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A. Appendix
A.1. Additional details for SDA

All data augmentations are implemented using the
TORCHVISION.TRANSFORMS module of PyTorch
(Paszke et al., 2019). We choose the range of the hy-
perparameters of the augmentations in such a way that
they do not destroy all information in z, e.g., setting the
brightness of all pixels to 0 or translating all pixels by the
full image width. In all experiments we use the following
data augmentations:

* ’'brightness’:
torchvision.transforms.ColorJitter (brightness=1.0,
contrast=0, saturation=0, hue=0)

¢ ’contrast’:
torchvision.transforms.ColorJitter (brightness=0,
contrast=10.0, saturation=0, hue=0)

e ’saturation’:
torchvision.transforms.ColorJitter (brightness=0, contrast=0,
saturation=10.0, hue=0)

* "hue’:
torchvision.transforms.ColorJitter (brightness=0, contrast=0,
saturation=0, hue=0.5)

* ’rotation’:
torchvision.transforms.RandomAffine ([0, 3591,
translate=None, scale=None, shear=None,
resample=PIL.Image.BILINEAR, fillcolor=0)

* ’‘translate’:
torchvision.transforms.RandomAffine (0, translate=[0.2,
0.2], scale=None, shear=None, resample=PIL.Image.BILINEAR,
fillcolor=0)

¢ ’scale’:
torchvision.transforms.RandomAffine (0, translate=None,
scale=[0.8, 1.2], shear=None, resample=PIL.Image.BILINEAR,
fillcolor=0)

¢ ’shear’:
torchvision.transforms.RandomAffine (0, translate=None,
scale=None, shear=(-10., 10., -10., 10.],

resample=PIL.Image.BILINEAR, fillcolor=0)

e ’'vflip’:
torchvision.transforms.RandomVerticalFlip (p=0.5)

e 'hflip’:
torchvision.transforms.RandomHorizontalFlip (p=0.5)

A.1.1. ABLATION STUDY ON ROTATED MNIST

We will demonstrate now that SDA can also be used to find
the most suitable hyperparameters for the data augmenta-
tions used in this paper. In this example we focus on the
rotated MNIST dataset and the data augmentation ’rotate’.
We use the same experimental setup as described in the
rotated MNIST experiment. We choose {30°,60°,90°} as
the training domains and 0° as the test domain. We com-
pare five sets of hyperparameters, where each set defines the
range from which the rotation angle is uniformily sampled.
In Table 4, we find that the hyperparameters [0°, 359°] lead
to the lowest domain accuracy, i.e., simulate an intervention
on hy the best.

Table 4. Comparing domain accuracy on rotated MNIST for five
different sets of the data augmentation ‘rotate’. Average + standard
error over five seeds.

Hyperparameter | domain accuracy
[—15°,15°] 92.60 £+ 0.98
[—45°,45°) 82.63 + 0.89
[—90°,90°] 69.79 £ 0.91

[0°,180°] 63.16 £+ 1.51
[0°,359°] 51.70 £2.21

A.1.2. RESULTS OF DOMAIN CLASSIFIER ON EACH
DATASET

For each dataset, we train a domain classifier using the
same architecture and training procedure as used for the
label classifier. We only use samples from the training
domains and repeat each experiment five times. In Table 5,
we show the domain accuracy for each of the datasets. In
the case of rotated MNIST, we perform four experiments
where each of the domains d = {0°, 30°,60°,90°} is used
for testing once, while the remaining three domains are used
for training. For each individual experiment SDA returns
the augmentation 'rotate’ as the most suitable. In Table 5,
we show the average of the four experiments that where
each repeated five times. In the case of colored MNIST,
the training and test domains are fixed therefore we only
conducted one experiment. We show the average of the
one experiment that was repeated five times. For PACS,
we perform four experiments where each of the domains
d = {’photo’, "art painting’, *cartoon’, *sketch’ } is used for
testing once, while the remaining three domains are used for
training. We use cross validation over all four experiments
to select the data augmentation. In Table 5, we show the
average of the four experiments that where each repeated
five times.

A.2. Colored MNIST

The DAG of the data generating process for the colored
MNIST experiment is shown in Figure 6 (left), where d is
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Table 5. Domain accuracy for each dataset. Average =+ standard error.

Data Augmentation | rotated MNIST  Colored MNIST PACS
“brightness’ 98.45 £0.24  50.1524 + 0.1527 96.46 £ 0.37
’contrast’ 98.64 £0.23  50.1470 = 0.0506  96.41 £ 0.37
’saturation’ 98.95 £0.21  50.1894 + 0.0593 96.03 £ 0.43
“hue’ 98.66 £ 0.36  50.0006 £+ 0.0028 96.32 £ 0.41
’rotation’ 64.70 £2.21  50.0024 £ 0.0030 96.59 +£ 0.39
“translation’ 90.84 £1.65  50.0004 £ 0.0008 96.82 £ 0.34
’scale’ 9142 +£1.34 50.2082 +0.1327 97.00 £ 0.29
’shear’ 9148 £1.14  50.2252 £ 0.1531 96.82 £ 0.34
"vertical flip’ 88.79 £ 0.50  50.1560 £ 0.0140 96.88 £ 0.34
"horizontal flip’ 9198 £0.29  50.4060 £+ 0.0274 96.54 £ 0.33

the domain, y is the binary label, g is the original MNIST
label, h, are high-level color features caused by d and y,
h, are high-level shape features caused by ¥, and x is the
observed image. In the case of the colored MNIST dataset
the spurious correlation between d and y is the result of
the collider hy (that itself is a parent of the observed node
x). While the cause of the spurious correlation between d
and y is different, the reasoning in Section 2 is still valid.
In Figure 6 (right), we show that in theory an intervention
on hy will remove the spurious correlation between d and
y. We argue that an intervention on hy can be simulated
by data augmentation, we present experimental evidence in
Section 4.

ha

a \

Figure 6. Left: DAG of the data generating process for the colored
MNIST dataset. Right: The same DAG after intervention on hg.
Interventional nodes are squared.

A3.PACS

Example images of the PACS dataset, see Figure 7

A.4. Linear example of intervention-augmentation
equivariance

A simple linear example can be constructed where the do-
main d causes a specific ordering in h, that is spuriously
correlated with the label y. In addition, G is the permutation
group and ¢ € G acts as a permutation matrix A on z, i.e.,
Az = g - x. In particular, we assume that fx (-) is a linear

Figure 7. Samples from the first four classes (’dog’, ’elephant’,
*giraffe’, *guitar’) for each domain (art-painting (A), cartoon (C),
photo (P), sketch (S)) of the PACS dataset (Li et al., 2017a).

transformation

x = fx(hg,hy) = Chq+ Dhy + e, (10)

where x, hq, hy, e are vectors and C, D are matrices corre-
spondingly sized. The data augmentation can be expressed
as a linear transformation of the form

Taug = aug ,(z) = Az,

(1)
where A is a correspondingly sized matrix sampled from
the set of all permutation matrices. Combining Equation 10
and 11, we obtain
Tang = AT

= AChq + ADhy + Ae

= C(C ' AChy) + ADh, + Ae

= fx(dOA(hd),hy). (12)

We find that if that AD = D and Ae = e, i.e., D and e
are permutation invariant, the transformation Ax = g - x
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successfully simulates the noise intervention do 4 (hg) :=
C~1AChy (with slight abuse of notation), i.e., we find
that it satisfy the intervention-augmentation equivariance
condition.

A.5. Causality

What follows is a brief introduction of causal concepts that
are used throughout this paper. It hopefully makes the paper
more self-contained, as well as more accessible for readers
that encounter these concepts for the first time. For an in-
depth introduction please see Pearl (2009) or Peters et al.
(2017).

A.5.1. STRUCTURAL CAUSAL MODELS

We say that a set of variables z1, ..., x; causes a variable y
if intervening on any of the x,, changes the distribution of y.
This is usually different from (conditional) observational de-
pendence between the z,,, and y. Structural Causal Models
(SCMs) are used to formalize those causal interactions be-
tween variables. We need to distinguish between two types
of variables: exogenous and endogenous variables. Exoge-
nous variables can be seen as an entry point to our SCM
(and are usually unobserved independent random variables).
The endogenous variables x,, are then determined by the
causal mechanisms, which are formalized via functional
relations: 2., = fyn(pa, ), Where p, is the tuple of the
so-called parent variables of x,,. These relations of an SCM
induces a corresponding graphical model. In this paper, we
only deal with acyclic relationships, leading to Directed
Acyclic Graphs (DAGs) as part of a Bayesian network. In
Figure 8, we see three SCMs and their corresponding DAGs.
Note that the direction of the arrows indicates the causal
direction.

The SCMs in Figure 8 are considered to be the three
main building blocks of every causal model: chain, con-
founder, and collider. Where each of them introduces a
different (conditional in-)dependence structure. First row:
In case of a chain the variables x and z become condi-
tionally independent if we condition on the center vari-
able y, ie., p(z|x,y) = p(z|ly). Second row: An ob-
served confounder y can introduce spurious correlation be-
tween its two children variables x and z, i.e., we may have
p(x,z) # p(x)p(z). If we condition on the confounding
variable y they become conditionally independent again, i.e.,
p(z|z,y) = p(z|y) and p(z|2,y) = p(z|y). Third row: In
case of an unobserved collider y the two parent variables
are independent, p(z, z) = p(x)p(z). However, if we con-
dition on y they may become conditionally dependent, i.e.,

p(x, zly) # p(xly)p(zly).

DAG

00,0
0020

y = fr(z,z)

Figure 8. Top to bottom: chain, confounder, collider, chain with
intervention on y.

Yo
fz(y)

A.5.2. INTERVENTIONS

In its simplest form an intervention can be described as set-
ting a variable y to a constant value, e.g., y = y irrespective
of its parent variables. The result of such an intervention on
the SCM of a chain and the corresponding DAG can be seen
in the bottom row of Figure 8. In this example, the variable
y becomes independent of its parent variable z, i.e., we are
replacing the function assignment y = f(x) with y = ypo,
effectively deleting the function f(-) and the corresponding
arrow in the DAG. Using the do-operator (Pearl, 2009) we
can write the resulting interventional distribution as follows:
p(zlz,do(y = o)) = p(z|do(y = yo)). In this paper,
we use a special form of interventions, so-called noise or
stochastic interventions (Peters et al., 2016). Instead of set-
ting the intervened variable to a fixed value, we randomize
the values of y, i.e., do(y = £), where £ is sampled from a
noise distribution Ne.

A.6. Domain generalization

A.6.1. DOMAIN GENERALIZATION VIA INVARIANT
FEATURE REPRESENTATION

Arguably, the most commonly used approach in domain gen-
eralization relies on learning domain invariant features. The
learning of invariant features can be achieved by mapping
an input  to intermediate features z that are uninformative
of the domain d, i.e., p(z|d = i) = p(z|d = j). Atthe
same time, the intermediate features z are optimized for a
low prediction error on all training domains. This results
in finding a saddle point for the setting commonly referred
to as domain adversarial learning (Ganin et al., 2016). It is
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assumed that such z will generalize well to the test domain
and, thus, result in a low test error.

Recent work of Zhao et al. (2019), Johansson et al. (2019)
and Arjovsky et al. (2019), in the context of domain adap-
tation, shows that enforcing p(z|d = i) = p(z|d = j) is
not necessarily leading to a low test error if the domains
d and targets y are spuriously correlated, i.e., p(y|d = 1)
# p(y|d = j). We now extend the findings of Zhao et al.
(2019) to domain generalization.

As shown in Zhao et al. (2019) an information-theoretic
lower bound can be derived for the domain adaptation case.
The bound ”demonstrates that learning invariant represen-
tations could lead to a feature space where the joint error
on both domains is large.” We provide a straightforward
extension of this bound for the domain generalization case.

Introduction of notation:

e x: input

* z: intermediate representation

e g: output

 function composition: x KRN U

e y: true label

* h: function mapping z to z

* g: function mapping z to ¢

» JSD: Jensen-Shannon divergence

* ¢?=%: empirical risk on domain d = i
Besides, we need the following two lemmas from Zhao et al.
(2019). Proofs can be found in Zhao et al. (2019).
Lemma 4.6:

ISD(p(gld = i)llp(gld = 7)) (13)
< ISD(p(z|d = 4)[[p(z|d = j)), (14)

where p(g|d = ) are the marginal distributions of the output
in domain d = 7 and p(z|d = ) are the marginal distribu-
tions of the intermediate representation in domain d = 1.

Lemma 4.7:

ISD(p(yld = i)llp(9]d = i)) < Vei(hog),  (15)

i.e., how well is my output distribution matching the true
labels distribution.

We start with the pairwise sum of Jensen-Shannon diver-
gence between all N training domains and the N + 1 test
domain

> ISD(p(yld = i)lp(yld = j)).  (16)
1<i<j<N+1

Since JSD is a metric we can write

S ISD(p(yld = i)lp(yld = ) (17)

1<i<j<N+1
< Y ISDp(gld=i)lp@ld=j))  (18)
1<i<j<N+1
N+1
+2 » ISD(p(yld = k)||p(9]d = k)). (19)
k

Using Lemma 4.6 we get

S ISDO(yld = )lpyld = j))  (20)

1<i<j<N+1
< ) ISD(p(zld =i)lp(zld =) @)
1<i<j<N+1
N+1
+2 ) " ISD(p(yld = k)|Ip(jld = k). (22)
k

Using Lemma 4.7 we get

> ISD(p(yld = i)l|p(yld = j)) (23)
1<i<j<N+1

S

1<i<j<N+1

ISD(p(zld = i)[lp(z|d = j)) ~ (24)

N+1

+2 Z \/€4=F(h o g). (25)
k

Extracting terms that belong to the test domaind = N + 1
leads to

N

S ISD(p(yld = Dlp(yld = N +1))  (26)
=1

+ S ISD(p(yld = i)llp(yld = 7)) @7

1<i<j<N
N
< Y ISD(p(zld = 1)[|p(zld = N +1))  (28)
=1

+ ) ISD(p(zld = i)||p(zld = 5)) (29)
1<i<j<N

N
42, [N (hog) +23 Jek(hog)  (GO)
k
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Assuming we find a perfect intermediate representation z
for all N training domains and the test domaind = N + 1
(assuming such an z exists) we are left with

N
> ISD(p(yld = Dllp(yld = N + 1)) (31)
=1

+ Y ISD(p(yld =i)llp(yld = 5))  (32)
1<i<j<N

N
< 2y/ed=Ntl(hog)+2) \[et=F(hog)  (33)
k

We see that, as it was the case for domain adaptation, that
the joint risk across all domains (training and test) is lower
bounded by the pairwise divergence of the marginal label
distribution of all domains. Given the existence of an un-
observed confounder as seen in Figure 1 the marginal label
distribution are unlikely to match.

However, there exists a multitude of domain generalization
methods that do not explicitly address the problem of hid-
den confounders (Balaji et al., 2018; Carlucci et al., 2018;
2019; Ding & Fu, 2018; Ghifary et al., 2015; Ilse et al.,
2019; Li et al., 2017b; Mancini et al., 2018; Motiian et al.,
2017; Shankar et al., 2018; Tzeng et al., 2014; Wang et al.,
2018). However, the majority of these methods are evaluate
on benchmark datasets, e.g., VLCS (Khosla et al., 2012)
or PACS (Li et al., 2017a), where the domain d and the
target y are confounded. As shown in Equation 33, this can
result in poor generalization performance. Nonetheless, we
cannot rule out the possibility that some of these methods
are implicitly able to deal with confounders, thus achieving
good generalization performance.

To the best of our knowledge, there are currently very few
methods that address the issue of spuriously correlated do-
mains d and targets y (Arjovsky et al., 2019; Heinze-Deml
& Meinshausen, 2019; Li et al., 2018; Krueger et al., 2020),
where Li et al. (2018) extends the idea of domain adversar-
ial learning to enforce conditional domain invariance, i.e.,

A.7. Data augmentation

We will briefly summarize how data augmentation is cur-
rently viewed in the computer vision community, for a
in-depth survey see Shorten & Khoshgoftaar (2019). In
computer vision data augmentation is seen as an effective
technique for improving the performance on a variety of
tasks such as image classification, object detection, and im-
age segmentation. In the image domain, data augmentation
techniques can be roughly divided into two categories:

1. Augmenting the geometry of an image: Commonly
used transformations are rotations, horizontal and ver-

tical flips, scaling, cropping, occlusion, and elastic
deformations.

2. Augmenting the color of an image: Random values are
added or subtracted from the color channels of an im-
age. Instead of applying this transformation directly in
the RGB colorspace, other color spaces like CIELAB
and HSL are commonly used (Tellez et al., 2019).

Data augmentation is a combination of the transformation
listed above that are randomly applied to all images during
training.

A.7.1. DATA AUGMENTATION IN
APPLICATION-FOCUSED RESEARCH AREAS

In the following, we give a summary of two examples of
the successful application of data augmentation for domain
generalization in medical imaging and robotics. We want
to highlight that in both examples the actual task and the
domains are spuriously correlated.

Histopathology The high variability of the appearance of
histopathology images is a major obstacle for the deploy-
ment of automatic image analysis systems. The variability
of appearance is the result of a multitude of preparation steps
that are applied to the specimen: cutting, fixating, staining,
and scanning. Each step introduces its own artifacts. This
leads to different color distributions among histopathology
laboratories. Tellez et al. (2019) perform a detailed compar-
ison of commonly used data augmentation, see Appendix
Figure 9. The augmentation techniques consist of random
rotation and flipping, random color perturbation, and color
normalization. These augmentation techniques are com-
pared on a dataset composed of histopathology images from
nine different laboratories. We argue that there exists a
hidden confounder that spuriously correlates the staining
and scanner artifacts (caused by the laboratories) and the
abnormalities in the tissue (caused by the diseases). By
augmenting the color of the histopathology images Tellez
et al. (2019) are able to learn features that are invariant to
the laboratories. Furthermore, Tellez et al. (2019) find that
random color perturbation outperforms color normalization.
We argue that random color perturbation simulates noise
interventions, whereas color normalization tries to simulate
interventions where the color of a histopathology image
is set to a fixed value. As described in Section 2, this re-
quires to first estimate the color distribution of the original
histopathology image which is a challenging problem. As
a result, data augmentation in the form of random color
perturbation is better suited to simulate interventional data.

Robotics Performing robotic learning on physical hard-
ware is often not feasible due to: (i) the large number of
training samples that are required, and (i) potential damage
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Figure 9. Domain randomization histopathology, taken from Tellez
et al. (2019)

to the hardware if the learning relies on random exploration.
Therefore, learning in a physics simulator is of great interest.
While learning in a simulator is cheap and safe, we are fac-
ing a new problem, namely, how to overcome the so-called
reality gap, i.e., the differences between simulation and the
real world. In Tobin et al. (2017) they focus on a robotic
manipulation task that involves a robotic arm and eight 3D
objects that are placed on a table. In this scenario, a neu-
ral network is used to detect the location of an object. To
be able to generalize from the simulation to the real world,
Tobin et al. (2017) apply a variety of data augmentation tech-
niques to the simulator, e.g., randomization of position and
texture of all objects on the table, textures of the table, floor,
skybox, and robot, and the addition of random noise. We
argue that there exists a hidden confounder that introduces
a spurious correlation between, e.g., the lighting conditions
and the location of the objects on the table. By applying
heavy data augmentation during the training process they
are able to generalize to unseen lighting conditions in the
real world.

W

Figure 10. Domain randomization in robotics, taken from Tobin
et al. (2017)



