompasses a broad class of neural networks
(see, e.g., Theorem 2.1 in (Arora et al., 2016)). PWL func-
tions are closed under composition, so it is easy to show
that a neural network composed of operations such as Re-
LUs, leaky ReLUs, max pooling, maxout activation, linear
layers, concatenation, addition, and batch normalization (in
"test" mode) all meet the requirements of Definition 3.

Definition 4. Let N(µ, σ) be a normal distribution. A nor-
mal generator XN is

XN = fPWL(ZN ), ZN ∼ N(0, 1). (4)

Note that fPWL is univariate, and that an arbitrary neural
network can be broken up into a set of univariate functions
like fPWL. In that setting, the distribution ofXN represent
a marginal distribution of the output. While it is possible to
construct fPWL in such a way that XN is bounded, in gen-
eral, XN has support across the whole real line. However,
we now show that XN has Gaussian tails.

Theorem 1. Let Fu(x) be the conditional excess distri-
bution of XN . If XN is not bounded above, then Fu(x)
converges to the normal conditional excess distribution as
u→∞.

We put the formal proof in the appendix, but outline the in-
tuitions here. Because fPWL has a finite number of convex
linear regions, its asymptotic behavior is therefore linear.
Moving along any line in the input space eventually enters
a "final" linear region, and fPWL acts linearly on all points
beyond this threshold. The tails of the input distribution,
therefore, are scaled and shifted by fPWL, but they retain
the shape of their original distribution. Multiple regions of
the input space may map to a single output region so the
output tail acts like a mixture of Gaussians, which asymp-
totically behaves like a single Gaussian.

A practice commonly used in GAN literature with heavy
tailed data is to exponentiate the output of a generator such
as XN :

XLN = exp (fPWL(ZN )− 1), ZN ∼ N(0, 1). (5)

Since the tails of XN act like a Gaussian, the tails of XLN

follow lognormal asymptotics. This is a significant im-
provement in practice, but it still produces a distribution
with a tail index of zero. The center two columns of Fig-
ure 1 capture these predicted behaviors. In the Gaussian
case, the exponential decay is clearly evident in the poor
tail approximation. The lognormal generator fares better,
but undercounts extreme events.

4.3. Pareto generators

Ideally, our GAN generator would match some belief we
have about the marginal tail behavior. The generators we
have discussed so far are not able to capture this type of
belief for heavy-tailed distributions. We address this short-
coming with the Pareto GAN generator. In its basic form, a
Pareto GAN generator takes a GPD input with tail index ξ,
which matches the tail index belief from the data. ξ can be
chosen in a variety of ways, such as a tail index estimator
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Figure 1. Probability densities of generators with (from left to right) bounded, normal, lognormal and Pareto tails. Generators are trained
on a Cauchy mixture with density shown in orange. The top row shows the center of the distribution on a linear scale, while the bottom
row shows the tails on a log scale.

(e.g., Hill’s estimator (Deheuvels et al., 1988; Resnick &
Stărică, 1997), a kernel-type estimator (Wolf et al., 2003)),
a prior belief, or estimation during the training process.

Definition 5. Let Zξ = (U−ξ − 1)/ξ, U ∼
Uniform(0, 1), which is a GPD random variable with tail
index ξ and a CCDF of the form S(x; ξ, 1). A Pareto GAN
generator Xξ parameterized by tail index ξ is defined

Xξ = fPWL(Zξ). (6)

Theorem 2. Let Fu(x) be the conditional excess distribu-
tion of Xξ = fPWL(Zξ). If Xξ is not bounded above, then
Fu(x) converges to S(x; ξ, σ) for some σ ∈ R.

Proof. The proof largely follows from the the proof for
Theorem 1. Let f̂(z) = fPWL(z)− fPWL(0). There exist
positive number c and real values w1, w2, b1, b2 such that
fPWL(z) = w1z+ b1 for z > c and fPWL(z) = w2z+ b2
for z < −c. As in Theorem 1, if w1 ≤ 0 and w2 ≥ 0 then
Xξ is bounded above.

Definition 6. Define the asymptotic moments of a random
variable

mγ(X) = lim
t→∞

E

[(
X

t

)γ ∣∣∣X > t

]
. (7)

From Theorem 8(a) in (Balkema & de Haan, 1974), it suf-
fices to show that for γ > 0

γ <
1

ξ
⇐⇒ mγ(Xξ) exists and is finite. (8)

The behavior of a random variable over a finite region (e.g.,
Zξ < c) does not affect which asymptotic moments are fi-
nite, nor does scaling and shifting. For a mixture of ran-
dom variables, an asymptotic moment mα(X) is finite if
and only if mγ(Xi) is finite for each constituent variable
Xi.

For Zξ > c, Xξ is a mixture of scaled and shifted copies
of Zξ. Therefore Xξ has the same finite moments as Zξ,
and therefore its conditional excess distribution converges
to S(x; ξ, 1).

Figure 1 illustrates the effectiveness of the Pareto GAN
compared with the other approaches. All three trained
GANs use the exact same network architecture and are
trained using energy distance (Sejdinovic et al., 2013)1.
With ξ = 1, the tails of the GPD input noise match the
tail index of the Cauchy mixture, but the distributions are
very different around the modes. The GPD is one-sided
with a uniformly decreasing density. The Cauchy mixture
is two-sided and bimodal. The Pareto GAN, however, is
able to learn an accurate approximation, both around the
modes and in the tails.

We can also define a more general form of the Pareto gen-
erator.

Corollary 1. Let Xα be a Pareto GAN generator with tail
index α. Let

1To ensure convergence, we train the Pareto GAN with the
2-root energy distance defined in section 5.
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Xβ = sign(Xα)|Xα|β , β > 0 (9)

Let Fu(x) be the conditional excess distribution of Xβ .
If Xβ is not bounded above, then Fu(x) converges to
S(x;αβ, σ) for some σ ∈ R+.

The proof builds on Theorem 2 and is in the appendix.
Corollary 1 gives a degree of flexibility in constructing a
Pareto GAN generator. Importantly, in a multivariate set-
ting we can choose different values of β for each output
dimension. This allows us to learn a complex joint distri-
bution over variables with different tail indexes. This flex-
ibility suggests that there is a clear path to apply Pareto
GAN to a broad class of distributions.

5. LEARNING HEAVY TAILED
DISTRIBUTIONS WITH GANS

Regardless of the form of the generator being used, in or-
der to train it, we need a loss function with a reliable gradi-
ent. As discussed in (Arjovsky et al., 2017), said loss func-
tion should provide a non-zero gradient for manifolds with
zero-measure intersections. This rules out f-divergences
such as Jensen-Shannon divergence. We identify two ad-
ditional properties that guide our search for a loss function.

• Finiteness The loss function should be finite, with both
finite gradients and finite expectations of sample gradi-
ents. In particular, our choice of loss function must be
well defined as such on the target distribution and all dis-
tributions that the GAN can generate.

• Minimal outlier gradient decay The gradient of the loss
function with respect to an outlier should decay as slowly
possible.

The Wasserstein 1 distance2 (aka Earth-Mover distance) is
a very popular loss function for training GANs (Bellemare
et al., 2017; Arjovsky et al., 2017). The Wasserstein dis-
tance between two distributions is well defined when the
distributions have finite first moments3. However, when
this is not the case, convergence is no longer guaranteed.
Energy distance (Sejdinovic et al., 2013) is another metric
with similar properties.
Definition 7. The energy distance,E between distributions
P and Q with random variables X,X ′ ∼ P and Y, Y ′ ∼
Q, on a metric space (A, d) is

E(P,Q) = 2Ed(X,Y )− Ed(X,X ′)− Ed(Y, Y ′) (10)

which is finite, and well defined when P and Q have finite
first moments (Sejdinovic et al., 2013).

2Full definition of Wasserstien distance in Appendix A
3Full definition of moments in Appendix A

We observe that by changing the metric on the underlying
space we can give our target distributions finite first mo-
ments. There are two ways that we can approach this. First,
we consider bounded metrics. Under a bounded metric all
probability density functions will have finite moments. For
example,

Definition 8. Let ω > 0. The bounded Euclidean metric
induced by ω is

dω(x, y) =
||x− y||2

ω + ||x− y||2
(11)

Remark 2. For all x, y, it holds that dω(x, y) < 1,
hence for all PDFs f and values z0,

∫
dω(z, z0)f(z)dz <∫

f(z)dz = 1.

While using spaces with a bounded Euclidean metric en-
sures the finiteness of our loss functions, the produced gra-
dient fails to provide much information about the tails. In-
tuitively we note that because distances are bounded above
by one, "large" and "very large" distances are essentially
impossible to distinguish using dω . Therefore, the gradi-
ent of this distance quickly decays to zero, and the metric
is not useful in gradient descent. Other GAN loss func-
tions, such as the RBF MMD (Gretton et al., 2012) are also
bounded and, as such, have this property. Hence, in order to
satisfy our second criteria, we instead modify the standard
Euclidean notion of distance on R.

Definition 9. Let γ > 0. The γ Root-Euclidean distance is

dγ(x, y) = ||x− y||1/γ2 (12)

Remark 3. For all γ ≥ 1, dγ defines a metric on R+ as
x1/γ is a monotonically increasing concave function.

Remark 4. The closer γ is to one, the more similar dγ and
the Euclidean distance metrics are.

Here, it is less obvious that we will get finite first moments.
In fact, it is the case that in order to assure finite moments
on a given distribution, we must choose our γ to suit it. The
following theorem presents the appropriate bound on γ.

Theorem 3. Let P be a Generalized Pareto Distribution
with tail index ξ. For all γ > ξ, P has a finite first moment
on the space (R, dγ).

Proof. Let f be the PDF of P , and consider the first mo-
ment of f :∫

dγ(z, 0)f(z)dz =

∫
R+

z1/γ(1 + ξz)−
ξ+1
ξ dz. (13)

By estimation, the following two statements are equivalent.∫
R+

z1/γ(1 + ξz)−
ξ+1
ξ dz <∞ (14)
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Figure 2. Top: log-log plot for Wiki Traffic data. Bottom: Area of
tail errors for different width generators on keystroke data.

∫
R+

(1 + z)−1+(1/γ−1/ξ)dz <∞ (15)

By the power rule for integral convergence we see that this
statement is equivalent to

−1 + (1/γ − 1/ξ) < −1 (16)

which is equivalent to the statement γ > ξ.

With this result, we can provide convergence guarantees
for both Wasserstein and Energy distance on heavy tailed
distributions, so long as we are using the correct distance
metric.

Corollary 2. If GPD distributions P and Q with PDFs
X and Y respectively have tail indexes ξp, ξq < γ,
then the Wasserstein and energy distances between them,
W1(P,Q), and E(P,Q) respectively, on the space (R, dγ)
are finite.

6. EXPERIMENTS
6.1. Approximating Univariate Distributions

We now demonstrate our GANs on a few different types of
data. First we demonstrate our Pareto GANs on a handful
of univariate heavy-tailed datasets:

• 136 million keystrokes. This dataset includes inter-
arrival times between keystrokes for a variety of users
(Dhakal et al., 2018).

• Wikipedia Web traffic. This dataset includes the daily
number of daily views of various Wikipedia articles
during 2015 and 20164. We train the GANs to repro-
duce the distribution of view counts.

• SNAP LiveJournal. This dataset consists of a network
graph for the LiveJournal social network (Leskovec
et al., 2008). We train the GANs to reproduce the dis-
tribution of edge counts.

• S&P 500 Daily Changes. This dataset consists of the
daily prices of the S&P 500 stocks from 1999 through
20135. We train the GANs to reproduce the distribu-
tion of daily percentage changes in individual stocks.

We randomly partition the data into training, validation,
and test sets. Training and validation each have a small
fraction of the full dataset (<10%), while the remainder be-
comes the test set. This allows us to test the ability of the
GANs to extrapolate the probabilities events that are more
extreme than those in the training data. We normalize all
datasets by dividing by the average magnitude of the train-
ing set.

Our evaluations consider two metrics. First, we use the
Kolmogorov–Smirnov (KS) test statistic between the real
and generated samples. The KS statistic is defined as the
largest magnitude difference between the CDFs of two dis-
tributions, and it is used to test the hypothesis that two sets
of samples are from different distributions (Hodges, 1958).
KS gives us an indication of how well the modes of the
data match, and is independent of any of the loss functions
used in training. We use the implementation in scikitlearn
(Pedregosa et al., 2011). Secondly, we compute the area
between the log-log plots of the empirical CCDFs of the
real and generated samples. This metric gives us a good
indication of how well the generated tails match the real
samples. Figure 2 (top) gives an example of such a plot.
For n real samples and inverse empirical CCDFs F̄−1

R and
F̄−1
G , the formula is

Area =

n∑
i=1

∣∣∣∣logF̄−1
R

(
i

n

)
− logF̄−1

G

(
i

n

)∣∣∣∣ log i+ 1

i
.

(17)

We used a common network architecture and training pro-
cedure for all experiments. The network consisted of four

4https://www.kaggle.com/c/web-traffic-time-series-
forecasting

5Downloaded from https://quantquote.com/historical-stock-
data, data has been recently removed
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fully connected layers with 32 hidden units per layer and
ReLU activations. For the Pareto GAN, we estimate the tail
index from the training data using an open-source imple-
mentation6 of the kernel-type estimator from (Wolf et al.,
2003). Table 1 lists the estimated tail indices we used. We
used a batch size of 256 in all cases. We vary learning rate
from 10−4 to 10−6 and train for 20,000 iterations. From
these networks, we select the model with the best valida-
tion loss and evaluate on a test dataset. We use the energy
distance loss function from definition 7 in all cases, but we
vary the underlying d(·, ·) metric to fit the GAN. For Pareto
GAN, we use the dγ(·, ·) from definition 9, with γ = 2 on
all datasets. This ensured finite loss for all the tail index es-
timates of all datasets. We used standard Euclidean energy
distance for the other GANs. In the lognormal GAN, we
follow the common practice of computing the loss function
on the log-transformed space (Wiese et al., 2019b).

Table 1. Tail Index Estimates

Dataset Estimated
Tail Index

Keystrokes 0.68
Wiki Traffic 0.66
LiveJournal 0.44
S&P500 0.27

Table 2. Experimental Results
Keystrokes Wiki Traffic

GAN type KS Area KS Area
Uniform 0.017 67.8 0.025 10.3
Normal 0.020 59.5 0.023 8.6
Lognormal 0.014 41.0 0.019 9.5
Pareto 0.013 21.1 0.017 4.5

LiveJournal S&P500
GAN type KS Area KS Area
Uniform 0.094 15.4 0.011 12.6
Normal 0.103 7.8 0.019 7.3
Lognormal 0.111 3.1 0.014 6.5
Pareto 0.105 2.0 0.062 4.4

Table 2 compares Pareto GAN to the baseline GANs on the
four datasets. In all cases, Pareto GAN provides better tail
estimation than other techniques, while generally matching
performance on the KS statistic. Figure 2 (top) shows an
example of the tail distribution. Additional plots are in-
cluded in Appendix C.

Another promising property of the Pareto GAN is that it
can learn a more compact representation of heavy tailed
datasets than the other models. Other architectures don’t
naturally produce power-law tails, so they have to use the
capacity of the neural network to fit their shallow-tailed dis-

6https://github.com/ivanvoitalov/tail-estimation

tributions into a power-law shape. Since Pareto GAN does
produce power-law tails, it can use its neural network ca-
pacity to fit the main body of the distribution while still
maintaining good tail approximation. To demonstrate this
behavior, we trained neural networks with different layer
widths and computed the log-log area metric. Figure 2
(bottom) demonstrates how the Pareto GAN maintains its
tail approximation down to width 32, while the other GANs
see a sharp drop off in tail accuracies.

6.2. Approximating Multivariate Distributions

One of the attributes that makes GANs attractive is that
they can learn manifolds embedded in high-dimensional
spaces. In practice, high-dimension data (e.g., images)
does not always span the entire space; instead, they are usu-
ally confined to a low dimensional manifold. Learning to
align manifolds is a hard problem that precludes the use of
some loss functions, such as Jensen-Shannon divergence
(Arjovsky et al., 2017). Data with heavy tails further com-
plicates things. We show in this section that Pareto GAN
is capable of learning distributions with all of these charac-
teristics.

To apply Pareto GAN to multivariate data, we indepen-
dently estimate the tail index of each dimension, which
scales linearly the number of dimensions. We construct
Pareto GAN with ξ = 1 input noise and leverage Corol-
lary 1 once for each dimension, setting β to the estimated
tail index. This results in a joint distribution approximately
matching the tail indexes of each dimension. We then train
with root-Euclidean energy distance. We set γ to be the
largest estimated tail index plus one. This ensures that the
distance metric is finite, but still emphasizes the tails suffi-
ciently.

We now define some multi-dimensional distributions with
heavy-tailed characteristics and attempt to train GANs to
approximate them. First, we define a joint distribution
[X0, X1] with components defined as follows:

X0 = A+B

X1 = sign(A−B)|A−B|1/2
(18)

whereA andB are independent Cauchy RVs. Note thatX0

and X1 have different tail indexes (1 and 1/2, respectively)
and are not independent. We trained a Pareto GAN on this
distribution. The results of this process are shown in Figure
3. As expected, the marginals match closely, and the joint
distributions appear to be close as well.

Our second multivariate distribution is a high dimensional
manifold. We define a d-dimensional distribution in which
all points lie on a c dimension manifold, with c � d. Fur-
thermore, we give each dimension a different tail index.
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Figure 3. Left/Center: log-log plots of marginal distributions. Right: scatter plot of 1M data samples.

The random vector is defined

X = pow(CY, t) (19)

where Y ∈ Rc is a c-dimension hidden random variable
independently drawn from Cauchy distribution, C ∈ Rd×c
is a constant matrix for transforming the hidden variables
to the observable variables, t ∈ Rd is a constant vector
containing the target tail index, and pow is the element-
wise power operation. In the following experiments, we
set c = 100, d = 1000. The elements in C are inde-
pendently drawn from N (0, 1), and the elements in t are
independently drawn from Uniform([0.5, 3]).

We trained four GAN variants on 10k samples from this
distribution. We trained "normal" and "lognormal" GANs
as in previous experiments, and the Pareto GAN as outlined
above. In order to examine the importance of our proposed
loss function, we also trained Pareto GAN with basic en-
ergy distance (i.e., with γ = 1). This allows the generator
to express heavy tailed distributions, but doesn’t guarantee
that training will converge since the expected loss function
is infinite. For all GAN variants, we use 200-dimension in-
put noise to the generator. The generator network consists
of 4 fully connected layers with 256 units on each layer.
The batch size is 256, and the number of training iterations
is 200000. We use 10000 samples for training, and a dis-
joint set of 1000000 samples for evaluation.

For each marginal distribution, we computed the area met-
ric from equation 17 between 1M real and generated sam-
ples. Since the marginals are two-sided, we compute the
area metric for both sides and average them. We report the
average area metric across all dimensions.

We also examined how well the generator captures the data
manifold based on how close samples are to the true man-
ifold. This would be very difficult to do with real data,
but our synthetic distribution allows us to compute the dis-
tance exactly in a warped version of the space. We invert

the power transform and project generated samples onto
the linear manifold represented by CY . The distance to the
linear manifold is

MDist = d(pow−1(x̂, t), pow−1(x̂, t)TP ) (20)

where P is the projection matrix C(CTC)−1CT , x̂ is a
generated sample, and d is Euclidean distance. We report
the mean (natural) log MDist to ensure that our metric has
finite expectation for all models.

We ran these experiments with 3 random seeds (arbitrarily
chosen 1000, 1001, 1002). The seed impacts the choices
of C and t, as well as network initialization, training, and
sampling. The three seeds produced similar results. We
report the average of these three trials in Table 3

Table 3. Experimental Results
GAN type Mean Area Mean Log MDist
Normal 132 22.1
Lognormal 216 35.7
Pareto (ED) 197 9.8
Pareto (root-ED) 28 7.7

The root-ED Pareto GAN clearly performs the best on both
metrics. It is able to match the tails of the marginals fairly
well while producing points close to the manifold. Inter-
estingly, the ED Pareto GAN also produces points close to
the manifold, but its tail estimation is quite bad. We inves-
tigated the cause of this by looking at a few marginal dis-
tributions and observed that the GAN marginals were often
bounded on one side7. We note that Theorem 2 does not
preclude a Pareto GAN from being bounded. Instead, the
Pareto GAN is failing to learn two-sided tails when we use
an unstable energy distance loss function. Replacing this
with a stable root-Euclidean energy distance allows learn-
ing to be successful.

7See Appendix C for an example
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6.3. Sensitivity to Tail Index Error

We now examine the sensitivity of Pareto GAN to errors in
the tail index estimates. Tail index estimation is a challeng-
ing problem without a perfect solution. However, while
estimates of ξ have some uncertainty associated with them,
one would think that it is better to model power-law distri-
butions with power-law models rather than with the Gaus-
sian and Lognormal models used in current practice.

To verify this assertion, we trained Pareto GANs with vari-
ous values of ξ on the bi-modal Cauchy distribution (ξ = 1)
from Figure 1 compare them to the other GANs, vary-
ing only the noise type. As shown in Table 4, even with
fairly poor ξ estimates, Pareto GAN models the tail behav-
ior much better than other models (i.e., have a lower Area
value). Table 5 shows the mean and standard deviation ξ
estimates of three tail index estimators on batches of sam-
ples from this distribution. Any of these methods provide
good enough ξ estimates to allow Pareto GAN to outper-
form traditional GANs.

Table 4. Tail Index Sensitivity
GAN type KS Area
ξ = 1.5 0.023 22.0
ξ = 1.3 0.022 12.2
ξ = 1.1 0.024 4.5
ξ = 1.0 0.019 3.9
ξ = 0.9 0.024 7.7
ξ = 0.7 0.024 16.4
ξ = 0.5 0.021 26.5
Uniform 0.047 48.5
Normal 0.048 47.4
Lognormal 0.034 41.3

Table 5. Empirical Tail Estimates
1000 samples 10000 samples

Estimator ξ Mean ξ StD ξ Mean ξ StD
Hill 0.79 0.10 0.80 0.03
Moments 0.86 0.20 0.83 0.17
Kernel 0.94 0.14 1.00 0.05

7. CONCLUSIONS
In this paper, we have identified a specific bias in the ap-
plication of GANs to open domains, namely the implicit
prior of their tail behavior. We have also identified short-
comings of some common loss functions when applied to
heavy tailed data. Our proposed Pareto GAN addresses
both of these shortcomings, providing a way for the gen-
erator to express heavy tailed distributions and learn such
distributions effectively.
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A. DEFINITIONS
Definition 10. Given metric spaces (X , dX ) and (Y, dY), we say a function f : X → Y is Lipschitz continuous if and
only if there is a constant k where

∀x1, x2 ∈ X , dY(f(x1), f(x2)) ≤ kdX (x1, x2) (21)

If the above equation holds for a particular k, we say k is a Lipschitz constant for f and that f is k-Lipschitz continuous.

Roughly speaking, a Lipschitz constant is a bound on the slope of f . Lipschitz continuous functions are closed under
composition, so a network composed of Lipschitz continuous operations is also Lipschitz continuous. The vast majority of
common neural network operations meet this criterion, including fully connected and convolutional layers, pooling layers,
and activation functions such as sigmoid, tanh, and ReLU.

Definition 11. The Wasserstein distance, W1 between distributions P and Q on a metric space (A, d) is

W1(P,Q) = inf
π∈Π(P,Q)

∫
A×A

d(x, y)dπ(x, y) (22)

where Π(P,Q) is the set of all joint probability distributions on A with marginals P and Q.

The Wasserstein distance uses the distance measure in the underlying space to consider how much mass must be moved
what distance in order to deform one distribution into the other. However, if two distinct distributions do not have a well
defined mean (or infinite mean) then it makes sense that the amount of work necessary to deform one into the other can be
infinite.

Definition 12. We say that a distribution P with PDF f has a finite n’th moment on the metric space (A, d) if∫
A

d(z, z0)nf(z)dz <∞ (23)

for some z0 ∈ A.

Note that the first moment is the mean, and the second (when the funciton has the mean subtracted away) is the variance.
Moments represent information about a function over its whole domain, and the existance and non-existance of moments
tends to provide information about how well behaved a function is.

B. PROOFS
B.1. Proof of Proposition 1

Proposition 1. Let ZA be a random variable in metric space (Z, dZ). Let f : Z → X be a Lipschitz continuous neural
network with respect to metrics dZ and dX . If ZA lies within ball of radius c centered around z0, Bc[z0] ⊆ Z , with
probability 1, then there exists a ball Bd[x0] ⊆ X such that P (f(ZA) ∈ Bd[x0]) = 1.

Proof. From the definition of Lipschitz continuity, there must exist some k where

∀z ∈ Z, dX (f(z0), f(z)) ≤ kdZ(z0, z) (24)

From the definition of a ball,
∀z ∈ Bc[z0], dZ(z0, z) ≤ c. (25)

P (ZA ∈Bc[z0]) = 1

⇒ P (dZ(z0, ZA) ≤ c) = 1

⇒ P (dX (f(z0), f(ZA)) ≤ kc) = 1

⇒ P (f(ZA) ∈ Bkc[f(z0)]) = 1

(26)
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B.2. Proof of Theorem 1

Theorem 1. Let Fu(x) be the conditional excess distribution of XN . If XN is not bounded above, then Fu(x) converges
to the normal conditional excess distribution as u→∞.

Proof. Let k be a Lipschitz constant of fPWL. Let f̂(z) = fPWL(z) − fPWL(0). Note that subtracting a bias does not
change the Lipschitz constants of a function, and that f̂(z) still meets definition 3. It suffices to show that

From definition 10 it is clear that for any c,

||f̂(z)|| > c⇒ k||z|| > c. (27)

Since f̂ has a finite number of convex linear regions, there exist positive number c and real values w1, w2, b1, b2 such that
f̂(z) = w1z + b1 for z > c and f̂(z) = w2z + b2 for z < −c. In this case, the conditional excess distribution of f̂(Z) is

Fu(x) =[w1 > 0]
P
(
Z ≤ x+u−b1

w1

)
− P

(
Z ≤ u−b1

w1

)
P
(
Z > u−b1

w1

)
+ [w2 < 0]

P
(
Z ≤ x+u−b2

w2

)
− P

(
Z ≤ u−b2

w2

)
P
(
Z > u−b2

w2

)
(28)

Fu(x) =[w1 > 0]
Φ
(
x+u−b1
w1

)
− Φ

(
u−b1
w1

)
1− Φ

(
u−b1
w1

)
+ [w2 < 0]

Φ
(
x+u−b2
w2

)
− Φ

(
u−b2
w2

)
1− Φ

(
u−b2
w2

)
(29)

where Φ is the normal CDF and square brackets evaluate to one if the condition is met and zero otherwise. Now consider
the conditions w1 > 0 and w2 < 0. If both are false, then the distribution is bounded. If one of the conditions is true, then
Fu(x) is exactly the conditional excess distribution of a normal random variable. If both conditions are true, Fu(x) has the
tail of a Gaussian mixture. As u → ∞, Fu(x) is dominated by the component with the larger weight (or the larger bias if
the weight are identical), thus converging to a normal conditional excess distribution.

B.3. Proof of Corollary 1

Corollary 1. Let Xα be a Pareto GAN generator with tail index α. Let

Xβ = sign(Xα)|Xα|β , β > 0 (30)

Let Fu(x) be the conditional excess distribution of Xβ . If Xβ is not bounded above, then Fu(x) converges to S(x;αβ, σ)
for some σ ∈ R+.

Proof. Considering the right tail, we can ignore the negative case and simply use Xβ
α . From theorem 2, Xα is bounded

or converges to a GPD. In the bounded case, raising Xα to β still produces a bounded variable. As in Theorem 2, in the
unbounded case it suffices to show that for γ > 0

γ <
1

αβ
⇐⇒ mγ(Xβ) exists and is finite. (31)
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(lower right) datasets

From Definition 6,

mγ(Xβ) = lim
t→∞

E

[(
Xβ

t

)γ ∣∣∣Xβ > t

]
= lim
t→∞

E

[(
Xβ
α

t

)γ ∣∣∣Xβ
α > t

]
= lim
t→∞

E

[(
Xα

t

)γβ ∣∣∣Xα > t

]
=mγβ(Xα)

(32)

Therefore, mγ(Xβ) is finite if and only if mγβ(Xα) is finite, which is true if and only if γ < 1
αβ .

C. ADDITIONAL RESULTS
Figures 4 and 5 show additional results from the experiments run in section 6. Figure 4 shows the tail approximation of the
different GANs on each of the four datasets. Figure 5 shows how the size of the neural network affects its ability to model
the tails of the data on three different datasets. Pareto GAN can accurately model the tails with very small networks, while
the other generators need more significant network capacity to do so.

Figure 6 shows an example of the positive and negative sides of the first marginal (X0) of the 1000-dimensional distribution
defined in equation 19 and used to produce the results in Table 3. This plot is from seed 1000. The Pareto GAN trained
with ED learns a one-sided (all negative) marginal distribution, even though the tail index estimate is fairly good. Training
with root-Euclidean ED allows for successful, stable optimization.
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