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Abstract
Many cases exist in which a black-box function
f with high evaluation cost depends on two types
of variables x and w, where x is a controllable
design variable and w are uncontrollable envi-
ronmental variables that have random variation
following a certain distribution P . In such cases,
an important task is to find the range of design
variables x such that the function f(x,w) has the
desired properties by incorporating the random
variation of the environmental variables w. A
natural measure of robustness is the probability
that f(x,w) exceeds a given threshold h, which
is known as the probability threshold robustness
(PTR) measure in the literature on robust opti-
mization. However, this robustness measure can-
not be correctly evaluated when the distribution
P is unknown. In this study, we addressed this
problem by considering the distributionally ro-
bust PTR (DRPTR) measure, which considers the
worst-case PTR within given candidate distribu-
tions. Specifically, we studied the problem of
efficiently identifying a reliable set H , which is
defined as a region in which the DRPTR measure
exceeds a certain desired probability α, which
can be interpreted as a level set estimation (LSE)
problem for DRPTR. We propose a theoretically
grounded and computationally efficient active
learning method for this problem. We show that
the proposed method has theoretical guarantees on
convergence and accuracy, and confirmed through
numerical experiments that the proposed method
outperforms existing methods.

1. Introduction
In the manufacturing industry, product performance often
depends on two types of variables: design variables and en-
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vironmental variables. The design variables are completely
controllable, whereas environmental variables are random
variables that change depending on the usage environment
of the product. When considering such a problem, it is im-
portant to identify the design variables that allow the product
performance to exceed the desired requirement threshold
with a sufficiently high degree of confidence, taking into
account the randomness of the environmental variables. In
this setting, we must emphasize that there are two distinctly
different phases of the product: the development phase and
the use phase. In the development phase, we have full con-
trol over the design variables and environmental variables.
In the use phase, on the other hand, the design variables are
fixed, and the environmental variables change randomly and
cannot be controlled.

Let f(x,w) represent the performance of the product, and
let h ∈ R be a desired performance threshold, where x is
a design variable defined on X , and w is an environmental
variable defined on Ω. Then, we consider the following
robustness measure:

PTR(x) =

∫
Ω

1l[f(x,w) > h]p†(w)dw,

where 1l[·] is the indicator function and p†(w) is the prob-
ability density function of w. This measure is called the
probability threshold robustness (PTR) measure in the field
of robust optimization (Beyer & Sendhoff, 2007), and can
be interpreted as a measure of how well the design variables
behave under randomness in the environmental variables.
In the manufacturing industry, it is desirable to identify the
set of controllable variables x ∈ X for which PTR(x) is
greater than a certain threshold. In other words, this problem
is interpreted as a level-set estimation (LSE) (Bryan et al.,
2006; Gotovos et al., 2013) of the PTR measure. There
are two main reasons for considering LSE of the PTR mea-
sure. One is that by enumerating all the design variables
that exceed the desired threshold with a high probability,
it is possible to respond the usage conditions of various
users. The other is to consider some optimization problem
(e.g., to find x with the minimum price) for design variables
with PTR measures above a certain level. This is known as
the chance-constrained programming problem (Charnes &
Cooper, 1959), and has many applications such as finance,
in addition to manufacturing industry. Unfortunately, how-
ever, the PTR measure cannot be correctly evaluated when
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p†(w) is unknown. If p†(w) is unknown and the estimated
density is simply plugged in, then PTR(x) is no longer valid
as a robustness measure because of the estimation error.

In this study, we considered a distributionally robust PTR
(DRPTR) measure, which includes uncertainty about p†(w)
under the setting that p†(w) is unknown. Let A be a user-
specified class of candidate distributions of w. Then, the
DRPTR measure can be defined as

F (x) = inf
p(w)∈A

∫
Ω

1l[f(x,w) > h]p(w)dw.

The DRPTR measure has the advantage of being robust
with respect to using wrong distributions because it can be
interpreted as the PTR in the worst case among the candidate
distributions. In this study, we formulated this problem as
an active learning problem for the LSE for F (x) instead
of PTR(x), and developed a theoretically grounded and
numerically efficient algorithm for its calculation. Figure 1
shows the conceptual diagram for this study. The basic ideas
of our proposed method are as follows. First, we consider
the function f(x,w) to be a black-box function with a high
evaluation cost, and we employ a Gaussian process (GP)
model as a surrogate model. Next, we predict the target
DRPTR measure using the GP model for the black-box
function f(x,w). Finally, we perform LSE using credible
intervals of the DRPTR measure calculated on the basis of
this prediction.

1.1. Related Work

Active learning using GP models (Williams & Rasmussen,
2006) for black-box functions have been actively studied
in the context of Bayesian optimization (see, e.g., (Settles,
2009; Shahriari et al., 2016)). Several studies have been con-
ducted on active learning for LSE (Bryan et al., 2006; Go-
tovos et al., 2013; Zanette et al., 2018; Inatsu et al., 2020a).
Furthermore, some researchers applied LSE to efficiently
identify safety regions (Sui et al., 2015; Turchetta et al.,
2016; Sui et al., 2018; Wachi et al., 2018), and others used
LSE to enumerate the local minima of black-box functions
(Inatsu et al., 2020c).

Many studies have been conducted on active learning under
input uncertainty (including random environmental vari-
ables). In (Inatsu et al., 2020b), the authors proposed an
efficient method for performing LSE in the setting where
the input is a random variable generated from a certain dis-
tribution. In other studies, the researchers formulated the
randomness of the input with some robustness measures for
performing active learning on it. For example, the authors of
(Bogunovic et al., 2018) used the worst-case function value
of the input shift as a robustness measure. Similarly, other re-
search ((Beland & Nair, 2017; Toscano-Palmerin & Frazier,
2018; Oliveira et al., 2019; Fröhlich et al., 2020; Gessner
et al., 2020; Iwazaki et al., 2021)) dealt with the stochastic

robustness (SR) measure, which is a robustness measure
defined by integrating the black-box function against the
input distribution. In another study closely related to the
present work, the authors of (Iwazaki et al., 2020a) proposed
an active learning method for LSE in the PTR measure on
the basis of random inputs; in (Iwazaki et al., 2021), the
authors considered an active learning method for both LSE
and maximization problems in the PTR measure. However,
these two are not distributionally robust settings. Distribu-
tionally robust optimization (DRO), which is not an active
learning framework, was first introduced by (Scarf, 1958).
DRO is an important topic in the context of robust opti-
mization, and there have been countless related studies (see
(Rahimian & Mehrotra, 2019) for comprehensive survey of
DRO). Active learning methods for DRO with uncertainty
environmental variables have recently been proposed by
(Kirschner et al., 2020; Nguyen et al., 2020). The main
differences to our problem setup are that they focus on a
distributionally robust SR (DRSR) measure for the target
function, which is the worst-case SR measure in candidate
distributions of the unknown environmental variable, and
consider the maximization problem for the DRSR measure.
In particular, for the former, we cannot directly apply their
proposed methods and theoretical techniques because the
target function is different from ours. To the best of our
knowledge, none of these studies have addressed the same
research problem considered in the present work.

1.2. Contributions

The main contributions of this study are summarized as
follows:

• We formulate the LSE problem for the DRPTR mea-
sure, i.e., the problem of finding the set of design vari-
ables for which the DRPTR measure exceeds a given
threshold.

• We construct non-trivial credible intervals for the
DRPTR measure and propose a new acquisition func-
tion (AF) based on an expected classification improve-
ment. Using them, we propose an active learning
method for the LSE of the DRPTR measure. Moreover,
because the naive implementation of our proposed AF
requires a large computational cost, we propose a com-
putationally efficient technique for its calculation.

• We clarify the theoretical property of the proposed
method. Under mild conditions, we show that the pro-
posed method has desirable accuracy and convergence
properties.

• We describe the empirical performance of the proposed
method through the results of numerical experiments
with benchmark functions and infection simulations.
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Figure 1. An example of our problem setup. In the left figure, black circles and blue triangles represent values of PTR by using the
correct and incorrect distribution of the environmental variable w, respectively. Also, red crosses represent values of DRPTR by using
the correct distribution of w as the reference distribution. It can be seen that DRPTR is smaller than PTR (correct) because DRPTR is
defined by taking the inf operation. This implies that DRPTR is more conservative than PTR (incorrect) with respect to the precision for
PTR (correct). The central and right figures represent the precision and recall, respectively. From the central figure, the precision of PTR
(incorrect) does not reach 1, while DRPTR reaches 1. Therefore, DRPTR is superior in the sense that it can be more conservative than
PTR (incorrect), depending on the choice of reference distribution. Our goal is to efficiently find all design variables where DRPTR is
greater than a given threshold α (purple dashed line).

2. Preliminary
Let f : X × Ω→ R be an expensive-to-evaluate black-box
function. We assume that X and Ω are finite sets. For each
input (x,w) ∈ X × Ω, the value of f(x,w) is observed
as y = f(x,w) + ε with an independent noise ε, where ε
follows Gaussian distribution N (0, σ2). In our setting, a
variable w ∈ Ω stochastically fluctuates by the (unknown)
discrete distribution P † in the use phase, whereas we can
specify w in the development phase. Moreover, let A be a
family of candidate distributions of P †. In this work, we
consider A = {p.m.f. p(w) | d(p(w), p∗(w)) < ε}, where
p∗(w) is a user-specified reference distribution, d(·, ·) is a
given distance metric between two distributions, and ε > 0.
Here, we assume that p∗(w) is specified by users. For
example, if there is no prior information about P †, one
way is to use the uniform distribution as p∗(w), or if the
empirical distribution of P † is available, a reasonable choice
is to use it as p∗(w). The estimation of p∗(w) is out of
scope of this paper. Then, under the given threshold h, we
define the DRPTR F (x) for each x ∈ X as

F (x) = inf
p(w)∈A

∑
w∈Ω

1l[f(x,w) > h]p(w).

The aim of this study was to efficiently identify a subsetH of
X that satisfies F (x) > α for a given threshold α ∈ (0, 1):

H = {x ∈ X | F (x) > α}. (2.1)

Moreover, we define the lower set L as L = {x ∈ X |
F (x) ≤ α}.

Gaussian Process In this study, we used the Gaussian
process (GP) to model the unknown black-box function f .
First, we assume that the GP, GP(0, k((x,w), (x′,w′)))
is a prior distribution of f , where k((x,w), (x′,w′))
is a positive-definite kernel. Then, given the dataset
{(xi,wi, yi)}ti=1, the posterior distribution of f also fol-
lows the GP, and its posterior mean µt(x,w) and posterior
variance σ2

t (x,w) are given by

µt(x,w) = k>t (x,w)(Kt + σ2It)
−1yt,

σ2
t (x,w) = k((x,w), (x,w))

− k>t (x,w)(Kt + σ2It)
−1kt(x,w),

where kt(x,w) is the t-dimensional vector whose jth ele-
ment is k((x,w), (xj ,wj)), yt = (y1, . . . , yt)

>, It is the
t × t identity matrix, and Kt is the t × t matrix whose
(j, k)th element is k((xj ,wj), (xk,wk)).

3. Proposed Method
In this section, we propose an active learning method for
efficiently identifying (2.1). The target function F (x) is a
random variable because F (x) is the function of f(x,w),
and f(x,w) is drawn from GP. Thus, a reasonable method
to identify (2.1) is to construct a credible interval of F (x),
and estimate H using the lower bound of the constructed
credible interval. Unfortunately, although f(x,w) follows
GP, F (x) does not follow GP. Hence, the credible interval
of F (x) cannot be directly calculated on the basis of normal
distributions. In the next section, we propose a simple
and theoretically valid credible interval of F (x) using the
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credible interval of f(x,w).

3.1. Credible Interval and LSE

For any input (x,w) ∈ X ×Ω and step t, we define a credi-
ble interval of f(x,w) asQt(x,w) = [lt(x,w), ut(x,w)],
where lt(x,w) = µt(x,w) − β1/2

t σt(x,w), ut(x,w) =

µt(x,w) + β
1/2
t σt(x,w), and β1/2

t ≥ 0. Similarly, we
define a credible interval of 1l[f(x,w) > h] on the ba-
sis of Qt(x,w). For the theoretical analysis described in
Section 4, we introduce a user-specified accuracy parame-
ter η > 0. Specifically, we define the credible interval of
1l[f(x,x) > h] at step t as

Q̃t(x,w; η) ≡ [l̃t(x,w; η), ũt(x,w; η)]

=


[1, 1] if lt(x,w) > h− η,
[0, 1] if lt(x,w) ≤ h− η and ut(x,w) > h,

[0, 0] if lt(x,w) ≤ h− η and ut(x,w) ≤ h.

Note that when the accuracy parameter η = 0, this credible
interval simply indicates that if the lower (resp. upper)
bound of f(x,w) is greater (resp. smaller) than h, we say
that 1l[f(x,w) > h] = 1 (resp. 0). Thus, a credible interval
Q

(F )
t (x; η) ≡ [l

(F )
t (x; η), u

(F )
t (x; η)] of the target function

F (x) can be given by

l
(F )
t (x; η) = inf

p(w)∈A

∑
w∈Ω

l̃t(x,w; η)p(w),

u
(F )
t (x; η) = inf

p(w)∈A

∑
w∈Ω

ũt(x,w; η)p(w).
(3.1)

Note that if we use the L1 (or L2)-norm as the distance
function d(·, ·), equation (3.1) is equivalent to solving a lin-
ear (or second-order cone) programming problem. In both
cases, because solvers exist that can compute the optimal
solution quickly, it is easy to compute Q(F )

t (x; η) when
using such distance functions. Then, we estimate H and L
using Q(F )

t (x; η) as follows:

Ht = {x ∈ X | l(F )
t (x; η) > α},

Lt = {x ∈ X | u(F )
t (x; η) ≤ α}.

Also, we define the unclassified set as Ut = X \ (Ht ∪ Lt).

3.2. Acquisition Function

In this section, we propose two acquisition functions to
select the next evaluation point. Our proposed acquisi-
tion functions are based on the maximum improvement
in level-set estimation (MILE) strategy proposed in (Zanette
et al., 2018). In MILE, the expected value of the increase
in the number of classifications after adding the new point
(x∗,w∗) is calculated, and the point with the largest ex-
pected value is selected. In this study, owing to the com-
putational cost of calculating the acquisition function, we

consider a strategy based on the expected value where points
in the unclassified set are classified as H .

Let (x∗,w∗) be a new point, and let y∗ = f(x∗,w∗) + ε
be a new observation at point (x∗,w∗). Furthermore, let
l
(F )
t (x; 0|x∗,w∗, y∗) be the lower bound of the credible

interval of F (x), where η = 0 when (x∗,w∗, y∗) is newly
added. Then, we consider the function at(x∗,w∗):

at(x
∗,w∗) =

∑
x∈Ut

Ey∗ [1l[l(F )
t (x; 0|x∗,w∗, y∗) > α]].

(3.2)

In this work, we do not directly use (3.2) as the acquisi-
tion function because the value of (3.2) is sometimes ex-
actly zero for any point. A reasonable method to avoid
this problem is to consider a different function bt(x∗,w∗)
only when the values of (3.2) are all zero. For theoreti-
cal treatment, we follow the strategy described in (Zanette
et al., 2018), and consider the acquisition function of the
form max{at(x∗,w∗), γbt(x∗,w∗)} with a positive con-
stant parameter γ. Note that if we use a sufficiently small
γ, it is almost the same when considering bt(x∗,w∗) only
when the values of (3.2) are all zero; otherwise, at(x∗,w∗).
In Section 4, we present the theoretical guarantees of our
proposed method for this acquisition function. In this sec-
tion, we propose two types of bt(x∗,w∗). The first is based
on the RMILE acquisition function proposed by (Zanette
et al., 2018). The basic idea of RMILE is to add an ad-
ditional variance term γσt(x

∗,w∗) to the original MILE
acquisition function. By using the same argument, we define
the following modified acquisition function:

Definition 3.1 (Proposed acquisition function 1). Let
at(x

∗,w∗) be the function defined by (3.2), and let γ be a
positive parameter. Then, we propose the following acquisi-
tion function a(1)

t (x∗,w∗):

a
(1)
t (x∗,w∗) = max{at(x∗,w∗), γσt(x∗,w∗)}.

Moreover, we select the next evaluation point (xt+1,wt+1)

by maximizing a(1)
t (x∗,w∗).

The other acquisition function we propose uses
γRMILEt(x

∗,w∗) instead of γσt(x
∗,w∗) as the

function bt(x
∗,w∗), where RMILEt(x

∗,w∗) is the
RMILE function proposed in (Zanette et al., 2018).

Definition 3.2 (Proposed acquisition function 2). Let
at(x

∗,w∗) be the function defined by (3.2), and let γ be a
positive parameter. Then, we propose the following acquisi-
tion function a(2)

t (x∗,w∗):

a
(2)
t ((x∗,w∗)) = max{at(x∗,w∗), γRMILEt(x

∗,w∗)}.

Moreover, we select the next evaluation point (xt+1,wt+1)

by maximizing a(2)
t (x∗,w∗).
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Algorithm 1 Active learning for distributionally robust
level-set estimation
Require: GP prior GP(0, k), threshold h ∈ R, probability
α ∈ (0, 1), accuracy parameter η > 0, tradeoff parameter
{βt}t≤T
H0 ← ∅, L0 ← ∅, U0 ← X , t← 1
while Ut−1 6= ∅ do

Compute l(F )
t (x; η) and u(F )

t (x; η) for all x ∈ X
Choose (xt,wt) by (xt,wt) =

argmax(x∗,w∗)∈X×Ω a
(1)
t−1(x∗,w∗) (or a(2)

t−1(x∗,w∗)

instead of a(1)
t−1(x∗,w∗))

Observe yt ← f(xt,wt) + εt
Update GP by adding ((xt,wt), yt) and compute
Ht, Lt and Ut
t← t+ 1

end while
Ĥ ← Ht−1, L̂← Lt−1

Ensure: Estimated Set Ĥ, L̂

The pseudocode of the proposed method is given in Algo-
rithm 1.

3.3. Computational Techniques

Our proposed acquisition functions are based on (3.2),
where (3.2) includes the calculation of the expected value.
This expectation cannot be expressed as a simple expres-
sion using the cumulative distribution function (CDF) of
the standard normal distribution, as in the original MILE
(Zanette et al., 2018). One way to solve this problem is to
generate many samples from the posterior distribution of
y∗ and numerically calculate the expected value. However,
because one optimization calculation is required to calculate
1l[l(F )

t (x; 0|x∗,w∗, y∗) > α], if the expected value is calcu-
lated using M samples, then M |Ut| optimization calcula-
tions are required to calculate at(x∗,w∗) for each (x∗,w∗).
Therefore, to calculate at(x∗,w∗) for all candidate points,
M |Ut||X × Ω| optimization calculations are required. To
reduce this large computational cost, we provide useful lem-
mas for efficiently computing the acquisition function. The
expected values in (3.2) can be exactly calculated using the
following lemma:

Lemma 3.1. Let lt(x,wj |x∗,w∗, y∗) be the lower con-
fidence bound of f(x,wj) after adding (x∗,w∗, y∗) to
{(xi,wi, yi)}ti=1. Furthermore, let rj be a number sat-
isfying h = lt(x,wj |x∗,w∗, rj), and let r(j) be the jth-
smallest number in the range r1 to r|Ω|. For each s ∈
{1, . . . , |Ω| + 1} ≡ [|Ω| + 1], define Rs = (r(s−1), r(s)],
where r(0) = −∞ and r(|Ω|+1) = ∞. Moreover,
let cs be a real number satisfying cs ∈ Rs. Then,
Ey∗ [1l[l(F )

t (x; 0|x∗,w∗, y∗) > α]] can be calculated as fol-

lows:

Ey∗ [1l[l(F )
t (x; 0|x∗,w∗, y∗) > α]]

=

|Ω|+1∑
s=1

P(y∗ ∈ Rs)1l[l(F )
t (x; 0|x∗,w∗, cs) > α].

(3.3)

Lemma 3.1 implies that |Ω|+ 1 optimization calculations
are required to calculate Ey∗ [1l[l(F )

t (x; 0|x∗,w∗, y∗) > α]],
but the following lemma shows that the number of opti-
mization calculations can be reduced by checking a simple
inequality:

Lemma 3.2. Let c1, . . . , c|Ω|+1 be numbers defined as in
Lemma 3.1. Suppose that cs satisfies∑

w∈Ω

1l[lt(x,w|x∗,w∗, cs) > h]p∗(w) ≤ α.

Then, 1l[l(F )
t (x; 0|x∗,w∗, cs) > α] = 0.

Finally, noting that 0 ≤ P(y∗ ∈ Rs) ≤ 1 and 0 ≤
1l[l(F )

t (x; 0|x∗,w∗, cs) > α] ≤ 1, we can approximate
(3.3) with any approximation accuracy ζ > 0:

Lemma 3.3. Let ζ > 0, and define

ât(x
∗,w∗) =

∑
s∈St

P(y∗ ∈ Rs)1l[l(F )
t (x; 0|x∗,w∗, cs) > α],

St = {s ∈ [|Ω|+ 1] | P(y∗ ∈ Rs) ≥ ζ/(|Ω|+ 1)}.

Then, ât(x∗,w∗) satisfies the following inequality:

|Ey∗ [1l[l(F )
t (x; 0|x∗,w∗, y∗) > α]]− ât(x∗,w∗)| ≤ ζ.

Lemma 3.3 implies that the number of optimization cal-
culations for (3.3) can be further reduced if the error ζ is
allowed. In addition, we must emphasize that P(y∗ ∈ Rs)
is often very small for most s when we actually calculate
(3.3). Therefore, from these properties, if we apply Lemma
3.3 using a sufficiently small ζ, we can reduce the com-
putational cost of (3.3) significantly with almost no error.
Detailed numerical comparisons are provided in Section 5.

4. Theoretical Analysis
In this section, we provide three theorems regarding the
accuracy and convergence properties of our methods. First,
we define the misclassification loss eα(x) for each x ∈ X
as follows:

eα(x) =

{
max{0, F (x)− α} if x ∈ L̂
max{0, α− F (x)} if x ∈ Ĥ

.

Furthermore, for theoretical reasons, we as-
sume that the black-box function f follows GP
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GP(0, k((x,w), (x′,w′))). In addition, for tech-
nical reasons, we assume that the prior variance
k((x,w), (x,w)) ≡ σ2

0(x,w) satisfies

0 < σ2
0,min ≡ min

(x,w)∈X×Ω
σ2

0(x,w)

≤ max
(x,w)∈X×Ω

σ2
0(x,w) ≤ 1.

Note that even if prior variances of the kernel are larger than
1, we can assume that max(x,w)∈X×Ω σ

2
0(x,w) ≤ 1 with-

out loss of generality by standardizing y with an appropriate
positive number. Also note that σ2

0,min > 0 implies that
prior variances are greater than zero, i.e., there is uncertainty
at unobserved points. Moreover, let κT be the maximum
information gain at step T . Note that κT is a measure of-
ten used to show theoretical guarantee for GP-based active
learning methods (see, e.g., (Srinivas et al., 2010)), and can
be expressed using mutual information I(y; f) between the
observed vector y and f as κT = maxA⊂X×Ω I(yA; f).
Then, the following theorem regarding accuracy holds:

Theorem 4.1. Let h ∈ R, α ∈ (0, 1), t ≥ 1, and δ ∈ (0, 1),
and define βt = 2 log(|X × Ω|π2t2/(3δ)). Moreover, for a
user-specified accuracy parameter ξ > 0, we define η > 0
as

η = min

{
ξσ0,min

2
,
ξ2δσ0,min

8|X × Ω|

}
.

Then, when Algorithm 1 terminates, with a probability of at
least 1− δ, the misclassification loss is bounded by ξ, that
is, the following inequality holds:

P
(

max
x∈X

eα(x) ≤ ξ
)
≥ 1− δ.

Theorem 4.1 does not state whether Algorithm 1 terminates.
The following theorem guarantees the convergence property
in Algorithm 1:

Theorem 4.2. Under the same setting as described in The-
orem 4.1, let γ > 0 and C1 = 2/ log(1 + σ−2). In addition,
let T be the smallest positive integer satisfying the following
four inequalities:

(1)
σ−2β

1/2
T C1κT
T

<
η

2
, (2)

σ−2C1κT
T

<
η2

4
,

(3)
C1βTκT

T
<
η2

4
,

(4)
1

2
log βT −

Tη2σ2

8C1κT
< log(|X |−12−|Ω|ηγ(2π)1/2/2).

Then, Algorithm 1 terminates (i.e., UT = ∅) after at most T
trials when we use the acquisition function a(1)

t (x∗,w∗).

Furthermore, the similar theorem holds if the acquisition
function a(2)

t ((x∗,w∗)) is used. In this study, owing to the

practical performance, we modified the original RMILE to

RMILEt(x
∗,w∗)

= max{MILEt(x
∗,w∗), γ̃σt(x

∗,w∗)},

where MILEt(x
∗,w∗) is given by

MILEt(x
∗,w∗)

=
∑

(x,w)∈Ut×Ω

Ey∗ [1l[lt(x,w|x∗,w∗, y∗) > h]]

− |{(x,w) ∈ Ut × Ω | lt(x,w) > h− η}|.

Then, the following theorem holds:

Theorem 4.3. Under the same setting described in Theorem
4.1, let γ > 0, γ̃ > 0, and C1 = 2/ log(1 + σ−2). In
addition, let T be the smallest positive integer satisfying the
following five inequalities:

(1)
σ−2β

1/2
T C1κT
T

<
η

2
, (2)

σ−2C1κT
T

<
η2

4
,

(3)
C1βTκT

T
<
η2

4
,

(4)
1

2
log βT −

Tη2σ2

8C1κT
< log(|X |−12−|Ω|ηγγ̃(2π)1/2/2),

(5)
1

2
log βT −

Tη2σ2

8C1κT
< log(|X × Ω|−1ηγ̃(2π)1/2/2).

Then, Algorithm 1 terminates (i.e., UT = ∅) after at most T
trials when we use the acquisition function a(2)

t (x∗,w∗).

The four (resp. five) inequalities in Theorem 4.2 (resp.
4.3) are respectively sufficient conditions for acquisition
functions to be bounded as a function of σ2

t−1(xt,wt) and
to be sufficiently small. These assumptions depend on the
choice of the kernel function, but most of the practically
used kernels, including Gaussian and linear kernels, satisfy
the assumptions. In addition, the order of the maximum
information gain κT is known to be sublinear under mild
conditions (Srinivas et al., 2010). Hence, because the order
of βT is O(log T ), there exist positive integers satisfying
the inequalities in Theorems 4.2 and 4.3.

5. Numerical Experiments
We confirmed the performance of the proposed method us-
ing benchmark functions and infection simulations. Because
of space limitation, we provide a part of experimental re-
sults in the main text. All experimental results and detail
parameter settings are given in the Appendix. The input
space X × Ω was defined as a set of grid points that uni-
formly cut the region [L1, U1]× [L2, U2] into 50× 50. In
all experiments, we used the following Gaussian kernel as
the kernel function:

k((x,w), (x′, w′)) = σ2
f exp(−{(x−x′)2+(w−w′)2}/L).
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Table 1. Computation time (second) for the Booth function setting
Naive L1 L2 L3 (10−4) L3 (10−8) L3 (10−12)

Proposed1 0.01 138505.60± 13334.87 7621.59± 1166.23 2370.02± 586.94 71.16± 25.33 80.55± 31.37 86.73± 35.34
Proposed2 0.01 106306.10± 12331.01 5835.06± 1028.99 2608.30± 976.06 63.14± 10.29 72.53± 13.99 78.74± 16.29

Moreover, we used L1-norm as the distance functions be-
tween distributions. Furthermore, we considered the follow-
ing two distributions as the reference distribution p∗(w):

Uniform: p∗(w) = 1/50.

Normal:

p∗(w) =
a(w)∑
w∈Ω a(w)

, a(w) =
1√
20π

exp(−w2/20).

Then, we compared the following acquisition functions:

Random: Select (xt+1, wt+1) by using random sampling.

US: Perform uncertainty sampling, i.e., (xt+1, wt+1) =
argmax(x,w)∈X×Ω σ

2
t (x,w).

Straddle f: Perform straddle strategy (Bryan et al., 2006),
i.e., (xt+1, wt+1) = argmax(x,w)∈X×Ω vt(x,w),
where vt(x,w) = min{ut(x,w)− h, h− lt(x,w)}.

Straddle US: Select xt+1 and wt+1 by using the
straddle of F (x) and σt(xt+1, w), respec-
tively, i.e., xt+1 = argmaxx∈X v

F
t (x) and

wt+1 = argmaxw∈Ω σ
2
t (xt+1, w), where

vFt (x) = min{uFt (x; η)− α, α− lFt (x; η)}.

Straddle random: Replace the selection method of wt+1

in straddle US with random sampling.

MILE: Perform the original MILE strategy, i.e.,
(xt+1, wt+1) was selected by using (6) in (Zanette
et al., 2018).

Proposed1 0.1: Perform a
(1)
t (x∗,w∗) with γ = 0.1.

Proposed1 0.01: Perform a
(1)
t (x∗,w∗) with γ = 0.01.

Proposed2 0.1: Perform a
(2)
t (x∗,w∗) with γ = 0.1.

Proposed2 0.01: Perform a
(2)
t (x∗,w∗) with γ = 0.01.

Here, for simplicity, we set the accuracy parameter η to
zero. Similarly, because of the computational cost of
calculating acquisition functions, we replaced P(y∗ ∈
Rs)1l[l(F )

t (x; 0|x∗, w∗, cs) > α] in (3.3) with zero when
P(y∗ ∈ Rs) satisfies P(y∗ ∈ Rs) < 0.005. In other words,
we used Lemma 3.3 with ζ/(|Ω|+ 1) = 0.005 to approxi-
mate (3.3).

5.1. Synthetic Data Experiments

We confirmed the performance of the proposed method
using synthetic functions. We considered the following four
functions, which are commonly used benchmark functions
(the last one adds −4000 to the original definition):

Booth: f(x,w) = (x+ 2w − 7)2 + (2x+ w − 5)2.

Matyas: f(x,w) = 0.26(x2 + w2)− 0.48xw.

McCormick: f(x,w) = sin(x+w) + (x−w)2− 1.5x+
2.5w + 1.

Styblinski-Tang: f(x,w) = (x4−16x2 +5x)/2+(w4−
16w2 + 5w)/2− 4000.

Under this setup, we took one initial point at random and ran
the algorithms until the number of iterations reached 300
(or 200), where the parameters used for each experiment
are listed in Table 2 in the Appendix. We performed 50
Monte Carlo simulations and obtained the average F-score
as follows:

F-score =
2pre× rec
pre + rec

, pre =
|H ∩Ht|
|Ht|

, rec =
|H ∩Ht|
|H|

.

From Figures 2 and 3, it can be confirmed that our pro-
posed methods outperform other existing methods. On the
other hand, in the existing methods, Straddle f and MILE
exhibit high performance, because the MILE acquisition
function increases the expected number of (x,w) satisfying
lt(x,w) > h. As a result, because l̃t(x,w; η) and l(F )

t (x; η)
become large early, the number of elements in Ht also
increases early. Similarly, because the Straddle f acqui-
sition function can efficiently search for (x,w) satisfying
lt(x,w) > h or ut(x,w) < h, the number of elements in
Ht also increases efficiently from the same argument as
before. Furthermore, when comparing Proposed1 and Pro-
posed2, one of the reasons why the latter exhibits better
performance is the fact that RMILE exhibits better perfor-
mance than uncertainty sampling. Other experiments, a
comparison of the difference in γ is described in the Ap-
pendix.

5.2. Computation Time Experiments

In this section, we confirmed how much the computation
time of (3.2) can be improved by using Lemma 3.1, 3.2 and
3.3. We evaluated the computation time of (3.2) when we
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Figure 2. Average F-score over 50 simulations with four bench-
mark functions when the distance function and reference distribu-
tion are L1-norm and Uniform, respectively.
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Figure 3. Average F-score over 50 simulations with four bench-
mark functions when the distance function and reference distribu-
tion are L1-norm and Normal, respectively.

performed the same experiment as in Subsection 5.1 using
Proposed1 0.01 and Proposed2 0.01 for the Booth function.

The experiments for Matyas, McCormick and Styblinski-
Tang functions are described in the Appendix. Here, as
for the parameter settings, we considered only the case of
L1-Normal in Table 2. We compared the computation time
of the following six methods for calculating (3.2):

Naive: For each (x∗,w∗), we generate M sam-
ples y∗1 , . . . , y

∗
M from the posterior distribution of

f(x∗,w∗), and approximate (3.2) by

∑
x∈Ut

1

M

M∑
m=1

1l[l(F )
t (x; 0|x∗,w∗, y∗m) > α],

where we set M = 1000.

L1: Compute (3.2) using Lemma 3.1.

L2: Compute (3.2) using Lemma 3.1 and 3.2.

L3 (10−4): Compute (3.2) using Lemma 3.1, 3.2 and 3.3
with ζ = (|Ω|+ 1)10−4.

L3 (10−8): Compute (3.2) using Lemma 3.1, 3.2 and 3.3
with ζ = (|Ω|+ 1)10−8.

L3 (10−12): Compute (3.2) using Lemma 3.1, 3.2 and 3.3
with ζ = (|Ω|+ 1)10−12.

Under this setup, we took one initial point at random and
ran the algorithms until the number of iterations reached
to 300. Furthermore, for each trial t, we evaluated the
computation time to calculate (3.2) for all candidate points
(x∗,w∗) ∈ X ×Ω, and calculated the average computation
time over 300 trials. From Table 1, it can be confirmed
that the computation time is improved as the proposed com-
putational techniques are used. Moreover, comparing L3
(10−4), L3 (10−8) and L3 (10−12), it can be confirmed that
the computation time becomes shorter when a large ζ is
used. However, it can be seen that the computation time of
L3 (10−12) is still very small compared to the computation
time of Naive, L1 and L2. Therefore, from |Ω| = 50 and
Lemma 3.3, it implies that by using proposed computational
techniques, we can improve the computation time signifi-
cantly even if the error from the true at(x∗,w∗) is kept to a
very small value such as 51× 10−12 = 5.1× 10−11.

5.3. Infection Simulations

We compared our proposed method with other existing meth-
ods by using the infection control problem (Kermack &
McKendrick, 1927). We considered a simulation-based
decision-making problem for an epidemic, which aims to
determine an acceptable infection rate x under an uncertain
recovery rate w with as few simulations as possible. The
motivation for this simulation was to evaluate the tradeoff
between economic risk and a controllable infection rate. For
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example, if the infection rate x is minimized by shutting
down all economic activities, the economic risk will be-
come extremely high. In contrast, if nothing is done, the
infection rate will remain high, resulting in the spread of the
disease, and economic risk will still be high. Therefore, we
considered finding a target infection rate that can achieve
an acceptable economic risk threshold h with a probability
of at least α. In this experiment, to simulate epidemic be-
havior, we used the SIR model (Kermack & McKendrick,
1927). The model computes the evolution of the number
of infected people by using an infection rate x and recov-
ery rate w. In our experiment, we considered the infection
rate as the design variable x and the recovery rate as the
environmental variable w following an unknown distribu-
tion. In addition, we regarded economic risk as a black-box
function f(x,w). Note that similar numerical experiments
were performed in (Iwazaki et al., 2020b) under the setting
where the distribution of w, p†(w), is known. Furthermore,
we rescaled the ranges of x and w in the interval [−1, 1].
The input space X ×Ω is defined as a set of grid points that
uniformly cut the region [−1, 1] × [−1, 1] into 50 × 50.
We used the following economic risk function f(x,w):
f(x,w) = ninfected(x,w) − 150x, where ninfected(x,w) is
the maximum number of infected people in a given period
of time, calculated using the SIR model. Note that this risk
function was also used by (Iwazaki et al., 2020b), and in
this experiment, we used the same function they used in
their experiment. Under this setup, we took one initial point
at random and ran the algorithms until the number of itera-
tions reached 100. From 50 Monte Carlo simulations, we
calculated average F-scores, where we used the following
parameters for all problem settings:

h = 135, α = 0.9, σ2 = 0.025, σ2
f = 2502, L = 0.5,

β
1/2
t = 4, ε = 0.05.

In this experiment, we used the following modified reference
function as Normal:

p∗(w) =
a(w)∑
w∈Ω a(w)

, a(w) =
1√
0.1π

exp(−w2/0.1).

From Figure 4, it can be confirmed that Proposed2 and
MILE performed better than the others.

6. Conclusion
We proposed active learning methods for identifying the
reliable set of distributionally robust probability threshold
robustness (DRPTR) measure under uncertain environmen-
tal variables. We showed that our proposed methods satisfy
theoretical guarantees about convergence and accuracy, and
outperform existing methods in numerical experiments.
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Figure 4. Average F-score over 50 simulations in the infection
control problem with two different settings.
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