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Abstract
Group equivariant neural networks are used as
building blocks of group invariant neural net-
works, which have been shown to improve gener-
alisation performance and data efficiency through
principled parameter sharing. Such works have
mostly focused on group equivariant convolutions,
building on the result that group equivariant lin-
ear maps are necessarily convolutions. In this
work, we extend the scope of the literature to self-
attention, that is emerging as a prominent building
block of deep learning models. We propose the
LieTransformer, an architecture composed
of LieSelfAttention layers that are equiv-
ariant to arbitrary Lie groups and their discrete
subgroups. We demonstrate the generality of our
approach by showing experimental results that are
competitive to baseline methods on a wide range
of tasks: shape counting on point clouds, molec-
ular property regression and modelling particle
trajectories under Hamiltonian dynamics.

1. Introduction
Group equivariant neural networks are useful architectures
for problems with symmetries that can be described in terms
of a group (in the mathematical sense). Convolutional neural
networks (CNNs) are a special case that deal with transla-
tional symmetry, in that when the input to a convolutional
layer is translated, the output is also translated. This prop-
erty is known as translation equivariance, and offers a use-
ful inductive bias for perception tasks which usually have
translational symmetry. Constraining a linear layer to obey
this symmetry, resulting in a covolutional layer, greatly re-
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duces the number of parameters and computational cost.
This has led to the success of CNNs in multiple domains
such as computer vision (Krizhevsky et al., 2012) and audio
(Graves & Jaitly, 2014). Following on from this success,
there has been a growing literature on the study of group
equivariant CNNs (G-CNNs) that generalise CNNs to deal
with other types of symmetries beyond translations, such as
rotations and reflections.

Most works on group equivariant NNs deal with CNNs
i.e. linear maps with shared weights composed with point-
wise non-linearities, building on the result that group equiv-
ariant linear maps (with mild assumptions) are necessarily
convolutions (Kondor & Trivedi, 2018; Cohen et al., 2019;
Bekkers, 2020). However there has been little work on
non-linear group equivariant building blocks. In this paper
we extend group equivariance to self-attention (Vaswani
et al., 2017), a non-trivial non-linear map, that has become
a prominent building block of deep learning models in var-
ious data modalities, such as natural-language processing
(Vaswani et al., 2017; Brown et al., 2020), computer vi-
sion (Zhang et al., 2019; Parmar et al., 2019b), reinforce-
ment learning (Parisotto et al., 2020), and audio generation
(Huang et al., 2019).

We thus propose LieTransformer, a group in-
variant Transformer built from group equivariant
LieSelfAttention layers. It uses a lifting based
approach, that relaxes constraints on the attention module
compared to approaches without lifting. Our method is
applicable to Lie groups and their discrete subgroups
(e.g. cyclic groups Cn and dihedral groups Dn) acting
on homogeneous spaces. Our work is very much in the
spirit of Finzi et al. (2020), our main baseline, but for
group equivariant self-attention instead of convolutions.
Among works that deal with equivariant self-attention, we
are the first to propose a methodology for general groups
and domains (unspecified to 2D images (Romero et al.,
2020; Romero & Cordonnier, 2021) or 3D point clouds
(Fuchs et al., 2020)). We demonstrate the generality of our
approach through strong performance on a wide variety of
tasks, namely shape counting on point clouds, molecular
property regression and modelling particle trajectories
under Hamiltonian dynamics.
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2. Background
2.1. Group Equivariance

This section lays down some of the necessary definitions
and notations in group theory and representation theory
in an informal and intuitive manner. For a more formal
presentation of definitions, see Appendix B.

Loosely speaking, a group G is a set of symmetries, with
each group element g corresponding to a symmetry transfor-
mation. These group elements (g, g′ ∈ G) can be composed
(gg′) or inverted (g−1), just like transformations. An ex-
ample of a discrete group is Cn, the set of rotational sym-
metries of a regular n-gon. The group consists of n such
rotations, including the identity. An example of a continuous
(infinite) group is SO(2), the set of all 2D rotations about
the origin. Cn is a subset of SO(2), hence we call Cn a sub-
group of SO(2). Note that SO(2) = {gθ : θ ∈ [0, 2π)}
can be parameterised by the angle of rotation θ. Such groups
that can be continuously parameterised by real values are
called Lie groups.

A symmetry transformation of group element g ∈ G on
object v ∈ V is referred to as the group action of G on
V . If this action is linear on a vector space V , then we
can represent the action as a linear map ρ(g). We call ρ
a representation of G, and ρ(g) often takes the form of
a matrix. For SO(2), the standard rotation matrix is an
example of a representation that acts on V = R2:

ρ(gθ) =

[
cos θ − sin θ
sin θ cos θ

]
(1)

Note that this is only one of many possible representations
of SO(2) acting on R2 (e.g. replacing θ with nθ yields
another valid representation), and SO(2) can act on spaces
other than R2, e.g. Rd for arbitrary d ≥ 2.

In the context of group equivariant neural networks, V is
commonly defined to be the space of scalar-valued functions
on some set S, so that V = {f | f : S → R}. This set
could be a Euclidean input space e.g. a grey-scale image
can be expressed as a feature map f : R2 → R from pixel
coordinate xi to pixel intensity fi, supported on the grid of
pixel coordinates. We may express the rotation of the image
as a representation of SO(2) by extending the action ρ on
the pixel coordinates to a representation π that acts on the
space of feature maps:

[π(gθ)(f)](x) , f(ρ(g−1θ )x). (2)

Note that this is equivalent to the mapping (xi, fi)
n
i=1 7→

(ρ(gθ)xi, fi)
n
i=1. As a special case, we can define V =

{f |f : G→ R} to be the space of scalar-valued functions
on the group G, for which we can define a representation π
acting on V via the regular representation:

[π(gθ)(f)](gφ) , f(g−1θ gφ). (3)

Here the action ρ is replaced by the action of the group
on itself. If we wish to handle multiple channels of data,
e.g. RGB images, we can stack these feature maps together,
transforming in a similar manner.

Now let us define the notion of G-equivariance.

Definition 1. We say that a map Φ : V1 → V2 is G-
equivariant with respect to actions ρ1, ρ2 of G acting on
V1, V2 respectively if: Φ[ρ1(g)f ] = ρ2(g)Φ[f ] for any
g ∈ G, f ∈ V1.

In the above example of rotating RGB images, we have
G = SO(2) and ρ1 = ρ2 = π. Hence the equivariance of
Φ with respect to SO(2) means that rotating an input image
and then applying Φ yields the same result as first applying
Φ to the original input image and then rotating the output,
i.e. Φ commutes with the representation π.

The end goal for group equivariant neural networks is to
design a neural network that obeys certain symmetries in the
data. For example, we may want an image classifier to out-
put the same classification when the input image is rotated.
So in fact we want a G-invariant neural network, where the
output is invariant to group actions on the input space. Note
that G-invariance is a special case of G-equivariance, where
ρ2 is the trivial representation i.e. ρ2(g) is the identity
map for any g ∈ G. Invariant maps are easy to design, by
discarding information, e.g. pooling over spatial dimensions
is invariant to rotations and translations. However, such
maps are not expressive as they fail to extract high-level
semantic features from the data. This is where equivariant
neural networks become relevant; the standard recipe for
constructing an expressive invariant neural network is to
compose multiple equivariant layers with a final invariant
layer. It is a standard result that such maps are invariant
(e.g. Bloem-Reddy & Teh (2020)) and a proof is given in
Appendix C for completeness.

2.2. Equivariant Maps on Homogeneous Input Spaces

Here we introduce the framework for G-equivariant maps,
and provide group equivariant convolutions as an example.
Suppose we have data in the form of a set of input pairs
(xi, fi)

n
i=1 where xi ∈ X are spatial coordinates and fi ∈

F are feature values. The data can be described as a single
feature map fX : xi 7→ fi. We assume that a group G
acts on the x-space X via action ρ, and that the action is
transitive (also referred to asX being homogeneous). This
means that all elements of X are connected by the action:
∀x, x′ ∈ X , ∃g ∈ G : ρ(g)x = x′. We often write gx
instead of ρ(g)x to reduce clutter. For example, the group
of 2D translations T (2) acts transitively on R2 since there is
a translation connecting any two points in R2. On the other
hand, the group of 2D rotations about the origin SO(2) does
not act transitively on R2, since points that have different
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Figure 1. Architecture of the LieTransformer.

distances to the origin cannot be mapped onto each other
by rotations. However the group of 2D roto-translations
SE(2), whose elements can be written as a composition tR
of t ∈ T (2) and R ∈ SO(2), acts transitively on R2 since
SE(2) contains T (2).

For such homogeneous spaces X , it can be shown that there
is a natural partition of G into disjoint subsets such that
there is a one-to-one correspondence between X and these
subsets. Namely each x ∈ X corresponds to the coset
s(x)H = {s(x)h|h ∈ H}, where the subgroup H = {g ∈
G|gx0 = x0} is called the stabiliser of origin x0, and
s(x) ∈ G is a group element that maps x0 to x. It can be
shown that the coset s(x)H does not depend on the choice
of s(x), and that s(x)H and s(x′)H are disjoint for x 6= x′.
For T (2) acting on R2, we have H = {e}, the identity, and
s(x) = tx, the group element describing the translation
from x0 to x, and so each x corresponds to {tx}. For SE(2)
acting on R2, we have H = SO(2) and s(x) = tx, so each
x corresponds to {txR|R ∈ SO(2)}. This correspondence
is often written as an isomorphism X ' G/H , where G/H
is the set of cosets of H .

Using this isomorphism, we can map each point inX to a set
of group elements in G, i.e. mapping each data pair (xi, fi)
to (possibly multiple) pairs {(g, fi)|g ∈ s(xi)H}. This
can be thought of as lifting the feature map fX : xi 7→ fi
defined on X to a feature map L[fX ] : g 7→ fi defined on G
(Kondor & Trivedi, 2018). Let IU denote the space of such
feature maps from G to F . Subsequently, we may define
group equivariant maps as functions from IU to itself, which
turns out to be a simpler task than defining equivariant maps
directly on X .

The group equivariant convolution (Cohen & Welling,
2016; Cohen et al., 2018; Finzi et al., 2020; Romero et al.,
2020) is an example of such a group equivariant map that has
been studied extensively. Specifically, the group equivariant

convolution Ψ : IU → IU is defined as:

[Ψf ](g) ,
∫
G

ψ(g′−1g)f(g′)dg′ (4)

where ψ : G → R is the convolutional filter and the in-
tegral is defined with respect to the left Haar measure of
G. Note that for discrete groups the integral amounts to a
sum over the group. Hence the integral can be computed
exactly for discrete groups (Cohen & Welling, 2016), and
for Lie groups it can be approximated using Fast Fourier
Transforms (Cohen et al., 2018) or Monte Carlo (MC) esti-
mation (Finzi et al., 2020). Given the regular representation
π of G acting on IU as in Equation 3, we can easily verify
that Ψ is equivariant with respect to π (c.f. Appendix C).

3. LieTransformer
We first outline the problem setting before describing our
model, the LieTransformer. We tackle the problem
of regression/classification for predicting a scalar/vector-
valued target y given a set of input pairs (xi, fi)

n
i=1 where

xi ∈ Rdx are spatial locations and fi ∈ Rdf are feature
values at the spatial location. Hence the training data of size
N is a set of tuples ((xi, fi)

nj

i=1, yj)
N
j=1. In some tasks such

as point cloud classification, the feature values fi may not
be given. In this case the fi can set to be a fixed constant or
a (G-invariant) function of (xi)

n
i=1.

LieTransformer is composed of a lifting layer fol-
lowed by residual blocks of LieSelfAttention layers,
LayerNorm and pointwise MLPs, all of which are equiv-
ariant with respect to the regular representation, followed
by a final invariant G-pooling layer (c.f. Appendix H for
more details on these layers). We summarise the architecture
in Figure 1 and describe its key components below.

3.1. Lifting

Recall from Section 2.2 that the lifting L maps fX (sup-
ported on

⋃n
i=1{xi} ⊂ X ) to L[fX ] (supported on
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Figure 2. Visualisation of lifting, sampling Ĥ , and subsampling in the local neighbourhood for SE(2) acting on R2. Self-attention is
performed on this subsampled neighbourhood.

⋃n
i=1 s(xi)H ⊂ G) such that:

L[fX ](g) , fi for g ∈ s(xi)H. (5)

This can be thought of as extending the domain of fX from
X to G while preserving the feature values fi, mapping
(xi, fi) 7→ (g, fi) for g ∈ s(xi)H (c.f. Figure 2). Subse-
quently we may design G-equivariant maps on the space
of functions on G, which is a simpler task than desgining
G-equivariant maps directly on X (e.g. Cohen et al. (2018)).

As in Equations 2 and 3, we define the representation π on
fX and L[fX ] as:

[π(u)fX ](x) = fX (u−1x)

[π(u)L[fX ]](g) = L[fX ](u−1g)

where u ∈ G. Note that the actions correspond to mappings
(xi, fi) 7→ (uxi, fi) and (g, fi) 7→ (ug, fi) respectively.

We need to ensure that lifting preserves equivariance, which
is why we need the space to be homogeneous with respect
to the action of G on X .

Proposition 1. The lifting layer L is equivariant with re-
spect to the representation π.

Intuition for proof. When xi is shifted by u ∈ G, the
lifted coset s(xi)H is also shifted by u, i.e. xi 7→ uxi ⇒
s(xi)H 7→ us(xi)H . See Appendix C for full proof.

3.2. LieSelfAttention

Let f , L[fX ], hence f is defined on the set Gf =
∪ni=1s(xi)H . We define the LieSelfAttention layer
in Algorithm 1, where self-attention (see Appendix D for
the original formulation) is defined across the elements
of Gf . There are various choices for functions content-
based attention kc , location-based attention kl , F that
determines how to combine the two to form unnormalised
weights, and the choice of normalisation of weights. See
Appendix E for a non-exhaustive list of choices of the above,
and also for the details of the multi-head generalisation of
LieSelfAttention.

Algorithm 1 LieSelfAttention

Input: (g, f(g))g∈Gf

for g ∈ Gf
for g′ ∈ Gf (or nbhdη(g))

. Compute content/location attention
kc(f(g), f(g′)), kl(g−1g′)
. Compute unnormalised weights
αf (g, g′) = F (kc(f(g), f(g′)), kl(g−1g′))

. Compute normalised weights and output
{wf (g, g′)}g′∈Gf

= norm{αf (g, g′)}g′∈Gf

fout(g) =
∫
Gf
wf (g, g′)WV f(g′)dg′

Output: (g, fout(g))g∈Gf

Proposition 2. LieSelfAttention is equivariant with respect
to the regular representation π.

Intuition for proof. LieSelfAttention can be thought
of as a map Φ : (g, f(g))g∈Gf

7→ (g, fout(g))g∈Gf
, and

equivariance holds if ∀u ∈ G, Φ maps (ug, f(g))g∈Gf
to

(ug, fout(g))g∈Gf
. Now note that Φ is a function of g ∈ Gf

only via g−1g′ for g′ ∈ Gf , and g−1g′ is invariant to the
group action g 7→ ug, g′ 7→ ug′. This is enough to show
that Φ satisfies the above condition for equivariance. See
Appendix C for full proof.

Generalisation to infinite Gf . For Lie Groups, Gf is usu-
ally infinite (it need not be if H is discrete e.g. for T (n)
acting on Rn, we have H = {e} hence Gf is finite). To
deal with this case we resort to Monte Carlo (MC) estima-
tion to approximate the integral in LieSelfAttention,
following the approach of Finzi et al. (2020):

1. Replace Gf , ∪ni=1s(xi)H with a finite subset Ĝf ,
∪ni=1s(xi)Ĥ where Ĥ is a finite subset of H sampled
uniformly. We refer to |Ĥ| as the number of lift sam-
ples.

2. (Optional, for computational efficiency) Further re-
place Ĝf with uniform samples from the neighbour-
hood nbhdη(g) , {g′ ∈ Ĝf : d(g, g′) ≤ η} for some
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threshold η where distance is measured by the log map
d(g, g′) = ||ν[log(g−1g′)]|| (c.f. Appendix F).

See Figure 2 for a visualisation. Due to MC estimation we
now have equivariance in expectation as Finzi et al. (2020).
For sampling within the neighbourhood, we can show that
the resulting LieSelfAttention is still equivariant in
expectation given that the distance is a function of g−1g′

(c.f. Appendix C).

4. Related Work
Equivariant maps with/without lifting Equivariant neu-
ral networks can be broadly categorised by whether the
input spatial data is lifted onto the space of functions on
group G or not. Without lifting, the equivariant map is
defined between the space of functions/features on the ho-
mogeneous input space X , with equivariance imposing a
constraint on the parameterisation of the convolutional ker-
nel or attention module (Cohen & Welling, 2017; Worrall
et al., 2017; Thomas et al., 2018; Kondor et al., 2018; Weiler
et al., 2018b;a; Weiler & Cesa, 2019; Esteves et al., 2020;
Fuchs et al., 2020). In the case of convolutions, the ker-
nel is expressed using a basis of equivariant functions such
as circular or spherical harmonics. However with lifting,
the equivariant map is defined between the space of func-
tions/features on G, and aforementioned constraints on the
convolutional kernel or attention module are relaxed at the
cost of an increased dimensionality of the input to the neural
network (Cohen & Welling, 2016; Cohen et al., 2018; Es-
teves et al., 2018; Finzi et al., 2020; Bekkers, 2020; Romero
& Hoogendoorn, 2020; Romero et al., 2020; Hoogeboom
et al., 2018). Our method also uses lifting to define equiv-
ariant self-attention.

Equivariant self-attention Most of the above works use
equivariant convolutions as the core building block of their
equivariant module, drawing from the result that bounded
linear operators are group equivariant if and only if they are
convolutions (Kondor & Trivedi, 2018; Cohen et al., 2019;
Bekkers, 2020). Such convolutions are used with pointwise
non-linearities (applied independently to the features at each
spatial location/group element) to form expressive equivari-
ant maps. Exceptions to this are Romero et al. (2020) and
Fuchs et al. (2020) that explore equivariant attentive con-
volutions, reweighing convolutional kernels with attention
weights. This gives non-linear equivariant maps with non-
linear interactions across spatial locations/group elements.
Instead, our work removes convolutions and investigates the
use of equivariant self-attention only, inspired by works that
use stand-alone self-attention on images to achieve com-
petitive performance to convolutions (Parmar et al., 2019a;
Dosovitskiy et al., 2020). Furthermore, Romero et al. (2020)
focus on image applications (hence scalability) and discrete
groups (p4, p4m), and Fuchs et al. (2020) focus on 3D point

cloud applications and the SE(3) group with irreducible
representations acting on functions on X . Instead we use
regular representations actingon functions on G, and give
a general method for Lie groups acting on homogeneous
spaces, with a wide range of applications from dealing with
point cloud data to modelling Hamiltonian dynamics of par-
ticles. This is very much in the spirit of Finzi et al. (2020),
except for self-attention instead of convolutions. In concur-
rent work, Romero & Cordonnier (2021) describe group
equivariant self-attention also using lifting and regular rep-
resentations. Their analogue of location-based attention are
group invariant positional encodings. The main difference
between the two works is that Romero & Cordonnier (2021)
specify methodology for discrete groups applied to image
classification only and it is not clear how to extend their
approach to Lie groups. In contrast, our method provides
a general formula for (unimodular) Lie groups and their
discrete subgroups for the aforementioned applications.

5. Experiments
We consider three different tasks that have certain symme-
tries, highlighting the benefits of the LieTransformer:
(1) Counting shapes in 2D point cloud of constellations
(2) Molecular property regression and (3) Modelling parti-
cle trajectories under Hamiltonian dynamics.1

5.1. Counting Shapes in 2D Point Clouds

We first consider the toy, synthetic task of counting
shapes in a 2D point cloud {x1, x2, ..., xK} of constel-
lations (Kosiorek et al., 2019), mainly to check that
LieTransformer has the correct invariance properties.
We use fi = 1 for all points. Each example consists of
points in the plane that form the vertices of a pattern. There
are four types of patterns: triangles, squares, pentagons and
the ‘L’ shape, with varying sizes, orientation, and number
of instances per pattern (see Figure 3 (right)). The task is
to classify the number of instances of each pattern, hence is
invariant to 2D roto-translations SE(2).

We first create a fixed training set Dtrain and test set Dtest
of size 10,000 and 1,000 respectively. We then create
augmented test sets DT2

test and DSE2
test that are copies of

Dtest with arbitrary transformations in T (2) and SE(2)
respectively. In Table 1, we evaluate the test accu-
racy of LieTransformer at convergence with and
without data augmentation during training time – DT2

train
and DSE2

train indicate random T (2) and SE(2) augmenta-
tions respectively to each batch of Dtrain at every train-
ing iteration. We evaluate the test performance of
LieTransformer-T2 and LieTransformer-SE2

1The code for our experiments is available at: https://
github.com/oxcsml/lie-transformer

https://github.com/oxcsml/lie-transformer
https://github.com/oxcsml/lie-transformer
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Training data Dtrain Dtrain Dtrain DT2
train DT2

train DSE2
train

Test data Dtest DT2
test DSE2

test DT2
test DSE2

test DSE2
test

SetTransformer 0.58 ± 0.07 0.44 ± 0.02 0.44 ± 0.02 0.61 ± 0.02 0.51 ± 0.01 0.55 ± 0.01
LieTransformer-T2 0.75 ± 0.03 0.75 ± 0.03 0.63 ± 0.06 0.75 ± 0.03 0.63 ± 0.06 0.70 ± 0.03
LieTransformer-SE2 0.71 ± 0.01 0.71 ± 0.01 0.69 ± 0.02 0.71 ± 0.01 0.69 ± 0.02 0.72 ± 0.04

Table 1. Mean and standard deviation of test accuracies on the shape counting task at convergence (over 8 random initialisations).

that are invariant to T (2) and SE(2) respectively, against
the baseline SetTransformer (Lee et al., 2019), a
Transformer-based model that is permutation invariant, but
not invariant to rotations nor translations. We use a similar
number of parameters for each model. See Appendix I.1 for
further details on the setup.
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Figure 3. (Left) SE(2) invariance error on output logits vs. num-
ber of lift samples for a single layer LieTransformer-SE2.
Plot shows median and interquartile range across 100 runs, random-
izing over model seed, input example and transformation applied
to input. (Right) An example 2D point cloud from Dtrain. Each
colour corresponds to a different pattern.

Note that the test accuracy of LieTransformer-T2
and LieTransformer-SE2 remains unchanged when
the train/test set is augmented with T (2). For
LieTransformer-SE2, this is not quite true for SE(2)
augmentations because the model is only SE(2) equiv-
ariant in expectation and not exactly equivariant given
a finite number of lifts samples (|Ĥ|). However the
changes in accuracy for SE(2) augmentation are much
smaller compared to LieTransformer-T2. The test
accuracy of SetTransformer, the non-invariant base-
line, is always lower than LieTransformer. Note
that LieTransformer-T2 does slightly better than
LieTransformer-SE2 on Dtest and DT2

test . We suspect
that the variance in the sampling of the lifting layer for
LieTransformer-SE2 is making optimisation more
difficult, and will continue to explore these results.

In Figure 3 (left), we report the equivariance error of
LieTransformer-SE2 when increasing the number of
lift samples (|Ĥ|) used in the Monte Carlo approximation of
LieSelfAttention. As expected the invariance error
decreases monotonically with the number of lift samples,
and already with 3 lift samples, the error is small (≈ 10−6).

5.2. QM9: Molecular Property Regression

We apply the LieTransformer to the QM9 molecule
property prediction task (Ruddigkeit et al., 2012; Ramakr-
ishnan et al., 2014). This dataset consists of 133,885 small
inorganic molecules described by the location and charge of
each atom in the molecule, along with the bonding structure
of the molecule. The dataset includes 19 properties of each
molecule, such as various rotational constants, energies and
enthalpies, and 12 of these are used as regression tasks. We
expect these molecular properties to be invariant to 3D roto-
translations SE(3). We follow the customary practice of
performing hyperparameter search on the εHOMO task and
use the same hyperparameters for training on the other 11
tasks. Further details of the exact experimental setup can be
found in Appendix I.2.

We trained four variants of both LieTransformer and
LieConv, namely the T (3) and SE(3) invariant models
with and without SO(3) (rotation) data augmentation. We
set xi to be the atomic position and fi to be the charge.
Table 2 shows the test error of all models and baselines on
the 12 tasks. The table is divided into 3 sections. Upper:
non-invariant models specifically designed for the QM9
task. Middle: invariant models specifically designed for
the QM9 task. Lower: invariant models that are general-
purpose. We show very competitive results, and perform
best of general-purpose models on 8/12 tasks. In particular
when comparing against LieConv, we see better perfor-
mance on the majority of tasks, suggesting that the attention
framework is better suited to these tasks than convolutions.

As expected for both LieTransformer and LieConv,
the SE(3) models tend to outperform the T (3) models with-
out SO(3) data augmentation (on 10/12 tasks and 7/12 tasks
respectively), showing that being invariant to rotations im-
proves generalisation. Moreover the SE(3) models per-
form similarly with and without augmentation, whereas
the T (3) models greatly benefit from augmentation, show-
ing evidence that the SE(3) models are indeed invariant
to rotations. However the T (3) models with augmenta-
tion outperform the SE(3) counterparts on most tasks for
both LieTransformer-SE3 and LieConv-SE3. As
for the experiments in Section 5.1, we suspect that the vari-
ance in the sampling of the lifting layer of SE(3) models,
along with the SE(3) log-map (Appendix F) in the location
attention is making optimisation more difficult, and plan to
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Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE
Units bohr3 meV meV meV D cal/mol K meV meV bohr2 meV meV meV

WaveScatt (Hirn et al., 2017) .160 118 85 76 .340 .049 − − − − − −
NMP (Gilmer et al., 2017) .092 69 43 38 .030 .040 19 17 .180 20 20 1.50

SchNet (Schütt et al., 2017) .235 63 41 34 .033 .033 14 14 .073 19 14 1.70

Cormorant (Anderson et al., 2019) .085 61 34 38 .038 .026 20 21 .961 21 22 2.03

DimeNet++ (Klicpera et al., 2020) ∗ .049 34 26 20 .033 .024 7.7 7.1 .387 6.7 6.9 1.23

L1Net (Miller et al., 2020) .088 68 45 35 .043 .031 14 14 .354 14 13 1.56

TFN (Thomas et al., 2018) .223 58 40 38 .064 .101 − − − − − −
SE3-Transformer (Fuchs et al., 2020) .148 53 36 33 .053 .057 − − − − − −
LieConv-T3 (Finzi et al., 2020) † .125 60 36 32 .057 .046 35 37 1.54 36 35 3.62

LieConv-T3 + SO3 Aug (Finzi et al., 2020) .084 49 30 25 .032 .038 22 24 .800 19 19 2.28

LieConv-SE3 (Finzi et al., 2020)† .097 45 27 25 .039 .041 39 46 2.18 49 48 3.27

LieConv-SE3 + SO3 Aug (Finzi et al., 2020)† .088 45 27 25 .038 .043 47 46 2.12 44 45 3.25

LieTransformer-T3 (Us) .179 67 47 37 .063 .046 27 29 .717 27 28 2.75

LieTransformer-T3 + SO3 Aug (Us) .082 51 33 27 .041 .035 19 17 .448 16 17 2.10

LieTransformer-SE3 (Us) .104 52 33 29 .061 .041 23 27 2.29 26 26 3.55

LieTransformer-SE3 + SO3 Aug (Us) .105 52 33 29 .062 .041 22 25 2.31 24 25 3.67

Table 2. QM9 molecular property prediction mean absolute error. Bold indicates best performance in a given section, underlined indicates
best overall performance. ∗These results are from our own runs of the Dimenet++ model. The original paper used different train/valid/test
splits to the other papers listed here. †These results are from our owns runs of LieConv as these ablations were not present in the original
paper.

continue investigating the source of this discrepancy in per-
formance. Note however that LieTransformer-SE3
and LieConv-SE3 tend to outperform the irreducible rep-
resentation (irrep) based SE(3)-Transformer and TFN. This
can be seen as further evidence that regular representation
approaches tend to outperform irrep approaches, in line with
the empirical observations of Weiler & Cesa (2019).

5.3. Modelling Particle Trajectories with Hamiltonian
Dynamics

We also apply the LieTransformer to a physics simula-
tion task in the context of Hamiltonian dynamics, a formal-
ism for describing the evolution of a physical system using
a single scalar function H(q, p), called the Hamiltonian.

We consider the case of n particles in d dimensions, writing
the position q ∈ Rnd and momentum p ∈ Rnd of all
particles as a single state z = (q,p). The Hamiltonian H :
R2nd → R takes as input z and returns its total (potential
plus kinetic) energy. The time evolution of the particles is
then given by Hamilton’s equations:

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
. (6)

Several recent works have shown that modelling physical
systems by learning its Hamiltonian significantly outper-
forms approaches that learn the dynamics directly (Grey-
danus et al., 2019; Sanchez-Gonzalez et al., 2019; Zhong
et al., 2020; Finzi et al., 2020). Specifically, we can parame-

terise the Hamiltonian of a system by a neural network Hθ

that is learned by ensuring that trajectories from the ground
truth and learned system are close to each other. Given a
learned Hθ, we can simulate the system for T timesteps by
solving equation (6) with a numerical ODE solver to obtain
a trajectory {ẑt(θ)}Tt=1 and minimize the `2-norm between
this trajectory and the ground truth {zt}Tt=1.

However we know a-priori that such physical systems have
symmetries, namely conserved quantities such as linear and
angular momentum. A notable result is Noether’s theo-
rem (Noether, 1918), which states that the system has a
conserved quantity if and only if the Hamiltonian is group-
invariant. For example, translation invariance of the Hamil-
tonian implies conservation of momentum and rotation in-
variance implies conservation of angular momentum. Hence
in our experiments, we parameterise the Hamiltonian Hθ

by a LieTransformer and endow it with the symme-
tries corresponding to the conservation laws of the physical
system we are modelling. We test our model on the spring
dynamics task proposed in Sanchez-Gonzalez et al. (2019) –
we consider a system of 6 particles with randomly sampled
massses in 2D, where each particle connected to all others
by springs. This system conserves both linear and angular
momentum, so the ground truth Hamiltonian will be both
translationally and rotationally invariant, that is, SE(2)-
invariant. We simulate this system for 500 timesteps from
random initial conditions and use random subsets of length
5 from these roll-outs to train the model (see Appendix I.3
for full experimental details).
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Figure 4. Data efficiency on Hamiltonian spring dynamics. All
models are trained using 5-step roll-outs, with test performance
on 5-step (left) and 100-step (right) roll-outs. Plots show median
MSE and interquartile range (IQR) across 10 random seeds.

We compare our method to different parameterisations
of Hθ, namely Fully-connected network (Chen et al.,
2018), Graph Network (Sanchez-Gonzalez et al., 2019)
and LieConv. Only LieTransformer and LieConv
incorporate invariance. In Figures 4, 5, and 6, we use
LieTransformer-T2 and LieConv-T2 since Finzi
et al. (2020) report that there are numerical instabilities for
LieConv-SE2 on this task, due to which LieConv-T2
is their default model and performs the best. However in
Figure 7, we also consider SE(2)-invariant versions of both
models with modifications to the lifting procedure, which
fixed the instabilities as outlined in Appendix F.

Figure 4 compares the performance of all methods
as a function of the number of training examples.
LieTransformer is highly data-efficient: the inductive
bias from the symmetries of the Hamiltonian allow us to
accurately learn the dynamics even from a small training
set. Our method consistently outperforms non-invariant
methods (fully-connected and graph networks), typically by
1-3 orders of magnitude. Furthermore, our method outper-
forms LieConv for most data sizes except the largest sizes
where the errors are similar, suggesting that the attention
framework more suited for this task.
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Figure 5. Test error vs. roll-out
time step. Plots show median MSE
and IQR across 10 random seeds.

Figure 5 shows the
test error as function
of the roll-out time
step for a training
data size of 10,000
(corresponding plots
for other training data
sizes are included in
Appendix J.1). Here
we show that the
LieTransformer
shows better generali-
sation than LieConv
across all roll-out lengths, the error being low (< 10−3)
for 100 step-roll-outs even though we only train on 5-step
roll-outs. We also include example trajectories of our

LieConv (895K params.) LieTransformer (842K params.)

Ground truth Model prediction

Figure 6. Example trajectory predictions on the spring dynam-
ics task. LieTransformer closely follows the ground truth while
LieConv diverges from the ground truth at later timesteps.

model in Figure 6 (more examples can be found in the
appendix, including ones where LieConv performs better
than LieTransformer) illustrating the accuracy of our
model on this task.

Lastly, Figure 7 compares LieConv and
LieTransformer for different model sizes (num-
ber of parameters) and equivariance groups. We first
note LieTransformer outperforms LieConv given
a fixed model size and group. For T (2)-invariant mod-
els, our method benefits from a larger model, whereas
LieConv deteriorates (LieConv-T(2) (895K) is
their default architecture on this task). However, for
both methods, the SE(2)-invariant models perform at
par with or better than their T (2)-invariant counter-
parts despite having smaller model sizes. In particular,
LieTransformer-SE(2) (139K) outperforms all
other models in this comparison despite having the smallest
number of parameters, which highlights the advantage
of incorporating the correct task symmetries into the
architecture and the attention framework. Overall, we have
shown that our model is suitable for use in a neural ODE
setting that requires equivariant drift functions.

6. Limitations and Future Work
From the algorithmic perspective, LieTransformer
shares the weakness of LieConv in being memory-
expensive (O(|Ĝf ||nbhdη|) memory cost (Appendix G) due
to: 1. The lifting procedure that increases the number of
inputs by |Ĥ|, and 2. Quadratic complexity in the number
of inputs from having to compute the kernel value at each
pair of inputs. Although the first is a weakness shared by all
lifting-based equivariant neural networks, the second can be
addressed by incorporating works that study efficient vari-
ants of self-attention (Wang et al., 2020; Kitaev et al., 2020;
Zaheer et al., 2020; Katharopoulos et al., 2020). An alter-
native is to incorporate information about pairs of inputs
(such as bonding information for the QM9 task) as masking
in self-attention (c.f. Appendix I.2).
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Figure 7. Median test MSE and IQR on 5-step trajectories, across
5 random seeds. Results for 100-step trajectories in Figure 8.

From the methodological perspective, a key weakness of
the LieTransformer that is also shared with LieConv
is its approximate equivariance due to MC estimation of
the integral in LieSelfAttention for the case where
H is infinite. The aforementioned directions for memory-
efficiency can help to reduce the approximation error by
allowing to use more lift samples (|Ĥ|). Other directions
include incorporating the notion of steerability (Cohen &
Welling, 2017) to deal with vector fields in an equivariant
manner (given inputs (xi, fi), the group acts non-trivially
on fi as well as xi), and extending to non-homogeneous
input spaces as outlined in Finzi et al. (2020).
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