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A. LSVI-PHE with General Function Approximations
A.1. Noise

In the section, we specify how to choose σ in Algorithm 1. Note that we use ξτ,mh,k for the noise added in episode k, timestep
h, data from episode τ < k and sampling time m. Similarly, ξ′i,mh,k is for episode k, timestep h, regularizer pi(·) and
sampling time m. We set λ = 1 in our algorithm. By Lemma A.6, there exists β′(F , δ) such that with probability at least
1− δ, for all (k, h) ∈ [K]× [H], we have

fkh (·, ·) := r(·, ·) + PhV
k
h+1(·, ·) ∈ Fkh ,

where Fkh = {f ∈ F | ‖f − f̂kh‖2Zkh +R(f − f̂kh ) ≤ β′(F , δ)}. By Assumption C, for each Fkh , there exists a σh,k such that

gσh,k(s, a) ≥ w(Fkh , s, a).

We define σ = maxk∈[K],h∈[H] σh,k to be the maximum standard deviation of the added noise.

A.2. Concentration

We first define few filtrations and good events that we will use in the proof of lemmas in this section.

Definition A.1 (Filtrations). We denote the σ-algbera generated by the set G using σ(G). We define the following filtrations

Gk def
= σ

(
{(sit, ait, rit)}{i,t}∈[k−1]×[H]

⋃
{ξi,jt,l }i∈[l],{t,j,l}∈[H]×[M ]×[k−1]

⋃
{ξ′i,jt,l }{i,t,j,l}∈[D]×[H]×[M ]×[k−1]

)
,

Gkh,1
def
= σ

(
Gk

⋃
{(skt , akt , rkt )}t∈[h]

⋃
{ξi,jt,k}i∈[k],t≥h,j∈[M ]

⋃
{ξ′i,jt,k }i∈[D],t≥h,j∈[M ]

)
,

GKh,2
def
= σ

(
Gk

⋃
{(skt , akt , rkt )}t∈[h]

)
.

Definition A.2 (Good events). For any δ > 0, we define the following random events

Gkh(ξ, δ)
def
=
{

max
i∈[k],j∈[M ]

∣∣∣ξi,jh,k∣∣∣ ≤√γk(δ)
⋂

max
i∈[D],j∈[M ]

|ξ′i,jh,k | ≤
√
γk(δ)

}
,

G(K,H, δ)
def
=
⋂
k≤K

⋂
h≤H

Gkh(ξ, δ),

where γk(δ) is some constant to be specified in Lemma A.3.

Notation: To simplify our presentation, in the remaining part of this section, we always denote
√
γk :=

√
γk(δ).

The next lemma shows that the good event defined in Definition A.2 happens with high probability.

Lemma A.3. For good event G(K,H, δ) defined in Definition A.2, if we set
√
γk = Õ(σ), then it happens with probability

at least 1− δ.

Proof. Recall that ξi,jt,l is a zero-mean Gaussian noise with variance σ2
t,l. By the concentration of Gaussian distribution

(Lemma D.1), with probability 1− δ′, we have

|ξi,jt,l | ≤ σt,l
√

2 log(1/δ′) ≤ σ
√

2 log(1/δ′).

The same result holds for ξ′i,jt,l . We complete the proof by setting δ′ = δ/(K +D)MHK and using union bound.

In Definition 3.1, for a regularizer R(f) =
∑D
j=1 pj(f)2, where pj(·) are functionals, we defined the perturbed regularizer

as R̃σ(f) =
∑D
j=1[pj(f) + ξ′j ]

2 with ξ′j being i.i.d. zero-mean Gaussian noise with variance σ2. Note that in the algorithm,
the variance of the noise for the regularizer is the same as the dataset, which is σ2

h,k. Recall from Assumption D that for any
V : S → [0, H], our regularizer R satisfies R(r + PV ) ≤ B for some constant B ∈ R.

Our next lemma establishes a bound on the perturbed estimate of a single backup.
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Lemma A.4. Consider a fixed k ∈ [K] and a fixed h ∈ [H]. Let Zkh = {(sτh, aτh)}τ∈[k−1] and D̃kh,V = {(sτh, aτh, rτh +

ξτh + V (sτh+1))}τ∈[k−1]. Define f̃kh,V = arg minf∈F ‖f‖2D̃kh,V
+ R̃(f). Conditioned on the good event G(K,H, δ), with

probability at least 1− δ, for a fixed V : S → [0, H] and any V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 1/T , we have∥∥∥f̃h,V ′(·, ·)− rh(·, ·)− PhV ′(·, ·)
∥∥∥2

Zkh
+R

(
f̃h,V ′(·, ·)− rh(·, ·)− PhV ′(·, ·)

)
≤c′

[
(H + 1 +

√
γk)
√

log (2/δ) + logN (F , 1/T ) +

√
B +

√
γkBD

]2

,

for some constant c′. Here B is the bound on the regularizer (Assumption D) and D is the number of regularizers (Definition
3.1). Define this event as Eh,V (δ).

Proof. Recall that for notational simplicity, we denote [PhVh+1](s, a) = Es′∼Ph(· | s,a)Vh+1(s′). Now consider a fixed
V : S → [0, H], and define

fV (·, ·) := rh(·, ·) + PhV (·, ·). (6)

For any f ∈ F , we consider
∑
τ∈[k−1] χ

τ
h(f) where

χτh(f) := 2(f(sτh, a
τ
h)− fV (sτh, a

τ
h))(fV (sτh, a

τ
h)− rτh(sτh, a

τ
h)− ξτh − V (sτh+1)).

Recalling the definition of the filtration Gτh,1 from Definition A.1, we note

E[χτh(f)|Gτh,1] = E[2(f(sτh, a
τ
h)− fV (sτh, a

τ
h))(fV (sτh, a

τ
h)− rτh(sτh, a

τ
h)− ξτh − V (sτh+1))|Gτh,1]

= 2(f(sτh, a
τ
h)− fV (sτh, a

τ
h))E[(fV (sτh, a

τ
h)− rτh(sτh, a

τ
h)− ξτh − V (sτh+1))|Gτh,1]

= 2(f(sτh, a
τ
h)− fV (sτh, a

τ
h))(fV (sτh, a

τ
h)− rτh(sτh, a

τ
h)− PhV (sτh, a

τ
h))

= 0.

In addition, conditioning on the good event G(K,H, δ), we have

|χτh(f)| ≤ 2(H + 1 +
√
γτ )|f(sτh, a

τ
h)− fV (sτh, a

τ
h)|.

As χτh(f) is a martingale difference sequence conditioned on the filtration Gτh,1 , by Azuma-Hoeffding inequality, we have

P

∣∣∣∣∣∣
∑

τ∈[k−1]

χτh(f)

∣∣∣∣∣∣ ≥ ε
 ≤ 2exp

(
− ε2

8(H + 1 +
√
γτ )2‖f − fV ‖2Zkh

)
.

Now we set

ε =

√
8(H + 1 +

√
γτ )2 log

(
2N (F , 1/T )

δ

)
‖f − fV ‖2Zkh

≤ 4(H + 1 +
√
γτ )‖f − fV ‖Zkh

√
log(2/δ) + logN (F , 1/T ).

With union bound, for all g ∈ C(F , 1/T ), with probability at least 1− δ we have∣∣∣∣∣∣
∑

(τ)∈[k−1]

ξτh(g)

∣∣∣∣∣∣ ≤ 4(H + 1 +
√
γτ )‖f − fV ‖Zkh

√
log(2/δ) + logN (F , 1/T ).



Randomized Exploration for Reinforcement Learning with General Value Function Approximation

Thus, for all f ∈ F , there exists g ∈ C(F , 1/T ) such that ‖f − g‖∞ ≤ 1/T and∣∣∣∣∣∣
∑

(τ)∈[k−1]

χτh(f)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

(τ)∈[k−1]

χτh(g)

∣∣∣∣∣∣+ 2(H + 1 +
√
γτ )

≤ 4(H + 1 +
√
γτ )‖g − fV ‖Zkh

√
log (2/δ) + logN (F , 1/T ) + 2(H + 1 +

√
γτ )

≤ 4(H + 1 +
√
γτ )(‖f − fV ‖Zkh + 1)

√
log (2/δ) + logN (F , 1/T ) + 2(H + 1 +

√
γτ ).

For V ′ : S → [0, H] such that ‖V − V ′‖∞ ≤ 1/T , we have ‖fV ′ − fV ‖∞ ≤ ‖V ′ − V ‖∞ ≤ 1/T .

For any f ∈ F , we have

‖f‖2D̃k
h,V ′
− ‖fV ′‖2D̃k

h,V ′

=‖f − fV ′‖2Zkh + 2
∑

(sτh,a
τ
h)∈Zkh

(f(sτh, a
τ
h)− fV ′(sτh, aτh))(fV ′(s

τ
h, a

τ
h)− rτh(sτh, a

τ
h)− ξτh − V ′(sτh+1))

≥‖f − fV ′‖2Zkh + 2
∑

(sτh,a
τ
h)∈Zkh

(f(sτh, a
τ
h)− fV (sτh, a

τ
h))(fV (sτh, a

τ
h)− rτh(sτh, a

τ
h)− ξτh − V (sτh+1))

− 4(H + 1 +
√
γk)‖V ′ − V ‖∞|Zkh |

≥‖f − fV ′‖2Zkh +
∑

(τ,h)∈[k−1]×[H]

χτh(f)− 4(H + 1 +
√
γk)

≥‖f − fV ′‖2Zkh − 4(H + 1 +
√
γk)(‖f − fV ‖Zkh + 1)

√
log (2/δ) + logN (F , 1/T )− 6(H + 1 +

√
γk)

≥‖f − fV ′‖2Zkh − 4(H + 1 +
√
γk)(‖f − fV ′‖Zkh + 2)

√
log (2/δ) + logN (F , 1/T )− 6(H + 1 +

√
γk).

In addition, using Assumption D, we have the approximate triangle inequality for the perturbed regularizer:

R̃(f)− R̃(fV ′)

=

D∑
i

[pi(f) + ξ′i]
2 −

D∑
i

[pi(fV ′) + ξ′i]
2

=R(f)−R(fV ′) + 2

D∑
i

ξ′i(pi(f)− pi(fV ′))

≥cR(f − fV ′)− 2R(fV ′)− 2

D∑
i

√
γkpi(fV ′)

≥cR(f − fV ′)− 2B − 2
√
γk
√
BD.

Summing the above two inequalities we have

‖f‖2D̃k
h,V ′

+ R̃(f)− ‖fV ′‖2D̃k
h,V ′
− R̃(fV ′) ≥ ‖f − fV ′‖2Zkh + cR(f − fV ′)− C,

where C = 4(H + 1 +
√
γk)(‖f − fV ′‖Zkh + 2)

√
log (2/δ) + logN (F , 1/T ) + 6(H + 1 +

√
γk) + 2B + 2

√
γk
√
BD.

As f̃h,V ′ is the minimizer of ‖f‖2
D̃k
h,V ′

+ R̃(f), we have

‖f̃h,V ′ − fV ′‖2Zkh + cR(f̃h,V ′ − fV ′) ≤ c′
[
(H + 1 +

√
γk)
√

log (2/δ) + logN (F , 1/T ) +

√
B +

√
γkBD

]2

.



Randomized Exploration for Reinforcement Learning with General Value Function Approximation

To prove the above argument, we use the inequality that if we have x2 + y ≤ ax+ b for positive a, b, y, then x ≤ a+
√
b

and x2 + y ≤ (a+
√
b)2. In addition, we can remove c by replacing c′ with c′/min{1, c} and then we get our final bound.

Lemma A.5 (Confidence Region). Let Fk,mh = {f ∈ F|‖f − f̃k,mh ‖2Zkh +R(f − f̃k,mh ) ≤ β(F , δ)}, where

β(F , δ) = c′
[
(H + 1 +

√
γk)
√

log (2/δ) + logN (F , 1/T ) +

√
B +

√
γkBD

]2

. (7)

Conditioned on the event G(K,H, δ), with probability at least 1− δ, for all (k, h,m) ∈ [K]× [H]× [M ], we have

rh(·, ·) + PhV
k
h+1(·, ·) ∈ Fk,mh .

Proof. First note that for a fixed (k, h,m) ∈ [K]× [H]× [M ],

Q = {min{f(·, ·), H} | f ∈ C(F , 1/T )} ∪ {0}

is a (1/T )-cover of Qk,mh+1(·, ·). This implies Q is also a (1/T )-cover of Qkh+1(·, ·). This further implies

V = {max
a∈A

q(·, a) | q ∈ Q}

is a 1/T cover of V kh+1(·) where we have log(|V|) = logN (F , 1/T ).

For the remaining part of the proof, we condition on
⋂
V ∈V Eh,V (δ/|V|TM), where Eh,V (δ) is the event defined in Lemma

A.4. By Lemma A.4 and union bound, we have Pr
[⋂

V ∈V Eh,V (δ/(8|V|MT )
]
≥ 1− δ/(8MT ).

Let V ∈ V such that ‖V − V kh+1‖∞ ≤ 1/T . By Lemma A.4 we have∥∥∥f̃k,mh (·, ·)− rh(·, ·)− PhV kh+1(·, ·)
∥∥∥2

Zkh
+R(f̃k,mh (·, ·)− rh(·, ·)− PhV kh+1(·, ·))

≤ c′
[
(H + 1 +

√
γk)
√

log (1/δ) + logN (F , 1/T )
]2
,

where c′ is some absolute constant. By union bound, for all (k, h,m) ∈ [K]× [H]× [M ] we have rh(·, ·) +PhV
k
h+1(·, ·) ∈

Fk,mh with probability 1− δ.

The last lemma guarantees that rh(·, ·) + PhV
k
h+1(·, ·) lies in the confidence region Fk,mh with high probability. Note that

the confidence region Fk,mh is centered at f̃k,mh , which is the solution to the perturbed regression problem defined in (3).
For the unperturbed regression problem and its solution as center of the confidence region, we get the following lemma as a
direct consequence of Lemma A.5.

Lemma A.6. Let Fkh = {f ∈ F|‖f − f̂kh‖2Zkh +R(f − f̂kh ) ≤ β′(F , δ)}, where

β′(F , δ) ≥ c′
[
(H + 1)

√
log (2/δ) + logN (F , 1/T ) +

√
B
]2
. (8)

With probability at least 1− δ, for all (k, h,m) ∈ [K]× [H]× [M ], we have

rh(·, ·) + PhV
k
h+1(·, ·) ∈ Fkh .

Proof. This is a direct implication of Lemma A.5 with zero perturbance.
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A.3. Optimism

In this section, we will show that {Qkh}(h,k)∈[H]×[K] is optimistic with high probability. Formally, we have the following
lemma.

Lemma A.7. Set M = ln(T |S||A|δ )/ ln( 1
1−v ) in Algorithm 1. Conditioned on the event G(K,H, δ), with probability at

least 1− δ, for all s ∈ S, a ∈ A, h ∈ [H], k ∈ [K], we have

Q∗h(s, a) ≤ Qkh(s, a).

Proof. For timestep H + 1, we have QkH+1 = Q∗H+1 = 0. By Lemma A.6, there exists β′(F , δ) such that with probability
at least 1− δ, for all (k, h) ∈ [K]× [H], we have

fkh (·, ·) := rh(·, ·) + PhV
k
h+1(·, ·) ∈ Fkh ,

where Fkh = {f ∈ F | ‖f − f̂kh‖2Zkh +R(f − f̂kh ) ≤ β′(F , δ)}.

Using notations introduced in Definition 4.2, let gkh,σ be a function such that f̃k,mh (s, a) ≥ f̂(s, a) + gkh,σ(s, a) holds with

probability at least v. We set M = ln(T |S||A|δ )/ ln( 1
1−v ) and then f̃k,mh (s, a) ≥ f̂(s, a) + gkh,σ(s, a) with probability at

least
1− (1− v)M = 1− δ

T |S||A|
,

for any (k, h) ∈ [K] × [H] and (s, a) ∈ S × A. By union bound, we have f̃k,mh (s, a) ≥ f̂(s, a) + gkh,σ(s, a) for all
(k, h) ∈ [K]× [H] and (s, a) ∈ S ×A with probability at least 1− δ and we have

f̃kh (s, a) = max
m∈[M ]

f̃k,mh (s, a)

≥ f̂kh (s, a) + gkh,σ(s, a)

≥ f̂kh (s, a) + w(Fkh )

≥ fkh (s, a),

where the second inequality is from Assumption C and the choise of σ as discussed in Appendix A.1. The last inequality
follows from the definition of the width function and the previous observation that fkh (·, ·) ∈ Fkh with probability at least
1− δ. Now we induct on h from h = H to 1.

Q∗h(s, a) = min{rh(s, a) + PhV
∗
h+1(s, a), H}

= min{fkh (s, a) + Ph(V ∗h+1 − V kh+1)(s, a), H}

≤ min{f̃kh (s, a) + Ph(V ∗h+1 − V kh+1)(s, a), H}

≤ min{f̃kh (s, a), H}
= Qkh(s, a).

Thus,

V ∗h (s) = max
a

Q∗h(s, a) ≤ max
a

Qkh(s, a) = V kh (s).

where the second inequality is from V ∗h+1 ≤ V kh+1, which is implied by induction.

A.4. Regret Bound

We are now ready to provide the regret bound for Algorithm 1. The next lemma upper bounds the regret of the algorithm by
the sum of the width functions.

Lemma A.8 (Regret decomposition). Denote bkh(s, a) = w(Fkh , s, a). Conditioned on the event G(K,H, δ), with probability
at least 1− δ, we have
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Regret(K) ≤
K∑
k=1

H∑
h=1

bkh(skh, a
k
h) +

K∑
k=1

H∑
h=1

ζkh ,

where ζkh = P (skh, a
k
h)(V kh+1 − V π

k

h+1)− (V kh+1(skh+1)− V πkh+1(skh+1)) is a martingale difference sequence with respect to
the filtration Gkh,2.

Proof. We condition on the good events in Lemma A.5. For all (k, h,m) ∈ [K]× [H]× [M ], we have∥∥∥rh(·, ·) + PhV
k
h+1(·, ·)− f̃k,mh

∥∥∥2

Zkh
+R(rh(·, ·) + PhV

k
h+1(·, ·)− f̃k,mh ) ≤ β(F , δ).

Recall that Fkh = {f |
∥∥rh(·, ·) + PhV

k
h+1(·, ·)− f

∥∥2

Zkh
+R(rh(·, ·) + PhV

k
h+1(·, ·)− f̃k,mh ) ≤ β(F , δ)} is the confidence

region. Then for (k, h,m) ∈ [K] × [H] × [M ], f̃k,mh ∈ Fkh . Defining bkh(s, a) = w(Fkh , s, a), for all (k, h,m) ∈
[K]× [H]× [M ] we have,

bkh(s, a) ≥
∣∣∣r(s, a) + P (s, a)V kh+1 − f̃

k,m
h (s, a)

∣∣∣ .
As Qkh(s, a) = min{maxm∈[M ]{f̃k,mh (·, ·)}, H − h+ 1}, we have

bkh(s, a) ≥
∣∣r(s, a) + P (s, a)V kh+1 −Qkh(s, a)

∣∣ .
By Lemma A.7 and standard telescoping argument, we have

Regret(K) ≤
K∑
k=1

V k1 (sk1)− V πk1 (sk1)

=

K∑
k=1

Qk1(sk1 , a
k
1)−Qπ

k

1 (sk1 , a
k
1)

=

K∑
k=1

Qk1(sk1 , a
k
1)− (r(sk1 , a

k
1) + P (sk1 , a

k
1)V k2 ) + (r(sk1 , a

k
1) + P (sk1 , a

k
1)V k2 )−Qπ

k

1 (sk1 , a
k
1)

≤
K∑
k=1

bk1(sk1 , a
k
1) + P (sk1 , a

k
1)(V k2 − V π

k

2 )

=

K∑
k=1

bk1(sk1 , a
k
1) + (V k2 (sk2)− V π

k

2 (sk2)) + ζk1

≤
K∑
k=1

H∑
h=1

bkh(skh, a
k
h) +

K∑
k=1

H∑
h=1

ζkh .

Lemma A.9 (Time inhomogeneous version of Lemma 10 in (Wang et al., 2020)). Let F ′ be a subset of function class F ,
consisting of all f ∈ F such that

‖f − υ‖2Z +R(f − υ) ≤ β(F , δ),

where v = r + PV as in Assumption E and β(F , δ) as defined in Lemma A.5. With probability at least 1− δ, we have

K∑
k=1

H∑
h=1

bkh(skh, a
k
h) ≤ H + 4H3dimE(F ′, 1/T ) +H

√
cdimE(F ′, 1/T )Kβ(F , δ),

for some absolute constant c > 0.
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Proof. Define

F ′kh = {f ∈ F ′ | ‖f − f̂kh‖2Zkh ≤ β(F , δ)} = F ′
⋂
{f ∈ F | ‖f − f̂kh‖2Zkh ≤ β(F , δ)}.

As Fkh ⊆ F ′ and Fkh ⊆
⋂
{f ∈ F | ‖f − f̂kh‖2Zkh ≤ β(F , δ)}, we have Fkh ⊆ F ′hk and w(Fkh , s, a) ≤ w(F ′hk, s, a) for all

s, a. By Assumption E, F ′ has bounded eluder dimension.

Similar to Lemma 10 in (Wang et al., 2020), we have for any h,

K∑
k=1

bkh(skh, a
k
h) ≤

K∑
k=1

w(F ′kh , s, a) ≤ 1 + 4H2dimE(F ′, 1/T ) +
√
cdimE(F ′, 1/T )Kβ(F , δ).

Summing over all timestep h and we have the bound in the lemma.

Theorem A.10. Under all the assumptions, with probability at least 1− δ, Algorithm 1 achieves a regret bound of

Regret(K) ≤ 4H3dimE(F , 1/T ) +
√

dimE(F , 1/T )β(F , δ)HT,

where

β(F , δ) = c′
[
(H + 1 + σ)

√
log (2/δ) + logN (F , 1/T ) +

√
B + σ

√
BD

]2

,

for some constant c′.

Proof. By Assumption E, we can consider F ′ ⊆ F as the whole function class in the analysis because it includes all the
Fkh ,∀h, k. By Azuma-Hoeffding inequality and Lemma A.9, With probability at least 1− δ, we have

Regret(K) ≤
K∑
k=1

H∑
h=1

bkh(skh, a
k
h) +

K∑
k=1

H∑
h=1

ζkh

≤ c′
(
H + 4H3dimE(F , 1/T ) +H

√
cdimE(F , 1/T )Kβ(F , δ) +H

√
KH log (1/δ)

)
,

for some constant c′. We plug in the definition of β(F , δ) and
√
γk = Õ(σ), then we get the final bound.

Remark A.11. For linear MDP, as shown in Section 4.1.1, we have

σ = 2
√
β′(F , δ) = c′

[
(H + 1)

√
log (2/δ) + logN (F , 1/T ) +

√
B
]2
,

B = 2Hd and D = d. In addition, we have dimE(F , 1/T ) = Õ(d) (Russo & Van Roy, 2013) and logN (F , 1/T ) = Õ(d).
As a result, our bound implies a Õ(

√
H3d3T ) regret bound for linear MDP.

B. GFA With Model Misspecification
Assumption F. (Assumption 3 in (Wang et al., 2020)) For function class F , there exists a real number ζ, such that for any
V : S → [0, H], there exists gV ∈ F which satisfies

max
(s,a)∈S×A

∣∣∣∣∣gV (s, a)− r(s, a)−
∑
s′∈S

P (s′|s, a)V (s′)

∣∣∣∣∣ ≤ ζ.
In addition, we assume gV satisfies Assumption D, i.e. R(gV ) ≤ B.
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Lemma B.1. Consider a fixed k ∈ [K] and a fixed h ∈ [H]. Let Zkh = {(sτh, aτh)}τ∈[k−1] and D̃kh,V = {(sτh, aτh, rτh +

ξτh + V (sτh+1))}τ∈[k−1]. Define f̃kh,V = arg minf∈F ‖f‖2D̃kh,V
+ R̃(f). Conditioned on the good event G(K,H, δ), with

probability at least 1− δ, for a fixed V : S → [0, H] and any V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 1/T , we have

∥∥∥f̃h,V ′(·, ·)− rh(·, ·)− PhV ′(·, ·)
∥∥∥2

Zkh
+R(f̃h,V ′(·, ·)− rh(·, ·)− PhV ′(·, ·))

≤c′
[
(H + 1 +

√
γk)
√

log (2/δ) + logN (F , 1/T ) +

√
B +

√
γkBD + ζK(H +

√
γk)

]2

,

for some constant c′.

Proof. Recall that for notational simplicity, we denote [PhVh+1](s, a) = Es′∼Ph(· | s,a)Vh+1(s′). Now consider a fixed
V : S → [0, H], and define

fV (·, ·) = rh(·, ·) + PhV (·, ·). (9)

By Assumption F, there exists gV ∈ F such that

max
(s,a)∈S×A

|gV (s, a)− fV (s, a)| ≤ ζ.

For any f ∈ F , consider

χτh = 2(f(sτh, a
τ
h)− fV (sτh, a

τ
h))(fV (sτh, a

τ
h)− rτh(sτh, a

τ
h)− ξτh − V (sτh+1)).

First we show that χτh(f) is a martingale difference sequence with respect to the filtration Gτh,1.

E[χτh(f)|Gτh,1] = E[2(f(sτh, a
τ
h)− fV (sτh, a

τ
h))(fV (sτh, a

τ
h)− rτh(sτh, a

τ
h)− ξτh − V (sτh+1))|Gτh,1]

= 2(f(sτh, a
τ
h)− fV (sτh, a

τ
h))E[(fV (sτh, a

τ
h)− rτh(sτh, a

τ
h)− ξτh − V (sτh+1))|Gτh,1]

= 2(f(sτh, a
τ
h)− fV (sτh, a

τ
h))(fV (sτh, a

τ
h)− rτh(sτh, a

τ
h)− PhV (sτh, a

τ
h))

= 0.

In addition, conditioning on good events G(K,H, δ), we have

|χτh(f)| ≤ 2(H + 1 +
√
γτ )|f(sτh, a

τ
h)− fV (sτh, a

τ
h)|.

As χτh(f) is a martingale difference sequence conditioned on the filtration Gτh,1 , by Azuma-Hoeffding inequality, we have

P

∣∣∣∣∣∣
∑

τ∈[k−1]

χτh(f)

∣∣∣∣∣∣ ≥ ε
 ≤ 2exp

(
− ε2

8(H + 1 +
√
γτ )2‖f − fV ‖2Zkh

)
.

Now we set

ε =

√
8(H + 1 +

√
γτ )2 log

(
2N(F , 1/T )

δ

)
‖f − fV ‖2Zkh

≤ 4(H + 1 +
√
γτ )‖f − fV ‖Zkh

√
log(2/δ) + logN (F , 1/T ).

With union bound, for all g ∈ C(F , 1/T ), with probability at least 1− δ we have∣∣∣∣∣∣
∑

(τ)∈[k−1]

ξτh(g)

∣∣∣∣∣∣ ≤ 4(H + 1 +
√
γτ )‖f − fV ‖Zkh

√
log(2/δ) + logN (F , 1/T ).
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Thus, for all f ∈ F , there exists g ∈ C(F , 1/T ) such that ‖f − g‖∞ ≤ 1/T and ,

∣∣∣∣∣∣
∑

(τ)∈[k−1]

χτh(f)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

(τ)∈[k−1]

χτh(g)

∣∣∣∣∣∣+ 2(H + 1 +
√
γτ )

≤ 4(H + 1 +
√
γτ )‖g − fV ‖Zkh

√
log (2/δ) + logN (F , 1/T ) + 2(H + 1 +

√
γτ )

≤ 4(H + 1 +
√
γτ )(‖f − fV ‖Zkh + 1)

√
log (2/δ) + logN (F , 1/T ) + 2(H + 1 +

√
γτ )

For V ′ : S → [0, H] such that ‖V − V ′‖∞ ≤ 1/T , we have ‖fV ′ − fV ‖∞ ≤ ‖V ′ − V ‖∞ ≤ 1/T .

For any f ∈ F , we have

‖f‖2D̃k
h,V ′
− ‖fV ′‖2D̃k

h,V ′

=‖f − fV ′‖2Zkh + 2
∑

(sτh,a
τ
h)∈Zkh

(f(sτh, a
τ
h)− fV ′(sτh, aτh))(fV ′(s

τ
h, a

τ
h)− rτh(sτh, a

τ
h)− ξτh − V ′(sτh+1))

≥‖f − fV ′‖2Zkh + 2
∑

(sτh,a
τ
h)∈Zkh

(f(sτh, a
τ
h)− fV (sτh, a

τ
h))(fV (sτh, a

τ
h)− rτh(sτh, a

τ
h)− ξτh − V (sτh+1))

− 4(H + 1 +
√
γk)‖V ′ − V ‖∞|Zkh |

≥‖f − fV ′‖2Zkh +
∑

(τ,h)∈[k−1]×[H]

χτh(f)− 4(H + 1 +
√
γk)

≥‖f − fV ′‖2Zkh − 4(H + 1 +
√
γk)(‖f − fV ‖Zkh + 1)

√
log (2/δ) + logN (F , 1/T )− 6(H + 1 +

√
γk)

≥‖f − fV ′‖2Zkh − 4(H + 1 +
√
γk)(‖f − fV ′‖Zkh + 2)

√
log (2/δ) + logN (F , 1/T )− 6(H + 1 +

√
γk).

In addition, by Assumption D, we have

R̃(f)− R̃(fV ′)

=
∑
i

[pi(f)− ξ′i]2 −
∑
i

[pi(fV ′)− ξ′i]2

=R(f)−R(fV ′)− 2
∑
i

ξ′i(pi(f)− pi(fV ′))

≥cR(f − fV ′)− 2R(fV ′)− 2
∑
i

√
γkpi(fV ′)

≥cR(f − fV ′)− 2B − 2
√
γk
√
BD.

Summing the above two inequalities we have

‖f‖2D̃k
h,V ′

+ R̃(f)− ‖fV ′‖2D̃k
h,V ′
− R̃(fV ′) ≥ ‖f − fV ′‖2Zkh + cR(f − fV ′)− C,

where C = 4(H + 1 +
√
γk)(‖f − fV ′‖Zkh + 2)

√
log (2/δ) + logN (F , 1/T ) + 6(H + 1 +

√
γk) + 2B + 2

√
γk
√
DB.
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Now we try to replace the fV ′ in the RHS with g′V .

‖fV ′‖2D̃k
h,V ′
− ‖gV ′‖2D̃k

h,V ′

=
∑

τ∈[k−1]

(fV ′(s
τ
h, a

τ
h)− (rτh + ξτh + V (sτh+1)))2 −

∑
τ∈[k−1]

(gV ′(s
τ
h, a

τ
h)− (rτh + ξτh + V (sτh+1)))2

=
∑

τ∈[k−1]

(fV ′(s
τ
h, a

τ
h)− gV ′(sτh, aτh))(fV ′(s

τ
h, a

τ
h) + gV ′(s

τ
h, a

τ
h)− 2(rτh + ξτh + V (sτh+1)))

≥− ζK(4H + 2
√
γk).

By the boundedness of the regularizer (Assumption D), we have

‖fV ′‖2D̃k
h,V ′

+ R̃(fV ′)− ‖gV ′‖2D̃k
h,V ′
− R̃(gV ′) ≥ −ζK(4H + 2

√
γk)−B.

Thus we have

‖f‖2D̃k
h,V ′

+ R̃(f)− ‖gV ′‖2D̃k
h,V ′
− R̃(gV ′) ≥ ‖f‖2D̃k

h,V ′
+ R̃(f)− ‖fV ′‖2D̃k

h,V ′
− R̃(fV ′)− ζK(4H + 2

√
γk)−B

≥ ‖f − fV ′‖2Zkh + cR(f − fV ′)− C − ζK(4H + 2
√
γk)−B.

As f̃h,V ′ is the minimizer of ‖f‖2
D̃k
h,V ′

+ R̃(f) for f ∈ F and note that gV ′ ∈ F , we have

‖f̃h,V ′ − fV ′‖2Zkh + cR(f̃h,V ′ − fV ′)

≤c′
[
(H + 1 +

√
γk)
√

log (2/δ) + logN (F , 1/T ) +

√
B +

√
γkBD + ζK(H +

√
γk)

]2

.

To prove the above argument, we use the inequality that if we have x2 + y ≤ ax+ b for positive a, b, y, then x ≤ a+
√
b

and x2 + y ≤ (a+
√
b)2. In addition, we can remove c by replacing c′ with c′/min{1, c} and then we get the final bound.

Lemma B.2. (Misspecified Confidence Region) Let Fk,mh = {f ∈ F|‖f − f̃k,mh ‖2Zkh +R(f − f̃k,mh ) ≤ β(F , δ)}, where

β(F , δ) = c′
[
(H + 1 +

√
γk)
√

log (2/δ) + logN (F , 1/T ) +

√
B +

√
γkBD + ζK(H +

√
γk)

]2

. (10)

Conditioned on the event G(K,H, δ), with probability at least 1− δ, for all (k, h,m) ∈ [K]× [H]× [M ], we have

rh(·, ·) + PhV
k
h+1(·, ·) ∈ Fk,mh .

Proof. With Lemma B.1, the proof is same as Lemma A.5.

Theorem B.3. Under all the assumptions, with probability at least 1− δ, Algorithm 1 achieves a regret bound of

Regret(K) ≤ 4H3dimE(F , 1/T ) +
√

dimE(F , 1/T )β(F , δ)HT,

where

β(F , δ) = c′
[
(H + 1 + σ)

√
log (2/δ) + logN (F , 1/T ) +

√
B + σ

√
BD + ζK(H + σ)

]2

,

for some constant c′.

Proof. With Lemma B.2, the proof is the same as Theorem A.10.
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C. LSVI-PHE with linear function approximation
In this section, we prove Theorem 4.7. Our analysis specilized to linear MDP setting is simpler and may provide additional
insights. In addition, compared to GFA setting, we improve the bound for M and it no longer depends on |S| or |A|. We
first introduce the notation and few definitions that are used throughout this section. Upon presenting lemmas and their
proofs, finally we combine the lemmas to prove Theorem 4.7.
Definition C.1 (Model prediction error). For all (k, h) ∈ [K]× [H], we define the model prediction error associated with
the reward rkh,

lkh(s, a) = rkh(s, a) + PhV kh+1(s, a)−Qkh(s, a).

This depicts the prediction error using V kh+1 instead of V π
k

h+1 in the Bellman equations (1).
Definition C.2 (Unperturbed estimated parameter). For all (k, h) ∈ [K] × [H], we define the unperturbed estimated
parameter as

θ̂kh = (Λkh)−1

(
k−1∑
τ=1

[rτh + V kh+1(sτh+1)]φ(sτh, a
τ
h)

)
.

Moreover, we denote the difference between the perturbed estimated parameter θ̃k,jh and the unperturbed estimated parameter

θ̂kh as

ζk,jh = θ̃k,jh − θ̂kh.

C.1. Concentration

Our first lemma characterizes the difference between the perturbed estimated parameter θ̃k,jh and the unperturbed estimated
parameter θ̂kh.
Proposition C.3 (restatement of Proposition 3.2). In step 9 of Algorithm 2, conditioned on all the randomness except
{εk,i,jh }(i,j)∈[k−1]×[M ] and {ξk,jh }j∈[M ], the estimated parameter θ̃k,jh satisfies

ζk,jh = θ̃k,jh − θ̂
k
h ∼ N(0, σ2(Λkh)−1),

where θ̂kh = (Λkh)−1(
∑k−1
τ=1[rτh + V kh+1(sτh+1)]φ(sτh, a

τ
h)) is the unperturbed estimated parameter from Definiton C.2.

Proof. From Algorithm 2, note that

θ̃k,jh = (Λkh)−1(ρkh + ξk,jh )

= (Λkh)−1

(
k−1∑
τ=1

(
[rτh + V kh+1(sτh+1) + εk,τ,jh ]φ(sτh, a

τ
h)
)

+ ξk,jh

)

= (Λkh)−1

(
k−1∑
τ=1

[rτh + V kh+1(sτh+1)]φ(sτh, a
τ
h)

)
+ (Λkh)−1

(
k−1∑
τ=1

εk,τ,jh φ(sτh, a
τ
h) + ξk,jh

)

= θ̂kh + (Λkh)−1

(
k−1∑
τ=1

εk,τ,jh φ(sτh, a
τ
h) + ξk,jh

)
.

Since εk,τ,jh ∼ N(0, σ2), note that for τ ∈ [k − 1],

εk,τ,jh φ(sτh, a
τ
h) ∼ N(0, σ2φ(sτh, a

τ
h)φ(sτh, a

τ
h)>).

Now, since ξk,jh ∼ N(0, σ2λId),

(Λkh)−1

(
k−1∑
τ=1

εk,τ,jh φ(sτh, a
τ
h) + ξk,jh

)
∼ (Λkh)−1 ·N

(
0, σ2

(
k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)> + λId

))
∼ (Λkh)−1 ·N

(
0, σ2Λkh

)
∼ N(0, σ2(Λkh)−1).
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Thus, we have
ζk,jh = θ̃k,jh − θ̂

k
h ∼ N(0, σ2(Λkh)−1).

Lemma C.4 (Lemma B.1 in (Jin et al., 2020)). Under Definition 4.3 of linear MDP, for any fixed policy π, let {θπh}h∈[H]

be the corresponding weights such that Qπh(s, a) = 〈φ(s, a), θπh〉 for all (s, a, h) ∈ S ×A× [H]. Then for all h ∈ [H], we
have

‖θπh‖ ≤ 2H
√
d.

Our next lemma states that the unperturbed estimated weight θ̂kh is bounded.

Lemma C.5. For any (k, h) ∈ [K]× [H], the unperturbed estimated weight θ̂kh in Definition C.2 satisfies

‖θ̂kh‖ ≤ 2H
√
kd/λ.

Proof. We have

∥∥θ̂kh∥∥ =
∥∥∥(Λkh)−1

k−1∑
τ=1

[rτh(sτh, a
τ
h) + V kh+1(sτh+1)] · φ(sτh, a

τ
h)
∥∥∥

=
∥∥∥(Λkh)−1

k−1∑
τ=1

[rτh(sτh, a
τ
h) + max

a∈A
Qkh+1(sτh+1, a)] · φ(sτh, a

τ
h)
∥∥∥

≤ 1√
λ

√
k − 1

(k−1∑
τ=1

∥∥[rτh(sτh, a
τ
h) + max

a∈A
Qkh+1(sτh+1, a)] · φ(sτh, a

τ
h)
∥∥2

(Λkh)−1

)1/2

≤ 2H√
λ

√
k − 1

(k−1∑
τ=1

‖φ(sτh, a
τ
h)‖2(Λkh)−1

)1/2

≤ 2H
√
kd/λ.

Here, the first inequality follows from Lemma D.5. The second inequality follows from the truncation of Qkh to the range
[0, H − h+ 1] in Line 11 of Algorithm 2. The last inequality is due to Lemma D.3.

For the ease of exposition, we now define the values βk(δ), νk(δ) and γk(δ) which we use to define our high confidence
bounds.
Definition C.6 (Noise bounds). For any δ > 0 and some large enough constants c1,c2 and c3, let√

βk(δ)
def
= c1H

√
d log(Hdk/δ),√

νk(δ)
def
= c2H

√
d log(Hdk/δ),√

γk(δ)
def
= c3

√
dνk(δ) log(d/δ).

Definition C.7 (Noise distribution). In Algorithm 2, we set the following values for σ

σk = 2
√
νk(δ).

Thus for all j ∈ [M ], we have,
{ξk,jh } ∼ N

(
0, 4νk(δ)(Λkh)−1

)
.

Now, we define some events based on the characterization of the random variable ζk,jh as defined in Definition C.2.
Definition C.8 (Good events). For any δ > 0, we define the following random events

Gkh(ζ, δ)
def
=
{

max
j∈[M ]

‖ζk,jh ‖Λkh ≤
√
γk(δ)

}
,

G(K,H, δ)
def
=
⋂
k≤K

⋂
h≤H

Gkh(ζ, δ).
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Next, we present our main concentration lemma in this section.

Lemma C.9. Let λ = 1 in Algorithm 2. For any fixed δ > 0, conditioned on the event G(K,H, δ), we have for all
(k, h) ∈ [K]× [H],

∥∥∥k−1∑
τ=1

φ(sτh, a
τ
h)
[(
V kh+1 − PhV kh+1

)
(sτh, a

τ
h)
]∥∥∥

(Λkh)−1
≤ c1H

√
d log (Hdk/δ), (11)

with probability at least 1− δ for some constant c1 > 0.

Proof. From Lemma C.5, we know, for all (k, h) ∈ [K]× [H], we have ‖θ̂kh‖ ≤ 2H
√
kd/λ. In addition, by construction

of Λkh+1, the minimum eigenvalue of Λkh+1 is lower bounded by λ. Thus we have
√
λ‖ζk,jh+1‖ ≤ ‖ζ

k,j
h+1‖Λkh+1

≤
√
γk(δ).

Finally, triangle inequality implies, ‖θ̃k,jh+1‖ = ‖θ̂kh+1 + ζk,jh+1‖ ≤ 2H
√
kd/λ +

√
γk(δ)/λ for all j ∈ [M ]. Combining

Lemma D.6 and Lemma D.8, we have that, for any ε > 0 and δ > 0, with probability at least 1− δ,

∥∥∥k−1∑
τ=1

φ(sτh, a
τ
h)[
(
V kh+1 − PhV kh+1

)
(sτh, a

τ
h)]
∥∥∥

(Λkh)−1

≤
(

4H2
[d

2
log
(k + λ

λ

)
+ d log

(
1 +

4H
√
kd/λ+ 2

√
γk(δ)/λ

ε

)
+ log

1

δ

]
+

8k2ε2

λ

)1/2

≤
(

4H2
[d

2
log
(k + λ

λ

)
+ d log

(3(2H
√
kd/λ+

√
γk(δ)/λ)

ε

)
+ log

1

δ

]
+

8k2ε2

λ

)1/2

≤ 2H
[d

2
log
(k + λ

λ

)
+ d log

(3(2H
√
kd/λ+

√
γk(δ)/λ)

ε

)
+ log

1

δ

]1/2
+

2
√

2kε√
λ

≤ 2H
√
d
[1

2
log
(k + λ

λ

)
+ log

(3(2H
√
kd/λ+

√
γk(δ)/λ)

ε

)
+ log

1

δ

]1/2
+

2
√

2kε√
λ

. (12)

Setting λ = 1, ε = H
√
d/k and substituting

√
γk(δ) = c3

√
dνk(δ) log(d/δ) ≤ c4Hd log (Hdk/δ) for some constant

c4 > 0, we get

∥∥∥k−1∑
τ=1

φ(sτh, a
τ
h)[
(
V kh+1 − PhV kh+1

)
(sτh, a

τ
h)]
∥∥∥

(Λkh)−1

≤ 2H
√
d

[
1

2
log(k + 1) + log(1/δ) + log

3k[2H
√
dk + c4Hd log (Hdk/δ)]

H
√
d

]1/2

+ 2
√

2H
√
d

≤ c1H
√
d log (Hdk/δ), (13)

for some constant c1 > 0.

Lemma C.10. Let λ = 1 in Algorithm 2. For any δ > 0, conditioned on the event G(K,H, δ), for any (h, k) ∈ [H]× [K]
and (s, a) ∈ S ×A, we have

∣∣φ(s, a)>θ̂kh − rkh(s, a)− PhV kh+1(s, a)
∣∣ ≤ c2H√d log(Hdk/δ)

∥∥φ(s, a)
∥∥

(Λkh)−1 ,

with probability 1− δ, where c2 > 0 is a constant.

Proof. Let us denote the inner product over S by 〈·, ·〉S . Using linear MDP assumption for transition kernel from
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Definition 4.3, we get

PhV kh+1(s, a) = φ(s, a)>〈µh, V kh+1〉S
= φ(s, a)>(Λkh)−1Λkh〈µh, V kh+1〉S

= φ(s, a)>(Λkh)−1
(k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)> + λI

)
〈µh, V kh+1〉S

= φ(s, a)>(Λkh)−1
(k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)>〈µh, V kh+1〉S + λI〈µh, V kh+1〉S

)
= φ(s, a)>(Λkh)−1

(k−1∑
τ=1

φ(sτh, a
τ
h)(PhV kh+1)(sτh, a

τ
h) + λI〈µh, V kh+1〉S

)
, (14)

where in the last line we rely on the definition of Ph.

Using (14) we obtain,

φ(s, a)>θ̂kh − rkh(s, a)− (PhV kh+1)(s, a) = φ(s, a)>(Λkh)−1
k−1∑
τ=1

[
rτh(sτh, a

τ
h) + V kh+1(sτh+1)

]
· φ(sτh, a

τ
h)− rkh(s, a)

− φ(s, a)>(Λkh)−1
(k−1∑
τ=1

φ(sτh, a
τ
h)(PhV kh+1)(sτh, a

τ
h) + λI〈µh, V kh+1〉S

)
= φ(s, a)>(Λkh)−1

(k−1∑
τ=1

φ(sτh, a
τ
h)
[(
V kh+1 − PhV kh+1

)
(sτh, a

τ
h)
])

︸ ︷︷ ︸
(i)

+ φ(s, a)>(Λkh)−1
(k−1∑
τ=1

rτh(sτh, a
τ
h)φ(sτh, a

τ
h)
)
− rkh(s, a)︸ ︷︷ ︸

(ii)

− λφ(s, a)>(Λkh)−1〈µh, V kh+1〉S︸ ︷︷ ︸
(iii)

. (15)

In the following we will analyze the each of the three terms in (15) separately and derive high probability bound for each of
them.

Term (i). Since (Λkh)−1 � 0, by Cauchy-Schwarz inequality and Lemma C.9, with probability at least 1− δ, we have

φ(s, a)>(Λkh)−1
(k−1∑
τ=1

φ(sτh, a
τ
h)
[(
V kh+1 − PhV kh+1

)
(sτh, a

τ
h)
])

≤
∥∥∥k−1∑
τ=1

φ(sτh, a
τ
h)
[(
V kh+1 − PhV kh+1

)
(sτh, a

τ
h)
]∥∥∥

(Λkh)−1

∥∥φ(s, a)
∥∥

(Λkh)−1

≤
√
βk(δ)

∥∥φ(s, a)
∥∥

(Λkh)−1 . (16)
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Term (ii). Note that

φ(s, a)>(Λkh)−1
(k−1∑
τ=1

rτh(sτh, a
τ
h)φ(sτh, a

τ
h)
)
− rkh(s, a)

= φ(s, a)>(Λkh)−1
(k−1∑
τ=1

rτh(sτh, a
τ
h)φ(sτh, a

τ
h)
)
− φ(s, a)>wh

= φ(s, a)>(Λkh)−1
(k−1∑
τ=1

rτh(sτh, a
τ
h)φ(sτh, a

τ
h)− Λkhwh

)
= φ(s, a)>(Λkh)−1

(k−1∑
τ=1

rτh(sτh, a
τ
h)φ(sτh, a

τ
h)−

k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)>wh − λIwh

)
= φ(s, a)>(Λkh)−1

(k−1∑
τ=1

rτh(sτh, a
τ
h)φ(sτh, a

τ
h)−

k−1∑
τ=1

φ(sτh, a
τ
h)rτh(sτh, a

τ
h)− λIwh

)
= −λφ(s, a)>(Λkh)−1wh, (17)

where in the penultimate step, we used the fact rh(s, a) = 〈φ(s, a), wh〉 from Definition 4.3. Applying Cauchy-Schwarz
inequality we obtain,

−λφ(s, a)>(Λkh)−1wh ≤ λ‖φ(s, a)‖(Λkh)−1‖wh‖(Λkh)−1

≤
√
λ‖φ(s, a)‖(Λkh)−1‖wh‖2

≤
√
λd‖φ(s, a)‖(Λkh)−1 . (18)

Here the second inequality follows by observing that the smallest eigenvalue of Λkh is at least λ and thus the largest eigenvalue
of (Λkh)−1 is at most 1/λ. The last inequality follows from Definition 4.3. Combining (17) and (18) we get

φ(s, a)>(Λkh)−1
(k−1∑
τ=1

rτh(sτh, a
τ
h)φ(sτh, a

τ
h)
)
− rkh(s, a) ≤

√
λd‖φ(s, a)‖(Λkh)−1 . (19)

Term (iii). Similar to (18), applying Cauchy-Schwarz inequality, we get

−λφ(s, a)>(Λkh)−1〈µh, V kh+1〉S ≤ λ‖φ(s, a)‖(Λkh)−1‖〈µh, V kh+1〉S‖(Λkh)−1

≤
√
λ‖φ(s, a)‖(Λkh)−1‖〈µh, V kh+1〉S‖2

≤
√
λ‖φ(s, a)‖(Λkh)−1

( d∑
τ=1

‖µτh‖21
) 1

2 ‖V kh+1‖∞

≤ H
√
λd‖φ(s, a)‖(Λkh)−1 . (20)

Here the second inequality follows using the same observation we did for term (ii). The last inequality follows from∑d
τ=1 ‖µτh‖21 ≤ d in Definition 4.3 and the clipping operation performed in Line 2 of Algorithm 2. Now combining (16),

(19) and (20), and letting λ = 1, we get,

∣∣φ(s, a)>θ̂kh − rkh(s, a)− PhV kh+1(s, a)
∣∣ ≤ (

√
βk(δ) +H

√
d+
√
d)‖φ(s, a)‖(Λkh)−1 (21)

= (c1H
√
d log(Hdk/δ) +H

√
d+
√
d)‖φ(s, a)‖(Λkh)−1 (22)

≤ c2H
√
d log(Hdk/δ)‖φ(s, a)‖(Λkh)−1 , (23)
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with probability 1− δ for some constant c2 > 0.

In addition, If we set θkh : φ(·, ·)>θkh = rkh(·, ·) + PhV kh+1(·, ·) to be the true parameter and ∆θkh = θkh − θ̂kh to be the
regression error, then from the analysis above we can derive that ‖∆θkh‖Λkh ≤

√
νk(δ) = c2H

√
d log(Hdk/δ).

Lemma C.11 (stochastic upper confidence bound). Let λ = 1 in Algorithm 2. For any δ > 0, conditioned on the event
G(K,H, δ), for any (h, k) ∈ [H]× [K] and (s, a) ∈ S ×A, with probability at least 1− (δ + cM0 ), we have

lkh(s, a) ≤ 0,

and
−lkh(s, a) ≤

(√
νk(δ) +

√
γk(δ)

)∥∥φ(s, a)
∥∥

(Λkh)−1 ,

where c0 = Φ(1).

Proof. Applying Lemma C.10, for any (h, k) ∈ [H]× [K] and (s, a) ∈ S ×A, we have,∣∣rkh(s, a) + PhV kh+1(s, a)− φ(s, a)>θ̂kh
∣∣ ≤ c2H√d log(Hdk/δ) (24)

=
√
νk(δ)

∥∥φ(s, a)
∥∥

(Λkh)−1 , (25)

with probability at least 1− δ.

As we are conditioning on the event G(K,H, δ), for any (h, k) ∈ [H]× [K] and (s, a) ∈ S ×A, we have

max
j∈[M ]

∣∣φ(s, a)>ζk,jh
∣∣ ≤√γk(δ)

∥∥φ(s, a)
∥∥

(Λkh)−1 . (26)

Now from the definition of model prediction error, using (24) and (26), we get, with probability 1− δ,

−lkh(s, a) = Qkh(s, a)− rkh(s, a)− PhV kh+1(s, a)

= min{max
j∈[M ]

φ(s, a)>(θ̂kh + ζk,jh ), H} − rkh(s, a)− PhV kh+1(s, a)

≤ max
j∈[M ]

φ(s, a)>(θ̂kh + ζk,jh )− rkh(s, a)− PhV kh+1(s, a)

= max
j∈[M ]

φ(s, a)>ζk,jh −
(
rkh(s, a) + PhV kh+1(s, a)− φ(s, a)>θ̂kh

)
≤
∣∣rkh(s, a) + PhV kh+1(s, a)− φ(s, a)>θ̂kh

∣∣+ max
j∈[M ]

∣∣φ(s, a)>ζk,jh
∣∣

≤
(√

νk(δ) +
√
γk(δ)

)∥∥φ(s, a)
∥∥

(Λkh)−1 , (27)

Set θkh : φ(·, ·)>θkh = rkh(·, ·) + PhV kh+1(·, ·) to be the true parameter and ∆θkh = θkh − θ̂kh to be the regression error. By the
concentration part, conditioning on good events, we have ‖∆θkh‖Λkh ≤

√
νk(δ) and ‖ξk,jh ‖Λkh ≤

√
γk(δ) for all j ∈ [M ].

For all (h, k) ∈ [H]× [K] and any (s, a) ∈ S ×A, we have

lkh(s, a) = rkh(s, a) + PhV kh+1(s, a)−Qkh(s, a)

= rkh(s, a) + PhV kh+1(s, a)−min
{
H, max

j∈[M ]
φ(s, a)>(θ̂kh + ξk,jh )

}+

≤ max{φ(s, a)>∆θkh − max
j∈[M ]

φ(s, a)>ξk,jh , 0}

Now we prove that with high probability, maxj∈[M ] φ(s, a)>ξk,jh − φ(s, a)>∆θkh ≥ 0 for all (s, a) ∈ S × A. Note that
the inequality still holds if we scale φ(s, a). Now we assume all φ(s, a) satisfy ‖φ(s, a)‖(Λkh)−1 = 1. Define C(ε) to be a
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ε-cover of the ellipsoid {φ|‖φ‖(Λkh)−1 = 1} with respect to norm ‖ · ‖(Λkh)−1 and log |C(ε)| = Õ(d log( 1
ε )). For all j ∈ [M ],

we have,
{ξk,jh } ∼ N

(
0, 4νk(δ)(Λkh)−1

)
.

Thus, for all j ∈ [M ] and for all φ ∈ C(ε) , we have{
φ>ξk,jh

}
∼ N

(
0, 4νk(δ)‖φ‖2(Λkh)−1

)
.

Now, for all j ∈ [M ] and for all φ ∈ C(ε), we have

P
(
φ>ξk,jh − 2

√
νk(δ)‖φ‖(Λkh)−1 ≥ 0

)
= Φ(−1).

Now
P
(

max
j∈[M ]

φ>ξk,jh − 2
√
νk(δ)‖φ‖(Λkh)−1 ≥ 0

)
≥ 1− (1− Φ(−1))M

= 1− Φ(1)M

= 1− cM0 , (28)

By union bound, with probability 1− |C(ε)|cM0 , the above bound holds for all elements in C simultaneously.

Now condition on the previous event, for φ = φ(s, a), we can find a φ′ ∈ C(ε) such that ‖φ − φ′‖(Λkh)−1 ≤ ε. Define
∆φ = φ− φ′.

φ>ξk,jh − φ
>∆θkh = φ′>ξk,jh − φ

′>∆θkh + ∆φ>ξk,jh + ∆φ>∆θkh

≥ φ′>ξk,jh − 2
√
νk(δ)‖φ′‖(Λkh)−1 +

√
νk(δ)‖φ′‖(Λkh)−1 − ε‖ξk,jh ‖Λkh − ε‖∆θ

k
h‖Λkh

≥ φ′>ξk,jh − 2
√
νk(δ)‖φ′‖(Λkh)−1 +

√
νk(δ)‖φ′‖(Λkh)−1 − ε

√
γk(δ)− ε

√
νk(δ)

Set ε =

√
νk(δ)√

γk(δ)+
√
νk(δ)

= Õ( 1√
d
) and we have, with probability 1− |C(ε)|cM0 ,

max
j∈[M ]

φ>ξk,jh − φ
>∆θkh ≥ max

j∈[M ]
φ′>ξk,jh − 2

√
νk(δ)‖φ′‖(Λkh)−1

≥ 0.

Finally we have conditioning on good event G(K,H, δ), with probability at least 1 − |C(ε)|cM0 , for all (s, a) ∈ S × A ,
lkh(s, a) ≤ 0. As log |C(ε)| = Õ(d log( 1

ε )), we can set M = Õ(d log(1/εδ)
log(1/c0) ) = Õ(d) to have probability 1− δ.

C.2. Regret Bound

Definition C.12 (Filtrations). We denote the σ-algbera generated by the set G using σ(G). We define the following
filtrations:

Fk def
= σ

(
{(sit, ait, rit)}{i,t}∈[k−1]×[H]

⋃
{ξi,jt }{i,t,j}∈[k−1]×[H]×[M ]

)
,

Fkh,1
def
= σ

(
Fk

⋃
{(skt , akt , rkt )}t∈[h]

⋃
{ξk,jt : t ≤ h, 1 ≤ j ≤M}

)
,

Fkh,2
def
= σ

(
Fkh,1

⋃
{xkh+1}

)
.
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Lemma C.13 (Lemma 4.2 in (Cai et al., 2019)). It holds that

Regret(T ) =

K∑
k=1

(
V ∗1 (sk1)− V π

k

1 (sk1)
)

=

K∑
k=1

H∑
t=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)〉

∣∣ s1 = sk1
]

︸ ︷︷ ︸
(i)

+

K∑
k=1

H∑
t=1

Dkh︸ ︷︷ ︸
(ii)

+

K∑
k=1

H∑
t=1

Mk
h︸ ︷︷ ︸

(iii)

+

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh(sh, ah) | s1 = sk1

]
− lkh(skh, a

k
h)
)

︸ ︷︷ ︸
(iv)

, (29)

where

Dkh := 〈(Qkh −Qπ
k

h )(skh, ·), πkh(·, skh)〉 − (Qkh −Qπ
k

h )(skh, a
k
h), (30)

Mk
h := Ph((V kh+1 − V π

k

h+1))(skh, a
k
h)− (V kh+1 − V π

k

h+1)(skh). (31)

Lemma C.14. For the policy πkh at time-step k of episode h, it holds that

K∑
k=1

H∑
t=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)〉 | s1 = sk1

]
≤ 0, (32)

where T = HK.

Proof. Obvious from the observation that πkh acts greedily with respect to Qkh. Note that if πkh = π∗h then the difference is 0.
Else the difference is negative since πkh is deterministic with respect to its action-values meaning it takes a value of 1 where
π∗h would take a value of 0 and Qkh would have the greatest value at the state-action pair that πkh equals one.

Lemma C.15 (Bound on Martingale Difference Sequence). For any δ > 0, it holds with probability 1− 2δ/3 that

K∑
k=1

H∑
t=1

Dkh +

K∑
k=1

H∑
t=1

Mk
h ≤ 2

√
2H2T log(3/δ). (33)

Proof. Recall that

Dkh := 〈(Qkh −Qπ
k

h )(skh, ·), πkh(·, skh)〉 − (Qkh −Qπ
k

h )(skh, a
k
h),

Mk
h := Ph((V kh+1 − V π

k

h+1))(skh, a
k
h)− (V kh+1 − V π

k

h+1)(skh).

Note that in line 2 of Algorithm 2, we truncate Qkh to the range [0, H − h]. Thus for any (k, t) ∈ [K] × [H], we have,
|Dkh| ≤ 2H . Moreover, since E[Dkh|Fkh,1] = 0, Dkh is a martingale difference sequence. So, applying Azuma-Hoeffding
inequality we have with probability at least 1− δ/3,

K∑
k=1

H∑
t=1

Dkh ≤
√

2H2T log(3/δ), (34)

where T = KH .
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Similarly,Mk
h is a martingale difference sequence since for any (k, t) ∈ [K] × [H], |Mk

h| ≤ 2H and E[Mk
h|Fkh,1] = 0.

Applying Azuma-Hoeffding inequality we have with probability at least 1− δ/3,

K∑
k=1

H∑
t=1

Mk
h ≤

√
2H2T log(3/δ). (35)

Applying union bound on (34) and (35) gives (33) and completes the proof.

Lemma C.16. Let λ = 1 in Algorithm 2. For any δ > 0, conditioned on the event G(K,H, δ), we have,

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh(sh, ah)|s1 = sk1

]
− lkh(skh, a

k
h)
)
≤
(√

νK(δ) +
√
γK(δ)

)√
2dHT log(1 +K), (36)

with probability 1− (δ + cM0 ).

Proof. By Lemma C.11, with probability 1− (δ + cM0 ) it holds that

K∑
k=1

H∑
h=1

Eπ∗
[
lkh(sh, ah)|s1 = sk1

]
≤ 0, (37)

and
K∑
k=1

H∑
h=1

−lkh(skh, a
k
h) ≤

K∑
k=1

H∑
h=1

(√
νk(δ) +

√
γk(δ)

)∥∥φ(skh, a
k
h)
∥∥

(Λkh)−1

≤
(√

νK(δ) +
√
γK(δ)

) K∑
k=1

H∑
h=1

∥∥φ(skh, a
k
h)
∥∥

(Λkh)−1

≤
(√

νK(δ) +
√
γK(δ)

) H∑
h=1

√
K
( K∑
k=1

∥∥φ(skh, a
k
h)
∥∥2

(Λkh)−1

)1/2

≤
(√

νK(δ) +
√
γK(δ)

)
H
√

2dK log(1 +K)

=
(√

νK(δ) +
√
γK(δ)

)√
2dHT log(1 +K). (38)

Here the second inequality follows from the fact that both νk(δ) and γk(δ) are increasinig in k. The third and the fourth
inequalities follow from Cauchy-Schwarz inequality and Lemma D.4. Combining (37) and (38) completes the proof.

Lemma C.17 (Good event probability). For any K ∈ N and any δ > 0, we would have the event G(K,H, δ′) with
probability at least 1− δ, where δ′ = δ/MT .

Proof. By Lemma D.2, we have, for any fixed t and k, the event Gkh(ξ, δ′) occurs with probability at least 1−Mδ′. Recall
from Definition C.8 that,

G(K,H, δ′) =
⋂
k≤K

⋂
h≤H

Gkh(ξ, δ′).

Now taking union bound over all (t, k) ∈ [H]× [K], we have

P(
⋂
k≤K

⋂
h≤H

Gkh(ξ, δ′)) ≥ 1−MTδ′ = 1− δ,

which completes the proof.
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Theorem C.18. Let λ = 1, σ = Õ(H
√
d) and M = d log(δ/9)/ log c0, where c0 = Φ(1) and δ ∈ (0, 1]. Under Definition

4.3, the regret of Algorithm 2 satisfies

Regret(T ) ≤ Õ(d3/2H3/2
√
T ),

with probability at least 1− δ.

Proof of Theorem C.18. Let δ′ = δ/9. From Lemma C.17, the event G(K,H, δ′) happens with probability 1− δ′. Combin-
ing Lemma C.16 and Lemma C.17 we have that the event G(K,H, δ′) occurs and it holds that

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh(sh, ah)|s1 = sk1

]
− lkh(skh, a

k
h)
)
≤
(√

νK(δ′) +
√
γK(δ′)

)√
2dHT log(1 +K), (39)

with probability at least (1− δ′)(1− (δ′ + cM0 )). Note that cM0 = δ′ and (1− δ′)(1− (δ′ + cM0 )) > 1− 3δ′ = 1− δ/3.
The martingale inequalities from Lemma C.15 happens with probability 1− 2δ/3.

Applying union bound on (32), (33) and (39) gives the final regret bound of Õ(d3/2H3/2
√
T ) completes the proof.

D. Auxiliary lemmas
This section presents several auxiliary lemmas and their proofs.

D.1. Gaussian Concentration

Lemma D.1 (Gaussian Concentration (Vershynin, 2018)). Consider a d-dimensional multivariate normal distribution
η ∼ N(0, AΛ−1) where A is a scalar. For any δ > 0, with probability 1− δ,

‖η‖Λ ≤ c
√
dA log(d/δ),

where c is some absolute constant. For d = 1, we have c =
√

2.

Lemma D.2. Consider a d-dimensional multivariate normal distribution N(0, AΛ−1) where A is a scalar. Let
η1, η2, . . . , ηM be M independent samples from the distribution. Then for any δ > 0

P
(

max
j∈[M ]

‖ηj‖Λ ≤ c
√
dA log(d/δ)

)
≥ 1−Mδ,

where c is some absolute constant.

Proof. From Lemma D.1, for a fixed j ∈ [M ], with probability at least 1− δ we would have

‖η‖Λ ≤ c
√
dA log(d/δ).

Applying union bound over all M samples completes the proof.

D.2. Inequalities for summations

Lemma D.3 (Lemma D.1 in (Jin et al., 2020)). Let Λh = λI +
∑t
i=1 φiφ

>
i , where φi ∈ Rd and λ > 0. Then it holds that

t∑
i=1

φ>i (Λh)−1φi ≤ d.

Lemma D.4 (Lemma 11 in (Abbasi-Yadkori et al., 2011)). Using the same notation as defined in this paper

K∑
k=1

∥∥φ(skh, a
k
h)
∥∥2

(Λkh)−1 ≤ 2d log
(λ+K

λ

)
.
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Lemma D.5. Let A ∈ Rd×d be a positive definite matrix where its largest eigenvalue λmax(A) ≤ λ. Let x1, . . . , xk be k
vectors in Rd. Then it holds that ∥∥∥A k∑

i=1

xi

∥∥∥ ≤ √λk( k∑
i=1

‖xi‖2A
)1/2

.

Proof. For any vector v ∈ Rd,

‖Av‖ = ‖A1/2A1/2v‖
≤ ‖A1/2‖‖A1/2v‖
= ‖A1/2‖‖v‖A.

Here the inequality follows from the definition of the operator norm ‖A1/2‖. Moreover, ‖A1/2‖ ≤
√
λ since λmax(A) ≤ λ.

Thus, ∥∥∥∥∥A
k∑
i=1

xi

∥∥∥∥∥ ≤ √λ
∥∥∥∥∥
k∑
i=1

xi

∥∥∥∥∥
A

. (40)

Now by Cauchy-Schwarz inequality, ∥∥∥∥∥
k∑
i=1

xi

∥∥∥∥∥
2

A

=

k∑
i=1

k∑
j=1

x>i Axj

≤
k∑
i=1

k∑
j=1

‖xi‖A‖xj‖A

=

(
k∑
i=1

‖xi‖A

)2

≤ k
k∑
i=1

‖xi‖2A. (41)

Combining (40) and (41), proves the lemma.

D.3. Covering numbers and self-normalized processes

Lemma D.6 (Lemma D.4 in (Jin et al., 2020)). Let {si}∞i=1 be a stochastic process on state space S with corresponding
filtration {Fi}∞i=1. Let {φi}∞i=1 be an Rd-valued stochastic process where φi ∈ Fi−1, and ‖φi‖ ≤ 1. Let Λk =

λI+
∑k
i=1 φiφ

>
i . Then for any δ > 0, with probability at least 1−δ, for all k ≥ 0, and any V ∈ V with sups∈S |V (s)| ≤ H ,

we have
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where Nε is the ε-covering number of V with respect to the distance dist(V, V ′) = sups∈S |V (s)− V ′(s)|.
Lemma D.7 (Covering number of Euclidean ball, (Vershynin, 2018) ). For any ε > 0, the ε-covering number, Nε, of the
Euclidean ball of radius B > 0 in Rd satisfies

Nε ≤
(

1 +
2B

ε

)d
≤
(3B

ε

)d
.

Lemma D.8. Consider a class of functions V : S → R which has the following parametric form

V (·) =
〈

min
{
φ(·, ·)>θ,H

}+
, π(· | ·)

〉
A
,
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where the parameter θ satisfies ‖θ‖ ≤ B and for all (s, a) ∈ S ×A, we have ‖φ(s, a)‖ ≤ 1. If NV,ε denotes the ε-covering
number of V with respect to the distance dist(V, V ′) = sups∈S |V (s)− V ′(s)|, then

logNV,ε ≤ d log(1 + 2B/ε) ≤ d log(3B/ε).

Proof. Consider any two functions V1, V2 ∈ V with parameters θ1 and θ2, respectively. Note that min{·, H} is a contraction
mapping. Thus we have

dist(V1, V2) ≤ sup
s

∣∣〈φ(s, ·)>θ1 − φ(s, ·)>θ2, π(· | s)〉A
∣∣

≤ sup
φ:‖φ‖≤1
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∣∣
= sup
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)∣∣
≤ sup
φ:‖φ‖≤1

‖θ1 − θ2‖2‖φ‖2

= ‖θ1 − θ2‖, (42)

where the second inequality follows from the triangle inequality and the third inequality follows from the Cauchy-Schwarz
inequality.

If Nθ,ε denotes the ε-covering number of {θ ∈ Rd | ‖θ‖ ≤ B}, Lemma D.7 implies

Nθ,ε ≤
(

1 +
2B

ε

)d
≤
(3B

ε

)d
.

Let Cθ,ε be an ε-cover of {θ ∈ Rd | ‖θ‖ ≤ B} with cardinality Nθ,ε. Consider any V1 ∈ V . By (42), there exists θ2 ∈ Cθ,ε
such that V2 parameterized by θ2 satisfies dist(V1, V2) ≤ ε. Thus we have

logNV,ε ≤ logNθ,ε ≤ d log(1 + 2B/ε) ≤ d log(3B/ε),

which concludes the proof.

E. Experiment Details
In this section we include the figure for the RiverSwim environment from (Osband et al., 2013).

Figure 5: The 6 state RiverSwim environment (Osband et al., 2013). State s1 has a small reward while state s6 has a large
reward. The action whose transition is denoted with a dashed arrow deterministically moves the agent left. The other action
is stochastic, and with relative high probability moves the agent towards the goal state s6. This action represents swimming
against the current, hence the name RiverSwim.


