
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning
(Appendix)

A. Derivations and additional details
A.1. Laplace approximation to the marginal likelihood

We briefly derive the Laplace approximation to the marginal likelihood and discuss the additional correction term that would
arise in online estimation. We derive the local Laplace approximation at an arbitrary point θ∗ similar to the standard Laplace
approximation by a local quadratic approximation. Recall the Hessian Hθ = −∇2

θθ log p(D, θ|M) and define the gradient
gθ = −∇θ log p(D, θ|M) of the MAP objective in Eq. 6. A second-order Taylor approximation around θ∗ to the log joint
distribution is then given by

log p(D,θ|M) ≈ log p(D,θ∗|M)− (θ − θ∗)
Tgθ∗ − 1

2 (θ − θ∗)
THθ∗(θ − θ∗). (A.1)

In the standard Laplace approximation, the second term disappears due to gθ∗ = 0. We compute the Laplace approximation
to the marginal likelihood by solving the integral in Eq. 1 using the above approximation to the log joint:

p(D|M) =

∫
p(D,θ|M) dθ

≈
∫

exp
[
log p(D,θ∗|M)− (θ − θ∗)

Tgθ∗ − 1
2 (θ − θ∗)

THθ∗(θ − θ∗)
]
dθ

= p(D,θ∗|M)

∫
exp

[
−(θ − θ∗)

Tgθ∗ − 1
2 (θ − θ∗)

THθ∗(θ − θ∗)
]
dθ

= p(D,θ∗|M)

∫
exp

[
− 1

2 (θ − θ∗ + H−1θ∗
gθ∗)

THθ∗(θ − θ∗ + H−1θ∗
gθ∗) +

1
2gT

θ∗H
−1
θ∗

gθ∗

]
dθ

= p(D,θ∗|M) exp(12gT
θ∗H

−1
θ∗

gθ∗)

∫
exp

[
− 1

2 (θ − θ∗ + H−1θ∗
gθ∗)

THθ∗(θ − θ∗ + H−1θ∗
gθ∗)

]
dθ

= p(D,θ∗|M) exp(12gT
θ∗H

−1
θ∗

gθ∗)(2π)
P
2 |Hθ∗ |

− 1
2 .

To obtain this result, we first complete the square inside the exponent:

−(θ − θ∗)
Tgθ∗ − 1

2 (θ − θ∗)
THθ∗(θ − θ∗) = −

[
(θ − θ∗)

Tgθ∗ +
1
2 (θ − θ∗)

THθ∗(θ − θ∗)
]

(A.2)

= −
[
1
2 (θ − θ∗ + H−1θ∗

gθ∗)
THθ∗(θ − θ∗ + H−1θ∗

gθ∗)− 1
2gT

θ∗H
−1
θ∗

gθ∗

]
.

The last step is to solve the Gaussian integral which gives the remaining factors (2π)
P
2 |Hθ∗ |

− 1
2 . Taking the log, we

obtain the log marginal likelihood approximation presented in Eq. 3 with an additional correction term 1
2gT

θ∗
H−1θ∗

gθ∗ . We
empirically found that the correction term does not help during the online algorithm.For example see Fig. 6, where the
marginal likelihood estimation remains stable during training without a correction term. However, the correction term could
be computed as efficiently as the determinants we require for our algorithm. We believe the reason for its worse performance
is due to an undesired change of the neural network parameter θ∗ to θ∗ + H−1θ∗

gθ∗ . The parameter change is due to the
integration over θ of Eq. A.2, which yields a local Laplace approximation to the posterior with mean µ = θ∗ + H−1θ∗

gθ∗ .
This parameter update resembles a full step of Newton’s method and does typically lead to divergence (Mascarenhas, 2014),
except, for example, in linear least squares. We therefore ignore the correction term and treat the current parameter as θ∗. It
is common to assume the gradient is zero, i.e., gθ∗ = 0, when using the Laplace approximation in deep learning (Ritter
et al., 2018; Kristiadi et al., 2020). We follow this simplification with our online approximation.

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

A.2. Efficient determinant computation

We can make the computation of the log determinant more efficient using Woodbury’s identity and the same idea applies
to the correction term in the local Laplace approximation. The local Laplace approximation relies on terms that involve
expensive computations with the Hessian Hθ which we approximate either by the GGN or EF. That is, we have either
H ≈ JT

θLθJθ + Pθ (GGN) or H ≈ GT
θGθ + Pθ (EF). The results for the determinant are already presented in Eq. 8 and a

proof can be found in the literature, e.g., see Theorem 18.1.1 by Harville (1998). For the correction term, we can similarly
shift the computational complexity from the number of parameters to the number of data points. This can be achieved by
standard application of Woodbury’s matrix identity; see for example Theorem 18.2.8 by Harville (1998).

A.3. Kronecker-factored Laplace-GGN without damping

Kronecker-factored Laplace typically uses damping to combine a Gaussian prior with the Hessian approximation (Ritter
et al., 2018). When using damping, the log likelihood Hessian and log prior Hessian are not added but also multiplied,
which distorts the Laplace approximation. In particular because we optimize the prior parameters, such a distortion is likely
to be problematic. We will first discuss damping and how we can compute the log determinant efficiently without damping,
before presenting ablation results on image classification which suggest that damping should be avoided in this context.

Kronecker-factored Laplace approximates the GGN using two Kronecker factors, i.e., we have [JT
θLθJθ]l ≈ Ql ⊗Wl

where l denotes the index of a single layer. Ql is quadratic in the number of neurons of the l-th layer while Wl is quadratic
in the number of neurons of the previous layer (Botev et al., 2017). We assume an isotropic prior for the corresponding layer
with [Pθ]l = p

(l)
θ Il. Then, the Laplace approximation with damping yields

[HGGN
θ]l ≈ Ql ⊗Wl + p

(l)
θ Il ≈ (Ql +

√
p
(l)
θ I)⊗ (Wl +

√
p
(l)
θ I), (A.3)

where I are of matching size. Clearly, the prior p(l)θ is now multiplied by the Kronecker factors and the update is not
purely additive anymore. However, it is equally efficient to compute the determinant of the Kronecker approximation
without damping. We use the eigendecomposition of Ql ⊗Wl which can be written as Ml(diag(q

(l))⊗ diag(w(l)))MT
l ,

where Ml is the eigenbase of the Kronecker product and q(l) and w(l) are vectors of eigenvalues of Ql and Wl as defined
before in Sec. 3. The diag(·) operator turns a vector into a diagonal matrix with the corresponding vector as diagonal. The
determinant for the GGN of one layer can be computed using properties of the Kronecker product and determinant:

|[HGGN
θ]l| ≈ |Ql ⊗Wl + p

(l)
θ Il| = |Ml(diag(q

(l))⊗ diag(w(l)))MT
l + p

(l)
θ Il|

= |Ml(diag(q
(l))⊗ diag(w(l)) + p

(l)
θ Il)M

T
l | = |diag(q(l))⊗ diag(w(l)) + p

(l)
θ |

=
∏
ij

q
(l)
i w

(l)
j + p

(l)
θ .

To compute the final term, we only need the eigenvalues of both Kronecker factors and perform an outer product over the
number of input and output neurons. The entire determinant is simply a product over the l layers due to the block-diagonal
structure. The expression is given in Eq. 9.

We empirically compare the proposed version to the damped version and find that it is indeed necessary to use the exact
version. The performance of the online algorithm using a damped Kronecker-factored Laplace-GGN yields significantly
worse results with negative likelihoods up to two times worse. The accuracy suffers as well with a decrease of up to 4%
points. Table A1 contains the results for the same experimental setup as described in Sec. 4 and Table 2.

KFAC KFAC damped
Dataset Model accuracy logLik MargLik accuracy logLik MargLik

MNIST MLP 98.38±0.04 −0.053±0.002 −0.158±0.001 95.89±0.11 −0.141±0.004 −2.199±0.008

MNIST CNN 99.46±0.01 −0.016±0.001 −0.064±0.000 98.78±0.09 −0.040±0.002 −1.022±0.017

FMNIST MLP 89.83±0.14 −0.305±0.006 −0.468±0.002 84.12±0.23 −0.444±0.008 −2.022±0.026

FMNIST CNN 92.06±0.10 −0.233±0.004 −0.401±0.001 89.54±0.10 −0.296±0.003 −2.424±0.013

CIFAR10 CNN 80.46±0.10 −0.644±0.010 −0.967±0.003 76.38±0.50 −0.690±0.014 −4.232±0.068

Table A1: Ablation of Kronecker-factored Laplace without and with damping: avoiding commonly used damping improves
the performance across all experiments when using the online algorithm. Damping should be avoided in this context.

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

B. Computational details
We discuss the computational considerations necessary to apply the algorithm practically, i.e., to different hyperparameters,
with different GGN and EF approximations, and number of hyperparameter updates K. In particular, we discuss the cost of
line 6 for estimating the marginal likelihood and lines 7 to 10 for updating the hyperparameters and the marginal likelihood
in Alg. 1 for individual Laplace-GGN and EF approximations and choices of differentiable hyperparameters. As detailed
in Sec. 3.4, the other parameter settings need to be chosen to enable convergence of the marginal likelihood: the step size
γ can be set by monitoring the convergence of the marginal likelihood and hyperparameters, and the update frequency F
and number of burn-in epochs B should be set to ensure enough steps for convergence while keeping the computational
overhead low. The settings F and B simply impact the number of marginal likelihood estimations.

Recall the neural network model introduced in Sec. 2: we have likelihood p(D|θ,M) and prior p(θ|M), where the model
M consists of hyperparameters that are differentiable in the marginal likelihood and discrete choices. Here, we entirely
focus on the hyperparameters that are differentiable in the marginal likelihood. For both regression and classification, we
work with an isotropic Gaussian prior per layer 2, i.e., p(θ|M) =

∏
lN (θl|0, δ−1l Il) where l denotes the layer or group

of parameters; we consider the weights and biases of each layer as individual parameter groups l. Hence, the Hessian
of the log prior, Pθ, is diagonal but with blocks of isotropic diagonals per layer l. For regression, we use a Gaussian
likelihood and optimize the observation noise variance σ2 using the marginal likelihood, i.e., we have the likelihood
p(D|θ,M) = N (y|f(x;θ), σ2). For classification, we only optimize the softmax temperature T in the illustrative example
(Fig. 3) and have likelihood p(D|θ,M) = Categorical(y|softmax(f(x;θ)/T)) since it permits K cheap iterations without
requiring re-computing expensive quantities.

We use either the GGN or EF approximation to the marginal likelihood in Eq. 3 at the current neural network parameters θ∗:

log q(D|M) = log p(D|θ∗,M) + log p(θ∗|M) + P
2 log 2π − 1

2 log
∣∣∣HGGN/EF

θ∗

∣∣∣ . (B.1)

The first term, the log likelihood, can be computed based on the neural network functions f(x;θ∗) over the entire dataset in
O(NP) but an unbiased estimator in O(MP) with minibatch M is also possible3. If we update hyperparameters of the log
likelihood, for example, in regression, we further store the functions. The second term, the log prior, can be computed based
on the current neural network parameters θ∗ in O(P) for our choice of prior. As outlined in Sec. 3, the major problem,
and the only part in which the approximations differ, is to compute the GGN and EF log determinant. In the following, we
discuss the cost of one determinant computation with the different approximations and the follow-up cost of K updates and
hyperparameter steps. For classification, we deal withM∂ = {δl} and for regression we additionally have σ2 ∈M∂ .

B.1. Full Laplace-GGN

For the full Laplace-GGN, we need to pass through the training data to compute all Jacobians Jθ and log-likelihood Hessians
Lθ with complexityO(NPC) andO(NC2), respectively. We can then compute the log determinant in two ways depending
on N,P,C. If P < NC, we use the standard method: we first compute the P × P matrix in Eq. 4 in O(P 2NC + PNC2).
Computing the log determinant of the resulting matrix is then O(P 3). Otherwise, i.e., if NC < P , we use the proposed
formulation in Sec. 3, Eq. 8: in this case the computation is O(N2C2P) for construction and O(N3C3) to compute the
determinant. Using multiple iterations are in general not cheaper unless we have an isotropic prior and Pθ ∝ IP , which is
common in Bayesian deep learning. In this case, we can start with an initial eigendecomposition in O(P 3) or O(N3C3) but
then update K times in O(P) and O(N), respectively.

B.2. Full Laplace-EF

In comparison to the full Laplace-GGN, the EF-based alternative scales independently of the number of outputs C and
therefore typically cheaper and we can trade off between P and N directly. We first need to compute (and store) the
individual gradients in O(NP). If P < N , we use the standard version by computing Eq. 5 in O(P 2N) and then the
determinant in O(P 3). If N < P , we use the matrix determinant equivalence in Eq. 8 to reduce computation to O(N2P)
and determinant computation to O(N3). In line with the full Laplace-GGN, multiple iterations are in general not cheaper
unless Pθ ∝ IP in which case we can use an initial eigendecomposition of the same complexity and iterate cheaply inO(P)
or O(N).

2Except for Fig. 4 where we compare against a grid-search which is expensive already for two dimensions and high resolution.
3We assume a standard architecture that allows a forward pass in O(P)

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

3 layers, 5221 params
MargLik = −88

1 layer, 151 params
MargLik = −110

(a) Bayesian predictive for regression example.

0

.5

1

p
(y
∗|
X
∗,
D

)

our method
MargLik = −117

overfit
MargLik = −165

(b) Bayesian predictive for classification example.

Figure C.1: Optional Bayesian posterior predictives (Eq. 11) as alternative to the MAP predictives (Eq. 12) displayed in
Fig. 1 and Fig. 3. (a) Posterior predictive for regression example with noise variance () and neural network model
uncertainty (). Marginal likelihood training results in Bayesian predictives with a reasonable split into both uncertainties
which is hard to obtain by other means. (b) The posterior predictive for classification example yields a predictive that is
certain in the data region and less certain away from it when using marginal likelihood optimization.

B.3. Kronecker-factored Laplace-GGN or EF

The Kronecker-factored Laplace approximations are not only cheaper to compute and store but are also significantly more
efficient in updating per-layer hyperparameters due to the per-layer block-diagonal approximation. During the pass through
the training data, the Kronecker factors are computed and stored (Botev et al., 2017) which isO(NP+N(D2+C2+

∑
lH

2
l))

where Hl is the size of the l-th hidden layer. That is because each Kronecker factor is quadratic in the number of neurons of
the input or output of some layer. We compute the eigendecomposition of all Kronecker factors in O(D3C3 +

∑
lH

3
l) but

only keep the eigenvalues necessary to compute Eq. 9. Updating the per-layer prior precision and observation noise variance
are only O(P) due to Eq. 9 and many hyperparameter updates help amortize the up-front cost. We compute the Kronecker
factors using the backpack package by Dangel et al. (2019).

B.4. Diagonal Laplace-GGN

The diagonal Laplace-GGN requires backpropagation of C × C matrices Λ(y; f) (Dangel et al., 2019) and is therefore
not as fast as the diagonal EF. The determinant computation, however, is only O(P). Once the diagonal GGN is obtained,
hyperparameter updates are as cheap as in the Kronecker-factored case in O(P) including updates to the determinant.
Empirically, the diagonal Laplace-GGN is not significantly faster than the Kronecker-factored Laplace but it makes a different
approximation and therefore might under some circumstances work better (see App. C.4).

B.5. Diagonal Laplace-EF

The diagonal Laplace-EF is cheaper and simpler to compute than the diagonal Laplace-GGN while maintaining the same
hyperparameter update complexity of O(P). To compute the EF while passing through the training data, we only need to
compute individual gradients, square them element-wise, and sum them up. Hence, this is as cheap as a pass through the
training data for neural network parameters (roughly O(NP)). One hyperparameter update is then O(P).

C. Experimental details and additional results
C.1. Illustrative examples

We complement the results of Sec. 4.1 with Bayesian predictives obtained after running our online algorithm.

Bayesian regression predictive. For a Gaussian likelihood, the Bayesian predictive (cf. Eq. 11) has a closed-form and
we do not need samples (Foong et al., 2019; Khan et al., 2019; Immer et al., 2021). We additionally show the Bayesian
predictive and its decomposition in epistemic and aleatoric uncertainty for the illustrative regression example in Fig. 3. The
aleatoric, irreducible, uncertainty is the noise in the data. The epistemic uncertainty is model-dependent and quantifies how
certain a model is about its prediction. In the regression example, the aleatoric uncertainty is the observation noise σ2 that
we learn online and the epistemic uncertainty is the model uncertainty Var[f] which we optimize implicitly via the prior.
The variance of the posterior predictive is then Var[f] + σ2 and the standard deviation is not additive. In Fig. C.1a, we split

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

cross-validation MargLik optimization
Dataset MAP VI Laplace GGN-Bayes GGN-MAP EF-Bayes EF-MAP KFAC-Bayes KFAC-MAP

boston 2.71±0.10 2.58±0.03 2.57±0.05 2.68±0.12 2.69±0.13 2.60±0.09 2.62±0.12 2.70±0.08 2.70±0.09

concrete 3.17±0.04 3.17±0.01 3.05±0.04 3.06±0.05 3.06±0.05 3.07±0.04 3.07±0.04 3.13±0.06 3.13±0.06

energy 1.02±0.05 1.42±0.01 0.82±0.03 0.54±0.11 0.55±0.11 0.78±0.13 0.73±0.15 0.54±0.02 0.53±0.02

kin8nm −1.09±0.01 −0.87±0.00 −1.23±0.01 −1.14±0.01 −1.14±0.01 −1.13±0.01 −1.14±0.01 −1.13±0.01 −1.13±0.01

naval −5.75±0.05 −3.82±0.02 −6.40±0.06 −6.61±0.03 −6.93±0.03 −6.21±0.05 −6.92±0.04 −6.32±0.05 −6.88±0.05

power 2.82±0.01 2.86±0.01 2.83±0.01 2.78±0.02 2.78±0.02 2.78±0.01 2.78±0.01 2.78±0.02 2.78±0.02

wine 0.98±0.02 0.96±0.01 0.97±0.02 0.94±0.02 0.93±0.02 0.94±0.01 0.93±0.02 0.94±0.02 0.94±0.02

yacht 2.30±0.02 1.67±0.01 1.01±0.05 3.51±0.62 5.89±1.25 1.29±0.17 2.43±0.61 1.48±0.07 1.48±0.07

Table C2: Additional performance of the Bayesian posterior predictive on the UCI regression benchmark complementing
Table 1. The posterior predictive does not significantly improve the predictive except on the yacht data set which is very
small and might require better uncertainty quantification.

Dataset GGN-Bayes GGN-MAP diag-GGN-Bayes diag-GGN-MAP diag-EF-Bayes diag-EF-MAP

boston 2.68±0.12 2.69±0.13 2.84±0.05 2.84±0.05 2.90±0.03 2.89±0.03

concrete 3.06±0.05 3.06±0.05 3.13±0.04 3.13±0.04 3.11±0.02 3.11±0.02

energy 0.54±0.11 0.55±0.11 0.70±0.03 0.69±0.03 0.88±0.05 0.85±0.05

kin8nm −1.14±0.01 −1.14±0.01 −1.14±0.01 −1.13±0.01 −1.13±0.01 −1.13±0.01

naval −6.61±0.03 −6.93±0.03 −6.17±0.05 −6.91±0.08 −5.83±0.06 −6.95±0.04

power 2.78±0.02 2.78±0.02 2.79±0.02 2.79±0.02 2.79±0.01 2.79±0.01

wine 0.94±0.02 0.93±0.02 0.96±0.01 0.95±0.02 0.98±0.01 0.96±0.02

yacht 3.51±0.62 5.89±1.25 2.91±0.04 2.90±0.04 3.16±0.02 3.15±0.02

Table C3: Performance on UCI regression tasks of the diagonal EF and GGN online marginal likelihood optimization method
compared to the full GGN which performs best. The diagonal approximation slightly decreases the performance but is not
significantly worse. In comparison to a cross-validated MAP, the cheap diagonal approximations still perform quite well (cf.
first column in Table C2).

up the total predictive variance approximately so that the observation noise σ is depicted exactly and the model uncertainty
is just the remaining standard deviation.

Bayesian classification predictive. Fig. C.1b depicts the Bayesian predictives corresponding to the schematic figure
Fig. 3. We use S = 1000 samples to estimate the posterior predictive in Eq. 11. The samples are on the output of the
network and are therefore cheap (Immer et al., 2021). The Bayesian predictive of the model with a better marginal likelihood
has increasing uncertainty away from the data as often desired (Foong et al., 2019). The parameters found by our online
algorithm give rise to a Bayesian predictive without further tuning of parameters after training which is required when using
the Laplace approximation (Ritter et al., 2018; Kristiadi et al., 2020). Alternatively, one can run a grid-search to find suitable
parameters (Khan et al., 2019; Immer et al., 2021). Our algorithm is more principled than changing the prior after training
and significantly more efficient than a grid-search.

10−3 10−2 10−1 100 101 102

prior precision δ

0.5

1.0

te
st

N
L

L

Figure C.2: Test negative log likelihood versus prior precision
δ corresponding to Fig. 4. The proposed method reliably
converges to the optimal predictive performance.

Regression grid search. In Fig. 4, we compared a grid-
search over a single prior parameter with the online opti-
mization algorithm and show it converges to the optimum
marginal likelihood with different initializations. Here,
we additionally show in Fig. C.2 that the best marginal
likelihood also corresponds to the best negative log likeli-
hood (nll) on the held-out test set. The online optimization
algorithm reliably finds the optimum without access to
the test data.

C.2. UCI regression

We complement the results presented in Sec. 4.2 and in Table 1 with the performance of the optional Bayesian posterior
predictive and of the diagonal determinant approximations. We always report the performance of the posterior predictive
using the posterior of the same structure as the determinant approximation during marginal likelihood optimization, e.g.,
if we use the full EF during optimization, we use the Laplace-EF posterior and make predictions with it using Eq. 11. In
Table C2, we report the performance of the additional posterior predictive for the full GGN, EF, and KFAC determinant
computations and their corresponding posterior predictive. The MAP predictive overall seems to perform better except on
the small yacht data set. Table C3 further shows the performance when using the diagonal GGN or EF approximations.

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

cross-validation MargLik optimization
Dataset MAP VI Laplace GGN-Bayes GGN-MAP EF-Bayes EF-MAP KFAC-Bayes KFAC-MAP

australian 0.32±0.01 0.32±0.01 0.32±0.01 0.31±0.01 0.31±0.01 0.34±0.01 0.31±0.01 0.32±0.01 0.31±0.01

cancer 0.13±0.03 0.17±0.05 0.10±0.01 0.10±0.01 0.09±0.01 0.25±0.01 0.10±0.02 0.10±0.01 0.09±0.01

ionosphere 0.28±0.02 0.23±0.02 0.28±0.01 0.29±0.02 0.26±0.03 0.42±0.01 0.28±0.04 0.31±0.02 0.29±0.02

glass 0.89±0.03 1.07±0.07 0.88±0.01 0.92±0.02 0.91±0.05 1.37±0.02 1.03±0.10 0.98±0.02 0.98±0.04

vehicle 0.39±0.01 0.37±0.01 0.46±0.00 0.47±0.01 0.41±0.01 0.75±0.01 0.38±0.01 0.49±0.00 0.45±0.01

waveform 0.36±0.00 0.35±0.00 0.37±0.00 0.35±0.01 0.34±0.01 0.43±0.01 0.36±0.02 0.35±0.01 0.34±0.01

digits 0.08±0.00 0.14±0.01 0.26±0.00 0.31±0.01 0.13±0.01 1.81±0.01 0.07±0.01 0.30±0.01 0.16±0.01

satellite 0.23±0.00 0.28±0.00 0.25±0.00 0.25±0.00 0.22±0.01 0.68±0.01 0.24±0.01 0.25±0.00 0.24±0.00

(a) Negative test log likelihood (lower better)

cross-validation MargLik optimization
Dataset MAP VI Laplace GGN-Bayes GGN-MAP EF-Bayes EF-MAP KFAC-Bayes KFAC-MAP

cancer 96.8±0.4 96.4±0.4 97.0±0.3 96.8±0.4 96.9±0.4 96.7±0.5 96.7±0.5 96.7±0.5 96.7±0.5

ionosphere 90.6±0.7 92.6±0.7 90.6±0.6 90.0±1.3 90.0±1.3 90.9±1.2 91.5±1.0 89.1±1.3 88.9±1.4

glass 67.2±1.4 63.4±1.4 65.3±1.4 64.4±2.7 64.1±2.8 65.9±2.7 67.8±2.2 63.7±2.0 64.7±1.9

vehicle 83.2±0.3 81.4±0.4 80.9±0.3 81.7±0.9 82.0±0.9 82.1±0.6 83.2±0.5 80.3±0.8 80.3±0.8

waveform 85.7±0.3 85.6±0.3 85.7±0.3 85.9±0.6 85.9±0.5 84.7±0.8 84.3±0.8 86.0±0.5 85.9±0.6

digits 98.1±0.1 97.3±0.1 97.1±0.1 97.3±0.2 97.4±0.2 86.9±0.8 98.1±0.2 97.0±0.4 97.1±0.3

satellite 91.6±0.1 89.9±0.1 91.3±0.1 91.6±0.2 91.6±0.3 91.1±0.4 91.5±0.3 91.0±0.2 91.0±0.2

(b) Test accuracy (higher better)

cross-validation MargLik optimization
Dataset MAP VI Laplace GGN-Bayes GGN-MAP EF-Bayes EF-MAP KFAC-Bayes KFAC-MAP

australian 0.06±0.01 0.06±0.00 0.07±0.01 0.07±0.01 0.05±0.01 0.09±0.01 0.06±0.00 0.06±0.01 0.06±0.01

cancer 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.18±0.01 0.03±0.00 0.03±0.00 0.03±0.00

ionosphere 0.08±0.00 0.07±0.00 0.11±0.00 0.10±0.01 0.08±0.01 0.22±0.01 0.06±0.01 0.10±0.01 0.08±0.01

glass 0.17±0.01 0.17±0.01 0.19±0.01 0.18±0.02 0.17±0.01 0.36±0.02 0.18±0.02 0.19±0.02 0.18±0.01

vehicle 0.06±0.00 0.07±0.00 0.10±0.00 0.12±0.01 0.07±0.01 0.30±0.01 0.06±0.01 0.12±0.01 0.08±0.01

waveform 0.05±0.00 0.04±0.00 0.06±0.00 0.07±0.00 0.05±0.01 0.12±0.01 0.05±0.00 0.07±0.00 0.05±0.00

digits 0.01±0.00 0.03±0.00 0.17±0.00 0.20±0.00 0.06±0.00 0.70±0.01 0.01±0.00 0.19±0.00 0.08±0.00

satellite 0.02±0.00 0.02±0.00 0.04±0.00 0.05±0.00 0.02±0.00 0.36±0.00 0.02±0.00 0.05±0.00 0.03±0.00

(c) Test expected calibration error (lower better)

Dataset GGN-Bayes GGN-MAP diag-GGN-Bayes diag-GGN-MAP diag-EF-Bayes diag-EF-MAP

australian 0.31±0.01 0.31±0.01 0.35±0.01 0.33±0.01 0.34±0.01 0.32±0.01

cancer 0.10±0.01 0.09±0.01 0.12±0.01 0.09±0.01 0.16±0.01 0.09±0.01

ionosphere 0.29±0.02 0.26±0.03 0.38±0.01 0.35±0.01 0.37±0.01 0.31±0.02

glass 0.92±0.02 0.91±0.05 1.09±0.01 1.06±0.02 1.05±0.02 0.99±0.03

vehicle 0.47±0.01 0.41±0.01 0.75±0.01 0.68±0.01 0.71±0.01 0.59±0.01

waveform 0.35±0.01 0.34±0.01 0.41±0.01 0.38±0.01 0.40±0.01 0.37±0.01

digits 0.31±0.01 0.13±0.01 0.43±0.00 0.23±0.01 0.97±0.02 0.09±0.01

satellite 0.25±0.00 0.22±0.01 0.34±0.00 0.30±0.00 0.35±0.00 0.29±0.00

(d) Negative test log likelihood (lower better) of diag-GGN and diag-EF compared to full GGN.

Table C4: Performance of the proposed online marginal likelihood optimization method compared to cross-validation
on UCI classification benchmark using a ReLU network with 50 units and one hidden layer. The marginal likelihood
optimization leads to comparable performance as cross-validation and the MAP typically performs better than Laplace or
VI. The full EF approximation performs best, followed by the GGN and KFAC approximations. Table C4d shows that the
diagonal approximations perform worse, especially whem combined with a Bayesian predictive, but are still on a similar
level as VI with cross-validation. Results within one standard error are in bold.

C.3. UCI classification

We present additional results on small-scale UCI classification data sets in Table C4. The setup is identical to that in the
regression case but we use a different train/validation/test split of 70%/15%/15% here. We use the same architecture as in
the regression case, a single hidden layer with 50 units and ReLU activation and train for 10, 000 iterations until convergence
with all methods. For the grid-search we try 10 different scalar prior precision values δ and select the best parameter on the
validation set before re-training. We compare the resulting cross-validated performance to our online algorithm with full
GGN, EF, and KFAC approximation to the determinant in Table C4. All methods perform quite well in this benchmark and
there are no obvious differences in the negative log likelihood (nll) in Table C4a. However, the cross-validated MAP and full
EF-MAP perform better than most other methods in terms of accuracy and expected calibration error.

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

C.4. Image Classification: online algorithm compared to cross-validation

We provide additional details and the following additional results on the image classification experiments presented in
Sec. 4.3: the standard errors for Table 2, the performance of the diagonal GGN, and a comparison of different ResNet depths
on CIFAR-10.

Architectures. We compare a fully-connected, convolutional, and residual neural network in our experiments. The
fully-connected network has four hidden layers with decreasing hidden layer sizes 1024, 512, 256, 128. For MNIST and
FMNIST, this architecture has P = 1, 494, 154 parameters. As a standard convolutional neural network, we use a network
of three convolutional layers followed by three fully-connected layers. This network is used in standard benchmarks, for
example the suite by Schneider et al. (2018). On MNIST and FMNIST, this architecture has P = 892, 010 parameters
and on CIFAR-10 it has P = 895, 210 parameters due to the additional color channels in the input. On CIFAR-10, we
additionally use a ResNet-20 architecture with P = 268, 393 parameters using the Fixup parameterization (Zhang et al.,
2019b)4. We find that increasing the depth of the ResNet up to a ResNet-110 did not improve the performance and marginal
likelihood significantly as we show below in Table C8. There, we additionally use ResNets with depths 32, 44, 56, 110
which have P = 461, 959, P = 655, 525, P = 849, 091, and P = 1, 720, 138 parameters, respectively.

Diagonal GGN and standard errors. Table C5 contains the additional standard errors that were left out in the main text
in Table 2 due to space constraints. In Table C6, we compare the performance of our method using the diagonal EF and the
diagonal GGN. The latter has been left out in the image classification benchmark in the main text. The table shows that the
EF works consistently better. Note that the EF is also significantly cheaper to compute and easier to implement than the other
methods.

cross-validation MargLik optimization
KFAC diagonal EF

Dataset Model accuracy logLik accuracy logLik MargLik accuracy logLik MargLik

MNIST MLP 98.22±0.13 −0.061±0.004 98.38±0.04 −0.053±0.002 −0.158±0.001 97.05±0.09 −0.095±0.002 −0.553±0.021

CNN 99.40±0.03 −0.017±0.001 9.46±0.01 −0.016±0.001 −0.064±0.000 9.45±0.03 −0.019±0.001 −0.134±0.001

FMNIST MLP 88.09±0.10 −0.347±0.005 89.83±0.14 −0.305±0.006 −0.468±0.002 85.72±0.09 −0.400±0.003 −0.756±0.005

CNN 91.39±0.11 −0.258±0.004 92.06±0.10 −0.233±0.004 −0.401±0.001 91.69±0.15 −0.233±0.003 −0.570±0.003

CIFAR10 CNN 77.41±0.06 −0.680±0.004 80.46±0.10 −0.644±0.010 −0.967±0.003 80.17±0.29 −0.600±0.010 −1.359±0.010

ResNet 83.73±0.28 −1.060±0.022 86.11±0.39 −0.595±0.017 −0.717±0.003 85.82±0.13 −0.464±0.007 −0.876±0.012

Table C5: Standard errors for Table 2 in the main text. Best performances within one standard error per dataset in bold.

diagonal EF diagonal GGN
Dataset Model accuracy logLik MargLik accuracy logLik MargLik

MNIST MLP 97.05±0.09 −0.095±0.002 −0.553±0.021 96.86±0.04 −0.102±0.002 −0.617±0.014

CNN 99.45±0.03 −0.019±0.001 −0.134±0.001 99.35±0.02 −0.021±0.001 −0.193±0.001

FMNIST MLP 85.72±0.09 −0.400±0.003 −0.756±0.005 85.36±0.21 −0.410±0.006 −0.844±0.016

CNN 91.69±0.15 −0.233±0.003 −0.570±0.003 91.69±0.09 −0.237±0.003 −0.641±0.002

CIFAR10 CNN 80.17±0.29 −0.600±0.010 −1.359±0.010 79.98±0.46 −0.587±0.013 −1.568±0.010

Table C6: Comparison of diagonal GGN and EF on the image classification benchmark. The diagonal EF as presented in
Table 2 performs slightly better on all datasets and is cheaper to compute.

KFAC results for CIFAR-10 with data augmentation. We presented the performance of the marginal likelihood opti-
mization using diagonal EF on CIFAR-10 with and without data augmentation (DA) in Fig. 5. In Table C7, we provide the
results in terms of average performance over five random seeds and the performance of the KFAC GGN variant. On this
benchmark, we see that the cheaper diagonal EF performs typically slightly better while being more efficient than the KFAC
variant.

Deeper ResNets. In the main text, we only presented results for a ResNet-20. That is because we found that a depth
over 20 for CIFAR-10 did not improve the marginal likelihood or performance noticeably. Here, we briefly present the
corresponding results with and without data augmentation. Interestingly, the optimized marginal likelihood is largely
unaffected by the almost 10-fold increase of parameters. In Table C8, we show the performances, marginal likelihoods, and

4Their implementation is publicly available with the corresponding standard settings on CIFAR-10: https://github.com/
hongyi-zhang/Fixup

https://github.com/hongyi-zhang/Fixup
https://github.com/hongyi-zhang/Fixup

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

Dataset Method accuracy logLik ECE OOD-AUC

CIFAR-10 baseline 83.73±0.28 −1.06±0.02 0.127±0.002 0.814±0.007

CIFAR-10 MargLik diag EF 85.82±0.13 −0.46±0.01 0.048±0.002 0.901±0.004

CIFAR-10 MargLik KFAC GGN 86.11±0.39 −0.60±0.02 0.085±0.003 0.882±0.008

CIFAR-10 + DA baseline 91.38±0.15 −0.58±0.01 0.069±0.001 0.897±0.003

CIFAR-10 + DA MargLik diag EF 91.18±0.20 −0.38±0.02 0.054±0.003 0.900±0.003

CIFAR-10 + DA MargLik KFAC GGN 91.26±0.12 −0.54±0.02 0.068±0.001 0.896±0.006

Table C7: Results displayed in Fig. 5 with additional results for the marginal likelihood training based on KFAC GGN.

parameters with standard errors over five initializations. Without data augmentation, the smaller models are preferred. With
data augmentation, the medium-sized models fare best in terms of marginal likelihood.

no DA with DA
Model P accuracy logLik MargLik accuracy logLik MargLik

ResNet-20 268,393 85.82±0.13 −0.46±0.01 −0.876±0.012 91.18±0.20 −0.375±0.020 −0.633±0.002

ResNet-32 461,959 85.66±0.29 −0.46±0.01 −0.898±0.025 91.63±0.22 −0.355±0.017 −0.623±0.008

ResNet-44 655,525 85.63±0.24 −0.45±0.01 −0.904±0.014 91.78±0.11 −0.336±0.007 −0.622±0.009

ResNet-56 849,091 85.82±0.17 −0.44±0.01 −0.932±0.010 91.62±0.15 −0.344±0.012 −0.625±0.013

ResNet-110 1,720,138 86.11±0.24 −0.44±0.01 −0.937±0.009 91.85±0.13 −0.323±0.009 −0.638±0.009

Table C8: ResNets of various depths trained on CIFAR-10 and their sizes, performances, and marginal likelihoods with and
without data augmentation (DA). Without data augmentation, the smallest model achieves the highest marginal likelihood
and the performances of all models are very close to each other. With data augmentation, the marginal likelihoods overlap in
terms of their standard errors but a ResNet-44 seems best. Notably, the increase of the number of parameters P does not
significantly impact the marginal likelihood.

C.5. Image Classification: architecture selection using the marginal likelihood

We presented results on architecture selection using MargLik in Sec. 4.3, Fig. 2, and Fig. 7. Fig. 7 is the upper right of
Fig. 2 and only shows the ResNets colored by width and depth. Here, we describe details on the experimental setup and
architectures, and list more detailed results.

Model training. All models where trained using Alg. 1 for 250 epochs, frequency F = 5, K = 100 hyperparameter
updates with learning rate γ = 1, and no burnin B = 0. We use the ResNet learning rate decay as explained in Sec. 4 for all
models and train with SGD with initial learning rate of 0.01 and a batch-size of 128.

Architectures. On FMNIST we compare MLPs and CNNs, and on CIFAR we compare CNNs and ResNets. For the
MLPs, we use 3 different widths 50, 200, 800 and depth from 1 to 5. The CNNs consist of up to 5 blocks of 3 × 3
convolutions, followed by a ReLU operation, and MaxPooling, except in the first layer. Instead of BatchNorm, we use the
fixup parameterization (Zhang et al., 2019b) after every convolutional layer. For the widths, we consider widths, i.e., number
of channels, from 2 to 32 in the first convolution. Each following convolution uses 2× more channels such that after three
convolutions the number of channels is 23 = 8 times higher. The last layer is a fully-connected layer to the class logits. We
use ResNets of depths from 8 to 32 on CIFAR-10 and from 20 to 101 on CIFAR-100. On CIFAR-10, more depth does not
further increase or change the marginal likelihood, see Table C8. For the width, we vary the number of channels in the first
convolutional layer. For CIFAR-10, we consider widths from 16 to 48 and on CIFAR-10 from 32 to 64. All the architectures
on the corresponding data sets are listed with the marginal likelihood, accuracy, number of parameters, width, and depth in
Table C11 (FMNIST), Table C9 (CIFAR-10), and Table C10 (CIFAR-100).

Additional figures. The markers in the scatter plots of architectures are colored and scaled by the number of parameters
in Fig. 2. Here, we additionally show a coloring and scaling by width and depth in Fig. C.3 and Fig. C.4, respectively.
Fig. C.3 shows that width tends to increase marginal likelihood and test accuracy on CIFAR. This is in line with improved
ResNet architectures that proposed increasing the width (Zagoruyko & Komodakis, 2016). On FMNIST, the comparison
between MLPs and CNNs is not meaningful in terms of width since width on CNNs determines the number of channels
instead of hidden units. However, we can see that less wide MLPs achieve a better marginal likelihood and test accuracy.
Fig. C.4 shows that increased depth does increase the marginal likelihood but saturates much earlier than width. For example,
ResNets, which are deeper, are generally preferred over CNNs on CIFAR but the best models are not the deepest ResNets,
see also Table C9 and Table C10. On FMNIST, we see in Fig. C.4 how the depth tends to decrease marginal likelihood and
test accuracy of MLPs. Contrary to that, CNNs profit significantly from increasing the depth.

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

C.6. Robustness to algorithm hyperparameters

Alg. 1 has four different hyperparameters that need to be set. K determines how many gradient steps we take on the marginal
likelihood objective. F determines how frequently we compute the marginal likelihood and optimize it with respect to
hyperparameters. B determines for how many epochs we do not optimize the marginal likelihood, similar to a burn-in period
in MCMC algorithms. On CIFAR-10, we conduct an ablation experiment running over a grid of these hyperparameters.
Below, we make recommendations on how to apply our algorithm based on the outcomes of this experiment.

Step size γ. The step size γ only needs to be set to ensure the marginal likelihood objective does not diverge. γ does not
affect the runtime but only convergence behavior. We find that using ADAM with default learning rate of γ = 0.001 works
well but we can increase the learning rate without divergence to γ = 1 which ultimately decreases the number of steps K we
need to take every F -th epoch to observe convergence. To set γ, a practitioner only needs to monitor the marginal likelihood
or the parameters and avoid divergence or oscillation.

Frequency and number of steps. Number of steps K, frequency F , and burn-in steps B can be used to reduce the
runtime by avoiding to compute the Laplace approximation too often. B is only a mechanism to reduce the runtime in the
early training regime where the parameters of the network θ are very noisy. If affordable, B = 0 is optimal for performance
but we find that B = 50 works equivalently well. In many cases, convergence of the neural network training can even
be improved by adjusting hyperparameters early. K and F determine how many hyperparameter steps we take and how
many Laplace approximations need to be computed, respectively. Computing the Laplace approximation is expensive while
hyperparameter steps are amortized, i.e., once we computed the Laplace approximation it is cheap to do many gradient steps
K (cf. App. B). It is therefore ideal for performance to have F = 1 and compute the Laplace approximation after every
epoch and have a large number of steps K. In practice, however, we find that F between 5 and 10 is sufficient and does not
decrease performance. Further, K ≥ 100 also appears to suffice for convergence with no gain using K = 1000.

−0.5−0.7−0.9−1.1−1.3

MargLik

60

70

80

90

T
es

t
A

cc
u

ra
cy

[%
]

ResNet

CNN

0

20

40

60

CIFAR-10

−1.1−1.6−2.1−2.6−3.1

MargLik

30

40

50

60

70

ResNet

CNN 10

20

30

40

50

60

CIFAR-100

−0.4−0.5−0.6−0.7

MargLik

84

86

88

90

92

94

CNN

MLP

200

400

600

800

W
id

th

FMNIST

Figure C.3: Figure corresponds to Fig. 2 but shows markers colored and scaled by width.

−0.5−0.7−0.9−1.1−1.3

MargLik

60

70

80

90

T
es

t
A

cc
u

ra
cy

[%
]

ResNet

CNN

0

10

20

30

CIFAR-10

−1.1−1.6−2.1−2.6−3.1

MargLik

30

40

50

60

70

ResNet

CNN
20

40

60

80

100

CIFAR-100

−0.4−0.5−0.6−0.7

MargLik

84

86

88

90

92

94

CNN

MLP

1

2

3

4

5

D
ep

th

FMNIST

Figure C.4: Figure corresponds to Fig. 2 but shows markers colored and scaled by depth.

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

accuracy MargLik width depth # params model

85.01 −0.598 800 1 636,034 MLP
85.23 −0.670 800 3 1,917,650 MLP
85.24 −0.581 200 1 159,034 MLP
85.25 −0.417 2 2 566 CNN
85.35 −0.740 800 5 3,199,266 MLP
85.44 −0.637 800 2 1,276,842 MLP
85.51 −0.703 800 4 2,558,458 MLP
85.56 −0.633 200 3 239,450 MLP
85.59 −0.664 200 4 279,658 MLP
85.69 −0.610 200 2 199,242 MLP
85.78 −0.677 200 5 319,866 MLP
85.94 −0.421 4 1 748 CNN
86.27 −0.537 50 1 39,784 MLP
86.43 −0.624 50 5 50,016 MLP
86.45 −0.597 50 3 44,900 MLP
86.55 −0.608 50 4 47,458 MLP
86.81 −0.570 50 2 42,342 MLP
87.70 −0.361 2 3 864 CNN
88.05 −0.390 8 1 1428 CNN
88.24 −0.360 2 4 2074 CNN
88.28 −0.369 4 2 1166 CNN
89.05 −0.395 16 1 2788 CNN
89.42 −0.429 32 1 5508 CNN
89.78 −0.341 4 3 2296 CNN
89.81 −0.354 2 5 6756 CNN
90.71 −0.354 8 2 2798 CNN
91.10 −0.384 16 2 7790 CNN
91.15 −0.342 4 4 6978 CNN
91.15 −0.357 8 3 7320 CNN
91.54 −0.416 32 2 24,686 CNN
92.17 −0.344 4 5 25,516 CNN
92.32 −0.471 32 3 97,944 CNN
92.50 −0.376 8 4 25,858 CNN
92.55 −0.417 16 3 26,008 CNN
92.65 −0.466 32 4 393,154 CNN
93.33 −0.434 16 4 99,906 CNN
93.40 −0.436 32 5 1,573,356 CNN

Table C11: FMNIST architectures

accuracy MargLik width depth # params model

57.69 −1.311 8 1 1572 CNN
59.69 −1.229 4 2 1238 CNN
63.35 −1.180 16 1 3076 CNN
67.43 −1.096 32 1 6084 CNN
67.69 −1.036 8 2 2942 CNN
69.98 −1.081 64 1 12,100 CNN
72.02 −0.881 4 4 7050 CNN
73.07 −0.886 16 2 8078 CNN
73.57 −0.851 8 3 7464 CNN
78.20 −0.817 4 5 25,588 CNN
79.02 −0.816 32 2 25,262 CNN
81.21 −0.734 8 4 26,002 CNN
81.56 −0.737 16 3 26,296 CNN
82.15 −0.866 64 2 87,278 CNN
85.46 −0.806 32 3 98,520 CNN
86.18 −0.788 16 4 100,194 CNN
86.30 −0.712 16 8 75,129 ResNet
88.41 −0.781 64 3 381,208 CNN
88.58 −0.730 24 8 167,825 ResNet
89.10 −0.778 16 5 395,404 CNN
89.78 −0.706 32 4 393,730 CNN
89.90 −0.685 32 8 297,385 ResNet
90.62 −0.662 16 14 172,128 ResNet
90.62 −0.668 64 4 1,561,410 CNN
90.63 −0.681 16 20 269,127 ResNet
90.89 −0.660 40 8 463,809 ResNet
90.90 −0.670 48 8 667,097 ResNet
91.37 −0.682 16 26 366,126 ResNet
91.40 −0.613 24 14 385,784 ResNet
91.83 −0.651 16 32 463,125 ResNet
91.97 −0.613 32 20 1,071,991 ResNet
92.09 −0.610 24 26 821,702 ResNet
92.11 −0.637 24 20 603,743 ResNet
92.12 −0.606 24 32 1,039,661 ResNet
92.17 −0.593 32 14 684,688 ResNet
92.47 −0.567 40 14 1,068,840 ResNet
92.50 −0.630 32 26 1,459,294 ResNet
92.62 −0.626 40 32 2,883,933 ResNet
92.66 −0.604 32 32 1,846,597 ResNet
92.81 −0.564 40 20 1,673,871 ResNet
92.93 −0.589 48 26 3,280,526 ResNet
92.98 −0.551 48 14 1,538,240 ResNet
92.99 −0.522 48 20 2,409,383 ResNet
93.16 −0.607 48 32 4,151,669 ResNet
93.29 −0.552 40 26 2,278,902 ResNet

Table C9: CIFAR-10 architectures

accuracy MargLik width depth # params model

23.54 −3.435 4 1 6670 CNN
29.97 −3.137 8 1 13,182 CNN
30.41 −3.023 4 2 7808 CNN
33.90 −2.791 4 3 8218 CNN
35.21 −2.758 4 4 12,900 CNN
37.73 −2.920 16 1 26,206 CNN
40.27 −2.640 8 2 15,992 CNN
42.75 −2.829 32 1 52,254 CNN
43.40 −2.379 8 3 19,074 CNN
45.99 −2.314 4 5 31,438 CNN
48.34 −2.339 16 2 34,088 CNN
51.09 −2.078 8 4 37,612 CNN
52.76 −2.071 16 3 49,426 CNN
53.00 −2.180 32 2 77,192 CNN
57.36 −2.103 8 5 111,510 CNN
58.65 −2.065 32 3 144,690 CNN
59.33 −1.956 16 4 123,324 CNN
62.54 −2.274 16 5 418,534 CNN
63.01 −2.047 32 4 439,900 CNN
68.07 −1.804 32 5 1,620,102 CNN
69.01 −1.788 32 20 1,083,601 ResNet
69.50 −1.763 32 44 2,632,813 ResNet
70.65 −1.805 32 32 1,858,207 ResNet
71.11 −1.706 40 20 1,688,361 ResNet
71.22 −1.801 32 56 3,407,419 ResNet
71.35 −1.616 40 32 2,898,423 ResNet
71.66 −1.627 32 110 6,893,146 ResNet
72.02 −1.540 40 56 5,318,547 ResNet
72.36 −1.562 48 20 2,426,753 ResNet
72.38 −1.358 48 110 15,493,898 ResNet
72.40 −1.703 48 56 7,653,611 ResNet
72.45 −1.487 56 20 3,298,777 ResNet
72.47 −1.351 64 32 7,401,471 ResNet
72.78 −1.554 40 44 4,108,485 ResNet
72.78 −1.407 56 44 8,041,333 ResNet
72.82 −1.271 56 56 10,412,611 ResNet
72.85 −1.540 40 110 10,763,826 ResNet
72.90 −1.344 56 32 5,670,055 ResNet
73.02 −1.436 48 44 5,911,325 ResNet
73.05 −1.505 48 32 4,169,039 ResNet
73.51 −1.441 56 110 21,083,362 ResNet
73.75 −1.291 64 110 27,532,218 ResNet
73.82 −1.325 64 20 4,304,433 ResNet
73.98 −1.188 64 56 13,595,547 ResNet
74.16 −1.180 64 44 10,498,509 ResNet

Table C10: CIFAR-100 architectures

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

References
Bishop, C. M. Pattern recognition and machine learning.

Information Science and Statistics. Springer, 2006.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth,
M. K. Occam’s razor. Information processing letters, 24
(6):377–380, 1987.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural networks. In Proceed-
ings of the 32nd International Conference on Machine
Learning, pp. 1613–1622, 2015.

Botev, A., Ritter, H., and Barber, D. Practical Gauss-Newton
optimisation for deep learning. In International Con-
ference on Machine Learning, International Convention
Centre, Sydney, Australia, 2017. PMLR.

Bottou, L. Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT’2010,
pp. 177–186. Springer, 2010.

Buntine, W. L. and Weigend, A. S. Bayesian back-
propagation. Complex systems, 5(6):603–643, 1991.

Damianou, A. and Lawrence, N. D. Deep Gaussian pro-
cesses. In Proceedings of the Sixteenth International Con-
ference on Artificial Intelligence and Statistics. PMLR,
2013.

Dangel, F., Kunstner, F., and Hennig, P. Backpack: Packing
more into backprop. In Proceedings of 7th International
Conference on Learning Representations, 2019.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Dutordoir, V., van der Wilk, M., Artemev, A., and Hensman,
J. Bayesian image classification with deep convolutional
gaussian processes. In Proceedings of the Twenty Third
International Conference on Artificial Intelligence and
Statistics, 2020.

Dziugaite, G. K. and Roy, D. M. Computing nonvacuous
generalization bounds for deep (stochastic) neural net-
works with many more parameters than training data.
arXiv preprint arXiv:1703.11008, 2017.

Fong, E. and Holmes, C. On the marginal likelihood and
cross-validation. Biometrika, 107(2):489–496, 2020.

Foong, A. Y., Li, Y., Hernández-Lobato, J. M., and Turner,
R. E. ’in-between’uncertainty in bayesian neural net-
works. arXiv preprint arXiv:1906.11537, 2019.

Foresee, F. D. and Hagan, M. T. Gauss-newton approxima-
tion to bayesian learning. In International Conference on
Neural Networks (ICNN’97), volume 3, pp. 1930–1935.
IEEE, 1997.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On cali-
bration of modern neural networks. In International Con-
ference on Machine Learning, pp. 1321–1330. PMLR,
2017.

Harville, D. A. Matrix algebra from a statistician’s perspec-
tive, 1998.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778.
IEEE Computer Society, 2016.

Hernández-Lobato, J. M. and Adams, R. Probabilistic back-
propagation for scalable learning of bayesian neural net-
works. In International Conference on Machine Learning,
pp. 1861–1869. PMLR, 2015.

Hochreiter, S. and Schmidhuber, J. Flat minima. Neural
Computation, 9(1):1–42, 1997.

Immer, A., Korzepa, M., and Bauer, M. Improving pre-
dictions of bayesian neural nets via local linearization.
In Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, pp. 703–711, 2021.

Jefferys, W. H. and Berger, J. O. Ockham’s razor and
bayesian analysis. American Scientist, 80(1):64–72, 1992.
ISSN 00030996.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and
Bengio, S. Fantastic generalization measures and where
to find them. In International Conference on Learning
Representations, 2019.

Kendall, M. G. Rank correlation methods. 1948.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Khan, M., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., and
Srivastava, A. Fast and scalable bayesian deep learning by
weight-perturbation in adam. In International Conference
on Machine Learning, pp. 2611–2620, 2018.

Khan, M. E. E., Immer, A., Abedi, E., and Korzepa, M.
Approximate inference turns deep networks into gaussian
processes. In Advances in Neural Information Processing
Systems, pp. 3088–3098, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

http://archive.ics.uci.edu/ml

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

Kristiadi, A., Hein, M., and Hennig, P. Being bayesian,
even just a bit, fixes overconfidence in relu networks.
In International Conference on Machine Learning, pp.
5436–5446. PMLR, 2020.

Kunstner, F., Hennig, P., and Balles, L. Limitations of
the empirical fisher approximation for natural gradient
descent. In Advances in Neural Information Processing
Systems, pp. 4158–4169, 2019.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. In Advances in neural information processing
systems, pp. 6402–6413, 2017.

Llorente, F., Martino, L., Delgado, D., and Lopez-Santiago,
J. Marginal likelihood computation for model selec-
tion and hypothesis testing: an extensive review. arXiv
preprint arXiv:2005.08334, 2020.

Lyle, C., Schut, L., Ru, R., Gal, Y., and van der Wilk,
M. A bayesian perspective on training speed and model
selection. Advances in Neural Information Processing
Systems, 33, 2020.

MacKay, D. J. A practical bayesian framework for backprop-
agation networks. Neural computation, 4(3):448–472,
1992.

MacKay, D. J. Probable networks and plausible predic-
tions—a review of practical bayesian methods for super-
vised neural networks. Network: computation in neural
systems, 6(3):469–505, 1995.

MacKay, D. J. Information theory, inference and learning
algorithms. Cambridge university press, 2003.

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and
Wilson, A. G. A simple baseline for bayesian uncertainty
in deep learning. In Advances in Neural Information
Processing Systems, pp. 13132–13143, 2019.

Martens, J. and Grosse, R. Optimizing neural networks with
kronecker-factored approximate curvature. In Interna-
tional conference on machine learning, pp. 2408–2417,
2015.

Mascarenhas, W. F. The divergence of the bfgs and gauss
newton methods. Mathematical Programming, 147(1):
253–276, 2014.

Neal, R. M. Bayesian Learning for Neural Networks. PhD
thesis, University of Toronto, 1995.

Neyman, J. and Pearson, E. S. Ix. on the problem of the
most efficient tests of statistical hypotheses. Philosophi-
cal Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Char-
acter, 231(694-706):289–337, 1933.

Osawa, K., Swaroop, S., Khan, M. E. E., Jain, A., Eschen-
hagen, R., Turner, R. E., and Yokota, R. Practical deep
learning with bayesian principles. In Advances in Neural
Information Processing Systems, pp. 4289–4301, 2019.

Rasmussen, C. E. and Ghahramani, Z. Occam’s razor. In
Advances in neural information processing systems, pp.
294–300, 2001.

Rasmussen, C. E. and Williams, C. K. Gaussian processes
for machine learning. MIT press Cambridge, MA, 2006.

Rätsch, G., Onoda, T., and Müller, K.-R. Soft margins for
adaboost. Machine learning, 42(3):287–320, 2001.

Ritter, H., Botev, A., and Barber, D. A scalable laplace
approximation for neural networks. In International Con-
ference on Learning Representations, 2018.

Robbins, H. An empirical Bayes approach to statistics.
Office of Scientific Research, US Air Force, 1955.

Schneider, F., Balles, L., and Hennig, P. Deepobs: A deep
learning optimizer benchmark suite. In International
Conference on Learning Representations, 2018.

Snelson, E. L. Flexible and efficient Gaussian process mod-
els for machine learning. PhD thesis, UCL (University
College London), 2007.

van der Wilk, M., Bauer, M., John, S., and Hensman, J.
Learning invariances using the marginal likelihood. In
Advances in Neural Information Processing Systems, pp.
9938–9948, 2018.

Wenzel, F., Roth, K., Veeling, B. S., Światkowski, J., Tran,
L., Mandt, S., Snoek, J., Salimans, T., Jenatton, R., and
Nowozin, S. How good is the bayes posterior in deep
neural networks really? In International Conference on
Machine Learning, 2020.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
In BMVC. BMVA Press, 2016.

Zhang, G., Sun, S., Duvenaud, D., and Grosse, R. Noisy
natural gradient as variational inference. In International
Conference on Machine Learning, pp. 5852–5861, 2018.

Zhang, G., Wang, C., Xu, B., and Grosse, R. B. Three
mechanisms of weight decay regularization. In ICLR
(Poster). OpenReview.net, 2019a.

Zhang, H., Dauphin, Y. N., and Ma, T. Fixup initialization:
Residual learning without normalization. In International
Conference on Learning Representations, 2019b.

