Randomized Exploration for Reinforcement Learning with General Value Function Approximation

A. LSVI-PHE with General Function Approximations
A.1. Noise

In the section, we specify how to choose o in Algorithm 1. Note that we use &;’}" for the noise added in episode k, timestep

h, data from episode 7 < k and sampling time m. Similarly, 52;” is for episode k, timestep h, regularizer p;(-) and
sampling time m. We set A = 1 in our algorithm. By Lemma A.6, there exists 3’(F, d) such that with probability at least
1 -0, forall (k,h) € [K] x [H], we have

flij(v ) = T(" ) + thfﬁrl('v ) € ]:}]fv
where Fff = {f € F|||f — fEI%, + R(f — fF) < B'(F,8)}. By Assumption C, for each J, there exists a oy, j such that
h
ggh,k (57 a’) Z w(‘F’]f’ S’ a)'
We define 0 = maxye(k],ne[n] Oh.k to be the maximum standard deviation of the added noise.

A.2. Concentration

We first define few filtrations and good events that we will use in the proof of lemmas in this section.

Definition A.1 (Filtrations). We denote the o-algbera generated by the set G using o(G). We define the following filtrations

def 7
<o <{(5t7at7rt)}{lt}6k xim J A€ ewqesnemxpnxm-u U {ﬁé,f}{@m}e[Dlx[Hlx[MJX[k—”>’
G Ea (gk U {6t ab e U (& ewezngenn U {5gfg}i€[[’]’t2h’j€[M])’
def
6t 2o (6 U (ko)) ict)-

Definition A.2 (Good events). For any 6 > 0, we define the following random events

&% < V@, max el < Vu®) .

e[Dlje[M]

gh(g J) def{ max

i€lk],j€[M]

GK,H,0)E () ) 9h(&,0),

k<K h<H

where vy (J) is some constant to be specified in Lemma A.3.

Notation: To simplify our presentation, in the remaining part of this section, we always denote /7% := 1/7k(9).

The next lemma shows that the good event defined in Definition A.2 happens with high probability.

Lemma A.3. For good event G(K, H, §) defined in Definition A.2, if we set /7, = 6(0), then it happens with probability
at least 1 — 6.

Proof. Recall that £f’ ; 1s a zero-mean Gaussian noise with variance O't ;- By the concentration of Gaussian distribution
(Lemma D.1), with probability 1 — &', we have

1€7] < 01,0\/2108(1/8") < o/210g(1/5).
The same result holds for §t /. We complete the proof by setting &' = §/(K + D)M HK and using union bound. 0

In Definition 3.1, for a regularizer R(f) = Zj) 1 pj(f)?, where p;(-) are functionals, we defined the perturbed regularizer

as Ry (f) = Z _1lpi(f)+ ] with £} being i.i.d. zero-mean Gaussian noise with variance 2. Note that in the algorithm,

the variance of the noise for the regularizer is the same as the dataset, which is ah’ - Recall from Assumption D that for any
V : S — [0, H], our regularizer R satisfies R(r + PV') < B for some constant B € R.

Our next lemma establishes a bound on the perturbed estimate of a single backup.
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Lemma A.4. Consider a fixed k € [K] and a fixed h € [H]. Let Z} = {(s},a})}rek—1) and 62"/ = {(s},,a},r} +

&+ V(shi1))}rek—1)- Define ik v = argming. » ||f\|25k + R(f). Conditioned on the good event G(K, H, ), with
’ ’ h,V

probability at least 1 — 0, for a fixedV : S — [0, H] and any V' : S — [0, H] with ||V’ — Vs < 1/T, we have

Bt = rne) = PV, + R (B ) = 1) = V)

<d [(H +1+ A1) Vlog (2/8) +log N (F,1/T) + 1/ B + \/kaD] )

for some constant ¢’. Here B is the bound on the regularizer (Assumption D) and D is the number of regularizers (Definition
3.1). Define this event as &,y (0).

Proof. Recall that for notational simplicity, we denote [P,V 11](s,a) = Eyp,(.|s,a)Vas1(s"). Now consider a fixed
V.8 — [0, H], and define

fv(e) =rn( ) + PV (o). (6)
Forany f € F, we consider 3, _1) X, (f) where

Xi(f) = 2(f(sh, an) — fv(sh, ap)) (fv (sp, af,) — 77 (sh, ap) — & = V(shya))-

Recalling the definition of the filtration gg,l from Definition A.1, we note

EDXR(NNGh ] = B12(f (sh, ar) — fv (sh, af,))(fv (sh, ah) = rh(sh, ak) — & = V(s7,41))1G7 1]
= 2(f(sh,ap) = fv (s, ap))E[(fv (sh, ap) — ri(sp, af,) — & — V(sj41))197 4]
= 2(f(sh-ak) = fv(sh, ai))(fv (sp, ah) — 77 (s5, af) — PaV sy, aj))
=0.

In addition, conditioning on the good event G(K, H, d), we have

IXR(N] < 2(H + 14 32)1f (57, af,) — fv (sh, ap)l-

As X7, (f) is a martingale difference sequence conditioned on the filtration GJ ; , by Azuma-Hoeffding inequality, we have

T 62
Pl > X)) =e SQ@XP(‘S(HHﬂ/@?IIffvllzz;:)

TE[k—1]

Now we set

- \/8(H+ o yamiog (25D 1r - e,

<SAH + 1+ )|f = fvllzpV10g(2/8) +1og N (F, 1/T).

With union bound, for all g € C(F, 1/T'), with probability at least 1 — § we have

> Ge)| SAH + 1+ V)N — fvllzpV108(2/8) + og N (F, 1/T).

(r)elk—1]
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Thus, for all f € F, there exists g € C(F,1/T) such that || f — g|lcc < 1/T and

Yoo D X9 +2AH + 1+

(T)€lk—1] (r)€[k—1]
<A(H +1+ VA7) g — Jv | 2/ 108 (2/8) + log N (F, 1/T) + 2(H + 1 + /77)
<AH +1+ V) (If = Fv 25 + 1)/ 108 (2/8) + log N (F, 1/T) + 2(H + 1 + 7).

For V' : S — [0, H] such that ||V — V|| < 1/T, we have || fv' — fv oo < |V = Voo < 1/T.

For any f € F, we have
2 _ 2
”fHﬁ;kL,v/ HfV/”D;f,v/

=If = forllZe+2 D0 (flshiah) = fur(shap)(for(shoaf) = 77 (T, af) = & = V' (s741))

(st,a])EZF

2\ = forllZe+2 Y0 (flshyah) = fu(shap)(fv(shoaf) = rh (s, af) = & = V(si4a)

(s},a7)EZE
—4(H + 14+ )V’ = Vol Z5]

2= felZe+ D X)) —AH 1)

(1,h)€[k—1]x[H]
> f = forlZp = AH + 1+ V)1 = frlizg +1)V1og (2/0) +log N (F, 1/T) — 6(H + 1+ /1)
2|\ = fvrllZy = AH + 1+ V) (Lf = frrllzp +2)V/10g (2/8) +1og N (F,1/T) = 6(H + 1+ /7).

In addition, using Assumption D, we have the approximate triangle inequality for the perturbed regularizer:

R(f) - R(Jv")
D D
=D _[pilh) + &7 = D lpilfv) + €07

D

=R(f) - R(fv') + 2Z£;<pi(f> —pilfvr))
' D

>cR(f — fvr) — 2R(fvr) — 2 Z VAEpi(fv)

>cR(f — fv') — 2B — 2\/4xVBD.

Summing the above two inequalities we have

115+ BO) = Ifvrlide = BUv) 2 1f = furlizg + eR( = fv) = C,

where C = 4(H + 1+ %) (| f = fv'll z5 +2)/log (2/6) + 1og N' (F, 1/T) + 6(H + 1 + \/7k) + 2B + 2,/7%VBD.

As fp.y is the minimizer of IfII%,  + R(f), we have

h, v/

2
| fvr — fv'Hfg;f +cR(fuvr — for) < |(H+1+ VE)V1og (2/8) +1og N (F,1/T) +1/B + \/’YkBD] .



Randomized Exploration for Reinforcement Learning with General Value Function Approximation

To prove the above argument, we use the inequality that if we have 22 + y < ax + b for positive a, b, y, then z < a + Vb
and 22 4+ 5 < (a 4+ v/b)?. In addition, we can remove ¢ by replacing ¢’ with ¢’/ min{1, ¢} and then we get our final bound.

O

Lemma A.5 (Confidence Region). Let Fp'™ = {f € F||If — fi"™ |24 + R(f — f'™) < B(F,5)}, where
h

2
B(F,8) =¢ |(H 414 5)\/1log (2/8) +1log N (F,1/T) +1/ B + \/kaD] . (7

Conditioned on the event G(K, H, ), with probability at least 1 — 6, for all (k,h,m) € [K] x [H| x [M], we have

ra(y ) + PV () € FR

Proof. First note that for a fixed (k, h,m) € [K] x [H] x [M],
is a (1/T)-cover of beﬁ(, ). This implies Q is also a (1/T")-cover of QF (-, -). This further implies

V= {maxq(,a) ¢ € Q}

isa 1/T cover of V/¥,, () where we have log(|V|) = log N'(F,1/T).

For the remaining part of the proof, we condition on [, oy, En,v (0/[V|T'M), where £ v/ (0) is the event defined in Lemma
A.4. By Lemma A.4 and union bound, we have Pr [(cy, En,v (8/(8[VIMT)] > 1—6/(8MT).

Let V € Vsuch that |V — Vi¥, |||c < 1/T. By Lemma A.4 we have

[ 7m0 =) = PV )|

BT = i)~ PV ()

< [(H + 1+ ) Vioe (173) + g N (7. 1/T))

where ¢ is some absolute constant. By union bound, for all (k, h,m) € [K] x [H] x [M] we have rj,(-,-) + P, V¥, (-,-) €
FI™ with probability 1 — 4. 0

The last lemma guarantees that 75, (-, -) + P, V;F, | (-, -) lies in the confidence region F, }lf "™ with high probability. Note that

the confidence region ,’f "™ is centered at 71“”, which is the solution to the perturbed regression problem defined in (3).

For the unperturbed regression problem and its solution as center of the confidence region, we get the following lemma as a
direct consequence of Lemma A.5.

Lemma A.6. Let Ff = {f € F||f — fF|% + R(f — fF) < B'(F,0)}, where

2
B'(F,0) > ¢ [(H +1)/log (2/0) + 1og N'(F, 1/T) + VB . ®)
With probability at least 1 — 6, for all (k,h,m) € [K] x [H] x [M], we have

(e ) + Pth],:-l('v ) € Fy.

Proof. This is a direct implication of Lemma A.5 with zero perturbance. O
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A.3. Optimism

In this section, we will show that {Q’ﬁ}( h,k)e[H]x K] i optimistic with high probability. Formally, we have the following
lemma.

Lemma A.7. Set M = ln(T‘S”A‘ )/ In(3=;) in Algorithm 1. Conditioned on the event G(K, H,d), with probability at
least 1 — 0, foralls € S, a € A, h € [H], k € [K], we have

Qi (s,a) < Qi (s, a).

Proof. For timestep H + 1, we have Q% ,; = Q};,, = 0. By Lemma A.6, there exists 3'(F, 6) such that with probability
atleast 1 — ¢, for all (k, h) € [K] x [H], we have

fllf(a ) = Th(" ) + thhk+1('7 ) S ]:}]fv
where Ff = {f € F||If — f}IZ + R(f — f§) < B/(F.0)}.

Using notations introduced in Definition 4.2, let g’ be a function such that frm(s,a) > f(s,a) + 95 »(s,a) holds with

probability at least v. We set M = ln(T‘SHA‘ )/In(%-) and then fh ‘(s,a) > f(s,a) + g (s, a) with probability at
least 5

(M %
1—(1-v) 1 TISTIA]

for any (k,h) € [K] x [H] and (s,a) € S x A. By union bound, we have ﬂf’m(s,a) > f(s,a) + 9 5(s,a) for all
(k,h) € [K] x [H] and (s,a) € S x A with probability at least 1 — ¢ and we have

F™ (s, a)

fii (s, a) =

ax
[M]

?aa

v

i (s,a) + g ,(5,a)
(s,0) +w(Fp)
(

S,a),

\%
ﬁ?@“’;?

where the second inequality is from Assumption C and the choise of ¢ as discussed in Appendix A.1. The last inequality
follows from the definition of the width function and the previous observation that f}’f (,1) € F ;’f with probability at least
1 — 4. Now we induct on h from h = H to 1.
Q@ (s,a) = min{ry(s,a) + P,V 1 (s,a), H}
= mln{fflf(‘g? a’) + Ph(Vh+1 - Vh+1)(8, a)7 H}

< min{f}(s,a) + Pa (Vi1 — Vifia)(s,a), H)
< min{f}(s,a), H}

)

= QF(s,a).
Thus,
Vi (s) = max Qj (5. a) < max Qf(s.a) = V{(s)
where the second inequality is from V", ;| < V,f . 1> which is implied by induction. O
A.4. Regret Bound

We are now ready to provide the regret bound for Algorithm 1. The next lemma upper bounds the regret of the algorithm by
the sum of the width functions.

Lemma A.8 (Regret decomposition). Denote b (s, a) = w(FF,s,a). Conditioned on the event G(K, H, §), with probability
at least 1 — 6, we have
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Regret(K ZZ (5%, ak) ZZ

k=1 h=1 c=1 h=1

where (f = P(sk,af) (V| — V}f_tl) — (VE (s ) — V,Zr_tl (sy.1)) is a martingale difference sequence with respect to
the filtration GY ..

Proof. We condition on the good events in Lemma A.5. For all (k, h,m) € [K] x [H] x [M], we have

() + PaVEL () = R

2
o FROWC) + PV () = ™) < B(F, ).

Recall that 7 = {f | ||ra(:,-) + PuViF,( (,0) f||22’,f + R(rn(-) + PuViF () — fEmy < B(F,8)} is the confidence

region. Then for (k,h,m) € [K] x [H] x [M], f:fm € FF. Defining b (s,a) = w(FF,s,a), for all (k,h,m) €
[K] x [H] x [M] we have,

I)Z(s7 a) > ’r(s, a) + P(s,a)V,fH — ﬂf’m(&a)‘ .
As Q’,i(s, a) = min{maXmE[M]{ﬂf’m(-, )}, H — h+ 1}, we have

bZ(S, a’) > ’7’(870,) + P(sva)viﬁrl - Qﬁ(sva)’ .

By Lemma A.7 and standard telescoping argument, we have

K
Regret(K) < > ViF(s§) — V™ (sf)

b
I
—

Qlf(sl,al) QW (Slval)

Qf (st ab) — (r(sh,ab) + P(sh, )W) + (r (s}, af) + P(sE, ab) V) = QT (st o)

. . . ok
Vst at) + P(st, ah) (V" = Vi)

M T 1% T T

b sk, ab) + (Vi (sh) — V3 (s5)) + ¢F

H K H
Zb (sF,af) +ZZC,’§.

1h=1 k=1h=1

IA
i

O

Lemma A.9 (Time inhomogeneous version of Lemma 10 in (Wang et al., 2020)). Let F' be a subset of function class F,
consisting of all f € F such that

If —olZ + R(f —v) < B(F,0),
where v =1 + PV as in Assumption E and 3(F, ) as defined in Lemma A.5. With probability at least 1 — 0, we have

K H
>N bi(skiaf) < H+4H dimg (F',1/T) + Hy/cdime (F',1/T) K B(F, 6),
k=1h=1

for some absolute constant ¢ > 0.
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Proof. Define
Fif =Af e FIIf = TRIZe < BF.0)} = F (WS € FIIS = FhIZ < B(F.0)}-

AsFF C Fland FF C N{f € FIIf — fEI%, < B(F,5)}, we have Fff € FpF and w(Ff, s,a) < w(F,*, s, a) for all

s, a. By Assumption E, F’ has bounded eluder dimension.

Similar to Lemma 10 in (Wang et al., 2020), we have for any h,

K K
D bi(spyap) <> w(FE,s,a) <1+ 4H dimg (F',1/T) + +/edime (F, 1/T) K B(F, ).
k=1 k=1

Summing over all timestep i and we have the bound in the lemma.

Theorem A.10. Under all the assumptions, with probability at least 1 — §, Algorithm 1 achieves a regret bound of

Regret(K) < 4H*dimg (F,1/T) + \/dimg (F,1/T)3(F,8)HT

where

B(F,8) =¢ |(H+1+0)\/log (2/0) +logN (F,1/T) +\/B+0oVBD| ,

for some constant c'.

Proof. By Assumption E, we can consider 7' C F as the whole function class in the analysis because it includes all the
]-';’f, Vh, k. By Azuma-Hoeffding inequality and Lemma A.9, With probability at least 1 — §, we have

K H K H
Regret(K Z Z (sh.ar) + Z Z Ch
=1h=1

k=1h=1

<ec ( 4H3dimg(}',1/T)+H\/cdim5(]-'71/T)Kﬁ(J—'7§)—&-H\/KHlog(l/d))7

for some constant ¢’. We plug in the definition of 3(F, ) and ,/7; = O(c), then we get the final bound. O

Remark A.11. For linear MDP, as shown in Section 4.1.1, we have

o=2p(F,0)=c [(H+ 1)y/log (2/6) +log N (F,1/T) + VB 2,

B =2Hd and D = d. In addition, we have dimg(F,1/T) = O(d) (Russo & Van Roy, 2013) and log N (F,1/T) = O(d).
As a result, our bound implies a O(v H3d3T) regret bound for linear MDP.

B. GFA With Model Misspecification

Assumption F. (Assumption 3 in (Wang et al., 2020)) For function class F, there exists a real number ¢, such that for any
V : S — [0, H], there exists gy € F which satisfies

max |gv(s,a) —r(s,a) — Z P(s'|s,a)V(s")| < ¢.

(s,a)eSx.A oS

In addition, we assume gy satisfies Assumption D, i.e. R(gy) < B.
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Lemma B.1. Consider a fixed k € (K] and a fixed h € [H]. Let Z;' = {(s},a})}rep—1) and 527‘/ = {(s},,a},r} +
&+ V(shi1))}rek—1)- Define ]?,{f v = argmin;. » ||fH2 + R(f). Conditioned on the good event G(K, H, ), with
probability at least 1 — 0, for a fixed V : S — [0, H] and any V/ S — [0, Hlwith |V' — V||eo < 1/T, we have

[y =) = BV

BT () ()~ BV(L)

2

d {(H+ 1+ A%)V/1og (2/8) +log N (F,1/T) + \/B + VwBD + (K(H + /)

for some constant c'.

Proof. Recall that for notational simplicity, we denote [P, Vi1 1](s,a) = Eyp,(.|s,a)Vat1(s"). Now consider a fixed
V : 8§ — [0, H], and define
fV('7') :Th('a')+PhV('7')' (9)

By Assumption F, there exists gy, € F such that

— < (.
(S,;?eang|gv(Sya) fv(s,a)l <¢

For any f € F, consider

Xi, = 2(f(sp,ap) = fv (sh, ap))(fv (sp, af,) — 17 (sf, af) = & — V(s41))-

First we show that x7 (f) is a martingale difference sequence with respect to the filtration G7, ;.

E[XA(£)IGh 1] = E2(f(s],. af) — fv (sf, ap)) (fv (sh, ak) — i (sf. af) — & — V(si1))IG7 4]
= 2(f(sh» af) = fv(si. ap))E[(fv (s}, ah) — i (sf, af) = fh V(sh+1))I97.1]
= 2(f(sh» af) = fv(si, ap))(fv (5, ak) = (7, af) — PuV (s}, a,))
=0

In addition, conditioning on good events G(K, H, ¢), we have
IXR(NI < 2(H + 1+ y2)If(sh.ar) = fv(sh, ap)l.

As x7 (f) is a martingale difference sequence conditioned on the filtration Gp.1 » by Azuma-Hoeffding inequality, we have

E2
Pl Y x| =ze <2exp<_8(H+1+\/7T)2||f—f‘/”22,§>‘

T€lk—1]

Now we set

€= \/8(H + 1+ /77)? log (W) 1F = FvliZe

<SAH + 1+ 70 = fvllzev/log(2/6) +log N (F,1/T).

With union bound, for all g € C(F, 1/T'), with probability at least 1 — § we have

> G| SAH+ 1+ VAIf = fvlzpV108(2/0) +1og N (F, 1/T).

(r)elk—1]
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Thus, for all f € F, there exists g € C(F,1/T) such that || f — g|lcc < 1/T and,

> X9

(r)elk—-1]

+2(H+14/77)

> Xﬁ(f)‘ <

(r)elk—1]

<4A(H + 1+ 70)llg = fvllzpV1og (2/6) +1og N (F, 1/T) + 2(H + 1+ /47)
<A(H + 1+ 7)(I1f = fvllzx + 1)V10g (2/6) +log N (F,1/T) + 2(H + 1+ \/77)

For V' : S — [0, H] such that ||V — V'||oc < 1/T, wehave || fv' — fv oo < |V = V]| < 1/T.

For any f € F, we have

2 2
e
=N =fvlde +2 0 D0 (Flshaf) = fvr(shap))(fr sk af) = ri(sf,an) = & = V' (s74))
(sﬁ,a;)EZE

>\ f = forlde+2 0 Y0 (flshhah) = fu(shap)(fv(shiaf) = rh (s, af) = & = V(sfya)

(s;,a;)EZﬁ
—4(H + 14+ )V’ = V]| 25|
2||f—fv’HQZ;;+ Z Xp(f) —4(H + 1+ %)

(1,h)€[k—1]x[H]
21f = frrl% = A + 1+ VIS = fvllz + 1DvIog 78) + Tog N (. 1/T) — 6(H + 1+ /%)
21f = 2 — A + 1+ VAT = folzg +2)v/10g (3/8) + Tog N (F,1/T) = 6(H +1+ /).

In addition, by Assumption D, we have

R(f) = R(fv)

= Ioilf) = &7 = D oleifvr) — €07
=R(f) — R(fv') — 2Z§§(Pi(f) —pi(fv'))
>cR(f — fvr) = 2R(fy) — 2 Z VRpi(fv)

>cR(f — fv') — 2B — 2/7:VBD.

Summing the above two inequalities we have

1£15: |+ B = vl = BUfv) 2 1f = furlZg + eRUF = frr) = C,

where C = 4(H + 1+ %) (| f = fv'll 25 + 2)/log (2/8) + log N' (F, 1/T) + 6(H + 1 + /%) + 2B + 2,/ %V DB.



Randomized Exploration for Reinforcement Learning with General Value Function Approximation

Now we try to replace the fy in the RHS with g7,

2 _ 112
vl | = llovelig
= Y (vilsivah) = (T + &0+ Vsip))* = D (gvr(shaf) = (rf + &7+ V(si0)))°
T€lk—1] TE[k—1]
= Y (fvi(sh.an) = gve(shap))(fve(sh,an) + gve(shs ap) = 2007 + & + V(sh11)))
TE[k—1]

> — (K(4H + 2\/%).

By the boundedness of the regularizer (Assumption D), we have
”fv/”%;’i,w + R(fv) — ||9V’H%}11V/ — R(gy+) > —CK(4H +2\/7;) — B.
Thus we have
1705 |+ B = llovliGy = Rlov) 2 15 | + B = IfvliGy = R(fv) = CK(AH +2y/75%) = B
> |\ f = furllZs + eR(f = fvr) = C = CK(4H +2y/3) — B.

As ]’”vhy/ is the minimizer of Hf||%k + R(f) for f € F and note that gy» € F, we have
h,V/
| v — fV/||22:}f +eR(fr v — fvr)

2

< |(H + 1+ A7) /1og (2/8) + log N (F, 1/T) + | B+ \/%BD + CK(H + /) | -

To prove the above argument, we use the inequality that if we have 22 + y < ax + b for positive a, b, y, then z < a + Vb
and 22 + y < (a + v/b)?. In addition, we can remove ¢ by replacing ¢/ with ¢// min{1, ¢} and then we get the final bound.

O
Lemma B.2. (Misspecified Confidence Region) Let F;'"™ = {f € F|||f — f:meQZk + R(f — fF™) < B(F, 8)}, where
h

2

B(F,6) = ¢ | (H + 1+ %) \/Iog (2/8) + log N'(F, 1/T) + \/ B+ Vi BD + CK(H + A7) . (10)

Conditioned on the event G(K, H, §), with probability at least 1 — 0, for all (k,h,m) € [K] x [H] x [M], we have
rh() + PaVia () € Fy™.

Proof. With Lemma B.1, the proof is same as Lemma A.S. O

Theorem B.3. Under all the assumptions, with probability at least 1 — 9, Algorithm I achieves a regret bound of

Regret(K) < 4H3dimg (F,1/T) + \/dime(F,1/T)B(F,0)HT,

where
2

B(F,0) = |(H +1+0)/log (2/0) + log N (F, 1/T) +\/ B+ oVBD + CK(H + o) ,

for some constant ¢'.

Proof. With Lemma B.2, the proof is the same as Theorem A.10. O
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C. LSVI-PHE with linear function approximation

In this section, we prove Theorem 4.7. Our analysis specilized to linear MDP setting is simpler and may provide additional
insights. In addition, compared to GFA setting, we improve the bound for M and it no longer depends on |S| or |.4]. We
first introduce the notation and few definitions that are used throughout this section. Upon presenting lemmas and their
proofs, finally we combine the lemmas to prove Theorem 4.7.
Definition C.1 (Model prediction error). For all (k, h) € [K] x [H], we define the model prediction error associated with
the reward r¥,

lﬁ(sa a) = T;CL(S’ a) + th}f—&-l(sv a) - Qﬁ(& a’)'
This depicts the prediction error using th "1 instead of V" :1 in the Bellman equations (1).

Definition C.2 (Unperturbed estimated parameter). For all (k,h) € [K] x [H|, we define the unperturbed estimated
parameter as

k-1
nk ky—1 k
On = (Ay) (Z[Tﬁ + Vi (sha1)190(sh aﬁ)) :
T=1

Moreover, we denote the difference between the perturbed estimated parameter 57;3 and the unperturbed estimated parameter
)l

0y as R

kg _ gk,
Gl =0," - 92'

C.1. Concentration

Our first lemma characterizes the difference between the perturbed estimated parameter éfb’j and the unperturbed estimated
.
Proposition C.3 (restatement of Proposition 3.2). In step 9 of Algorithm 2, conditioned on all the randomness except

{Ei’i’j}(i,j)e[k—l]x[M] and {S,I:J }ielm) the estimated parameter é%’] satisfies

parameter

Gr? =037 =0~ N0, 0% ()7,
where 6 = (AF)" 1 (F 21 g + Vik (7 )]@(sT, a)) is the unperturbed estimated parameter from Definiton C.2.
Proof. From Algorithm 2, note that
O’ = (M) ok + 67)
k-1 _ _
=(@AH~ (Z (177 + Vikia (570) + e ™10, a7) ) + 5,)

=1

k—1 k—1
= (Af)~! (Z[r; + Vi (sha)]e(sT, a;:)) + (AR (Z vl p(sh,af) + @’i”)
T=1

T=1
k—1
= 0F + (A (Z er Tl p(sh, af) + dfr]) :
T=1

Since ¢, ™7 ~ N(0,52), note that for 7 € [k — 1],
k,T,J T T T T T T
Gh ]¢(Sh7ah) ~ N(0702¢(Sh7ah>¢(8h7ah)—r)'

Now, since {Z’j ~ N(0,0%\1y),

k—1

k—1
Ak (z 57 4067 o) + g;:v) Lt (0.2

T=1

¢(sq, af)p(sq,af) " + Md))

N
< AN (0.0%)
~ N(07 02(/\2) )
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Thus, we have _ _
Gh? = 0y — B ~ N(0,0°(A}) ).
L]

Lemma C.4 (Lemma B.1 in (Jin et al., 2020)). Under Definition 4.3 of linear MDP., for any fixed policy m, let {07 },c(m
be the corresponding weights such that Q7 (s, a) = (¢(s,a),0F) for all (s,a,h) € S x A x [H]. Then for all h € [H], we
have

167 < 2HVd.

Our next lemma states that the unperturbed estimated weight 9/7“,1 is bounded.

Lemma C.5. Forany (k,h) € [K] x [H), the unperturbed estimated weight H%h in Definition C.2 satisfies
6% ]| < 2H \/kd/X.

Proof. We have

k—1
10511 = ([ A8) D757 aR) + Vi (7)) - @57, 7|
=1
k—1
= [ DI a7) + max @b (550, 0)] - 65 07)|
T=1
k—1
1 1/2
Sﬁ k — 1( 1“ rh Shvah)""_rneaXQthl(Sthlv )]'¢(S;—L7a£)H?AI;)—1)
2H -1 1/2
< VR 1Y le(si an) Iy
N5 (; by QR Il (Ak) - )
kd/X.

Here, the first inequality follows from Lemma D.5. The second inequality follows from the truncation of Q’fl to the range
[0, H — h + 1] in Line 11 of Algorithm 2. The last inequality is due to Lemma D.3. O

For the ease of exposition, we now define the values (i (d), v, () and v () which we use to define our high confidence
bounds.

Definition C.6 (Noise bounds). For any § > 0 and some large enough constants ¢;,co and cs, let

B1(8) & ¢y Hy/dlog(Hdk/3),

V() € ey Hy/dlog(Hdk/5),
Ve (0) & e5y/dvi (5) log(d)o).
Definition C.7 (Noise distribution). In Algorithm 2, we set the following values for o
oL = 2\/@ .
Thus for all j € [M], we have,
{67} ~ N (0,4 (9)(A}) ).

Now, we define some events based on the characterization of the random variable ¢ ,]f’j as defined in Definition C.2.

Definition C.8 (Good events). For any 6 > 0, we define the following random events

Gh(¢,0) = { mas G g < V() },
G(K,H, )< () [ GF(C.9).

k<K h<H
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Next, we present our main concentration lemma in this section.

Lemma C.9. Let A = 1 in Algorithm 2. For any fixed 6 > 0, conditioned on the event G(K, H,¢), we have for all
(k,h) € [K] x [H],

k—1
IS o an) (Vi = BVl ) Gshoap)]|| - < exH/dlog (Hk/G), (1n
T=1

Ay~

with probability at least 1 — 6 for some constant ¢ > 0.

Proof. From Lemma C.5, we know, for all (k, h) € [K] x [H]|, we have H | < 2H/kd/X. In addition, by construction

of Ah+1, the minimum eigenvalue of Ah+1 is lower bounded by A. Thus we have fHCh_HH < ||Ch ”Ahl < /7 (9).
Finally, triangle inequality implies, ||92£1H ||9hJr1 + Ch I < 2H\/Ed/X 4 \/7%(5)/X for all j € [M]. Combining
Lemma D.6 and Lemma D.8, we have that, for any ¢ > 0 and 6 > 0, with probability at least 1 — J,
k—1
|32 606t ab Wik~ Bavi) e,
T=1
4H\/kd/)\+2\/7k 17 8k2Ze2\1/2
2 p—
(4H[ ( )+d10( . )—l—loga}—i— h\ )
3 2H\/kd/)\—|— V7%(8) 1 8k2e?\1/2
< 2 -
< (1 os(*5) + s (™ ) e ] + 555
3(2H/kd/X + \/m 12 2/2ke
< — -r=-
(52 (ST 1) 20
+A 3(2H\/kd/X + \/7(0)/N) 12 2\/2ke
<
2Hf[ ( ) -+ log( - ) +log 5} e (12)

Setting A = 1, ¢ = H+/d/k and substituting \/~vx(6) = c3+/dvi(5)log(d/§) < cyHdlog (Hdk/§) for some constant
cq > 0, we get

Hli:l ¢(s7, ap)[(Vicer — PuVitya) (shy af)] H
—i

(-

3k[2HVdk Hdlog (Hdk/§ 12
3k| + ¢y og ( /6)] L ovRHVd

HVd
< c1Hv/dlog (Hdk/5), (13)

< 2H\fl log(k + 1) + log(1/6) + log

for some constant ¢; > 0.

O

Lemma C.10. Let A\ = 1 in Algorithm 2. For any § > 0, conditioned on the event G(K, H, §), for any (h, k) € [H] x [K]
and (s,a) € S x A, we have

|6(5,a)TOF —rE(s,a) — PRVE (s,a)| < coH\/dlog(Hdk]5)||6(s, )| ar)-
with probability 1 — §, where co > 0 is a constant.

Proof. Let us denote the inner product over S by (-,-)s. Using linear MDP assumption for transition kernel from
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Definition 4.3, we get

PrViriy(s,a) = ¢(s,a) " (un, Vifi1)s
= (s, a) " (AF) AL (un, Viky 1 )s

k—1
= 6(s,0)" (%) (32 (ki an)olsT ap) " + ML) G, Vil )
T=1

-1
= o(s,0) (AR (X0 @5k a)o(s7, af) T (uns Vi )s + A pun, Vi) )
T=1

k—1

= o(s.a)T(A}) ™ (32 @57 aR) (B Vi) (57, aF) + M {pn, Vi) ). (14)

T=1

where in the last line we rely on the definition of P,.

Using (14) we obtain,

k—1
d)(sa a)Té}h - TZ(Sa CL) - (th}f@-&-l)(sa Cl) = ¢ -t Z Th Sh’ a‘h + Vh—i—l(sh—i-l)} : (]S(S;;, CL;;) - Tﬁ(s,a)
=1
k—1
— 0(s.0) (AR (D2 @57 ap) (PuVikin) (57 a7) + A, Vil )s )
T=1
k—1
= 0(s,0)T(A) ™ (D (ki ap) [(Vifes = PuVidia) (57 7))
T=1
®
k—1

+ o(s.a) (A (D i sk ap)éls7.a7) ) —rh(s,a)

1

T

(ii)
= Aé(s,a) T (AF) " (un, Viria)s - (15)
(iii)

In the following we will analyze the each of the three terms in (15) separately and derive high probability bound for each of
them.

Term (i). Since (A];;)*1 > 0, by Cauchy-Schwarz inequality and Lemma C.9, with probability at least 1 — §, we have

k—1
o(s,0)T(AR) (32 ol ai) [(Vikps = PuViies) sk ap)] )
T=1

k—1
S DRECAAAES AGRICAL )| N O] v
=1

< VBr(©)||é(s, )| px)-1- (16)
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Term (ii). Note that

k—1
o(s,0)T (M)~ (32 ri(shs ap)ols a7) ) — 7h(s,0)
T=1
k-1
= 6(s,0) T (A5) " (D2 i (s an)o(shiap) ) — ols,0) Ty
T=1
k-1
= o(s,)T(AR) (X sk, aR)o(shsap) — A )
T=1
k-1
= ¢(s,a) " (AF)7! (Z r}(sh,, ar,)o(sh, ar,) qu sT,al)o(sh,al) T wy, — )\Iwh>
=1
k-1
= ¢(57Q)T(A§)71( i (sh, an)(sh, af,) Z¢ Sty ap )T (S5, ap) — AIWh)

3
Il
_

= —)\qﬁ(s,a)T(Ai)_lwh, 17

where in the penultimate step, we used the fact 1, (s, a) = (¢(s, a), wy) from Definition 4.3. Applying Cauchy-Schwarz
inequality we obtain,

—A¢(s,a) T (AR) o < Mlo(s, a)llagy -1 lwnll gy
< VAIé(s,a) | ak)y-1 lwn 2
< V)| 6(s, a) (a1 (18)

Here the second inequality follows by observing that the smallest eigenvalue of Aﬁ is at least A\ and thus the largest eigenvalue
of (A¥)~!is at most 1/\. The last inequality follows from Definition 4.3. Combining (17) and (18) we get

k—1
b(5,0)T (AF)~1 (Z rT(sh, al)o(sh, a;)) —rf(s,a) < VAd]|é(s, a)l|a) - (19)
T=1
Term (iii). Similar to (18), applying Cauchy-Schwarz inequality, we get

=Ad(s,a) "(AR) " Hun, Vita)s < Mle(s, @)l ary= 1K Vicea)sllas -
< VA|¢(s,a)] Ak)—1||<uh7Vf+1>$||2

<JWuamm(ZwMM|me
< HVA||¢(s, )| a5y~ (20)

Here the second inequality follows using the same observation we did for term (ii). The last inequality follows from
Zi:l 1713 < d in Definition 4.3 and the clipping operation performed in Line 2 of Algorithm 2. Now combining (16),
(19) and (20), and letting A\ = 1, we get,

|6(s,a) "0 — rf(s,0) — PaViE 1 (s5,0)| < (V/Br(8) + HVd + V)| ¢(s, )| xx) -+ 1)
= (erH+/dlog(Hdk/8) + HVd+ V)| 6(s,a)l| (rr)- (22)
< CQH\/dlog(Hdk‘/(S)H(ﬁ(s,a)H(Al;;)_l, (23)
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with probability 1 — ¢ for some constant co > 0.

In addition, If we set 0 : ¢(-,-)T0F = r(-,-) + PV}, (-,-) to be the true parameter and A0 = 0F — @fb to be the
regression error, then from the analysis above we can derive that | A9% || Ak S \Vv(0) = coH/dlog(Hdk/9). O

Lemma C.11 (stochastic upper confidence bound). Let A = 1 in Algorithm 2. For any § > 0, conditioned on the event
G(K, H,6), for any (h,k) € [H] x [K] and (s,a) € S x A, with probability at least 1 — (6 + c}!), we have

lﬁ(s,a) <0,

and

~15(s,0) < (Vir(0) + V() ) |65, )| g1

where ¢y = ®(1).

Proof. Applying Lemma C.10, for any (h, k) € [H] x [K] and (s,a) € S x A, we have,

’rﬁ(s, a) + IP’hV,fH(s, a) — ¢(s, a)Tgkh| < coH+/dlog(Hdk/)) (24)
= Vu(0)[|6(s; ) pxy -1 (25)

with probability at least 1 — 4.
As we are conditioning on the event G(K, H, §), for any (h, k) € [H] x [K] and (s,a) € S x A, we have

max‘(b s, a) Ch’j’ < V(6 qu s,a H(A’;L)fl' (26)

JE[M]
Now from the definition of model prediction error, using (24) and (26), we get, with probability 1 — 4,

_15(37 CL) = QZ(& a) - TZ(Sv CL) - thiﬁll(sa a)
= min{ ma&( o(s, a)T(GAkh + C,’j’j), HY —rf(s,a) — IE”thkH(s, a)
€]
< max 6(s,0) " (0 + G7) = 7h(5, @) = PuViiia (s,0)

= max ¢(s,a) (F7 — (rE(s,a) + PRV, (s,a) — ¢(s,a) T 6F)

JE[M]
< |rk(s,a) + PaV, 1 (5,a) — 6(s, ) eh| + I'IEISLX]’¢ s,q) Ch”\
< (Vil®) + V@) |65, )l pgy - @7)

Set 0 : ¢(-,-)TOF =1 (-,-) + PyV¥, | (-,-) to be the true parameter and Af} = 6 — 8% to be the regression error. By the
concentration part, conditioning on good events, we have ||A¢9£||A;c < \/v(0) and ||§,’f’j [ar < V/7%(6) forall j € [M].

For all (h,k) € [H| x [K] and any (s,a) € S x A, we have

li(s,a) = 73(s,0) + PrViy (s, a) — Qh(s, a)

= r,lfb(s, a) + ]PhV,f;rl(s, a) — mln{H ]rg[ajuvx o(s, a)"’(@j + g}’i,j)}-r

< max{¢(s,a) " A} — max ¢(s,a) &7, 0}
JE[M]

Now we prove that with high probability, max; e[y ¢(s,a) TEF7 — ¢(s,a)TAGF > 0 for all (s,a) € S x A. Note that
the inequality still holds if we scale ¢(s,a). Now we assume all ¢(s, a) satisty ||¢(s, a)[|(ax)-1+ = 1. Define C(e) to be a
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e-cover of the ellipsoid {¢|[|¢|(xx)-1 = 1} with respect to norm [| - || yx) -+ and log |C(e)| = 6(dlog(%)). Forall j € [M],
we have, )
{60} ~ N (0,4 (8)(A}) )
Thus, for all j € [M] and for all ¢ € C(¢) , we have
{67€r7} ~ N (0,4 (0) 1911301, ).
Now, for all j € [M] and for all ¢ € C(¢), we have

P(6767 = 2/ 6l ag)-1 > 0) = B(~1).

Now
P(max 6767~ 2/ @16l agy 1 2 0) 2 1= (1 - 2(-1)"
JE[M] g
=1-o1)M
=1-cM, (28)

By union bound, with probability 1 — |C(e)|cd?, the above bound holds for all elements in C simultaneously.

Now condition on the previous event, for ¢ = ¢(s,a), we can find a ¢’ € C(¢) such that || — ¢/|[(zxy)-1 < €. Define

Np=6-¢.

O T — T A0 = ¢ — ¢ TAGE + ApTEN + AT AOF
> ¢ T = 2/ ()19l ary -1 + V(O 16 | ar)-1 — €llén? lax — €l AOF [ ax
> QSITS]I-?j —2 \% Vk(é.)H(b/H(Aﬁ)*l + v Vk((s)H(ZS/H(Aﬁ)—l — €Y/ vk(é) — Em

Sete = NCRGEN D) m = 6(%) and we have, with probability 1 — |C(e€)|cd!,

max ¢ &0 — 6T AGf > max ¢ = 2v/v(D)16 | (ax) 1

JE[M]
> 0.

Finally we have conditioning on good event G(K', H, §), with probability at least 1 — |C(e )b, for all (s,a) € S x A,

I¥(s,a) < 0. Aslog|C(e)| = (dlog( )), we can set M = O(%) O(d) to have probability 1 — 6.

O

C.2. Regret Bound

Definition C.12 (Filtrations). We denote the o-algbera generated by the set G using o(G). We define the following
filtrations:

def i i
FrE g <{(8t7a'tvrt)}{i,t}E[kfl]x[H] U {51?J}{z‘,t,j}e[kfllx[Hlx[M]) ’
Fha o (F U Ak abrhhem UG e <h 1< <my),
def
Fi 2 i‘7<]'—h1 U {$Z+1}>
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Lemma C.13 (Lemma 4.2 in (Cai et al., 2019)). It holds that

K
Regret(T) = Z

/N

Vi (sh) = v (b))

k=1
K H
= e [(Qh(sny )y mi(- [ 55) = k(- | sn)) | 51 = sF]
k=1 t=1
)
K H
+3Y > DF + Mﬁ
k=1 t=1 k=1t=1
(ii) (iii)
K H
+ <t (snran) | s = s¥] =15 (sf, af)), (29)
k:lh:l
(iv)
where
Df = ((QF — QF )(sk, ) mh (- s8) — (QF — QF sk, af), (30)
My = Ph((Vthl - Vhﬂ+1))(5§»ai) - (thﬂ - fo+1)(3fz)~ (31)

Lemma C.14. For the policy w}’ at time-step k of episode h, it holds that

K H
SN Eae (@5 (sn ), i (- sn) = k(- | sn)) | s1=st] <0, (32)

k=1t=1
where T = HK.
Proof. Obvious from the observation that w}’j acts greedily with respect to Qﬁ. Note that if 71'2 = 7}, then the difference is 0.

Else the difference is negative since 7} is deterministic with respect to its action-values meaning it takes a value of 1 where
75 would take a value of 0 and Q¥ would have the greatest value at the state-action pair that 7}’ equals one. O

Lemma C.15 (Bound on Martingale Difference Sequence). For any 6 > 0, it holds with probability 1 — 2§ /3 that

K H K H
SN TDE+D YT M) < 20/2HTlog(3/9). (33)

k=1 t=1 k=1 t=1

Proof. Recall that

Dh: <(Q —Qh )(sh,~),7r’ﬁ(~,sﬁ)) - (Qh Qh )(Shaah)
MIfL = Ph((vh+1 - Vh-&-l))(SZvaZ) - (th+1 - Vh+1)(5§)~

Note that in line 2 of Algorithm 2, we truncate Q¥ 2 to the range [0, H — h]. Thus for any (k,t) € [K] x [H], we have,
|D | < 2H. Moreover, since E[Dh|_7-'h 11=0, Dh is a martingale difference sequence. So, applying Azuma-Hoeffding
inequality we have with probability at least 1 — & /3,

K H
> > D < V/2HTlog(3/9), (34)

k=1t=1

where T' = KH.
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Similarly, M5 is a martingale difference sequence since for any (k,t) € [K| x [H], |[M}| < 2H and E[M} |fh =

Applying Azuma-Hoeffding inequality we have with probability at least 1 — §/3,

K H
> > M < 2H?Tlog(3/9).

k=1t=1

Applying union bound on (34) and (35) gives (33) and completes the proof.

Lemma C.16. Let A = 1 in Algorithm 2. For any 6 > 0, conditioned on the event G(K, H, §), we have,

Mm

K
k=1h 1

with probability 1 — (5 + c}!).

Proof. By Lemma C.11, with probability 1 — (& + cA?) it holds that

K H
DO B [li(snan)|s = 8] <0,

k=1h=1

=

and

< (Vvk(6) + vk (0)
= (\/VK(5)+\/'7K

H+\/2dK 1og(1 + K)

))V/2dHT log(1 + K).

< [Ih(snsan)ls1 = st] =1 (shyap)) < (Vve(0) + Vv (6)) V/2dHT log(1 + K),

(35)

(36)

(37

(38)

Here the second inequality follows from the fact that both v (&) and 7 (d) are increasinig in k. The third and the fourth

inequalities follow from Cauchy-Schwarz inequality and Lemma D.4. Combining (37) and (38) completes the proof.

O

Lemma C.17 (Good event probability). For any K € N and any § > 0, we would have the event G(K, H,d") with

probability at least 1 — 0, where 8’ = 6 /MT.

Proof. By Lemma D.2, we have, for any fixed ¢ and k, the event G ,’f (€, 8) occurs with probability at least 1 — M §’. Recall

from Definition C.8 that,

G, H&) = () () 9.

k<K h<H

Now taking union bound over all (¢, k) € [H] x [K], we have

P(() ) 9K(& ) =1 - MT§ =13,

k<K h<H

which completes the proof.
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Theorem C.18. Let A = 1, 0 = O(H+/d) and M = dlog(5/9)/log co, where co = ®(1) and & € (0,1]. Under Definition
4.3, the regret of Algorithm 2 satisfies

Regret(T) < O(d*?H?/*V/T),
with probability at least 1 — §.

Proof of Theorem C.18. Let ¢’ = §/9. From Lemma C.17, the event G(K, H, §") happens with probability 1 — ¢’. Combin-
ing Lemma C.16 and Lemma C.17 we have that the event G(K, H, §') occurs and it holds that

K H
DD (Bae [l (snan)ls1 = sF] — 1 (sh, ap)) < (WK«S') + Vw(é'))deTlog(l +K), (39)

k=1h=1

with probability at least (1 — 8")(1 — (8" + ¢})). Note that ¢} = ¢ and (1 — &')(1 — (&' +c)!)) >1-30 =1-§/3.
The martingale inequalities from Lemma C.15 happens with probability 1 — 24/3.

Applying union bound on (32), (33) and (39) gives the final regret bound of O(d®/2H3/2\/T) completes the proof. O

D. Auxiliary lemmas

This section presents several auxiliary lemmas and their proofs.

D.1. Gaussian Concentration

Lemma D.1 (Gaussian Concentration (Vershynin, 2018)). Consider a d-dimensional multivariate normal distribution
n ~ N(0, AA=1) where A is a scalar. For any 6 > 0, with probability 1 — 6,

[nlla < c¢v/dAlog(d/d),

where ¢ is some absolute constant. For d = 1, we have ¢ = /2.

Lemma D.2. Consider a d-dimensional multivariate normal distribution N(0, AA~') where A is a scalar. Let
N1,7M2, - -,y be M independent samples from the distribution. Then for any § > 0

P (s sl < ev/aAToa(d/B)) = 1- 015
JE[M]

where c is some absolute constant.

Proof. From Lemma D.1, for a fixed j € [M], with probability at least 1 — 6 we would have
nlla < cy/dATog(d/5).

Applying union bound over all M samples completes the proof. O

D.2. Inequalities for summations

Lemma D.3 (Lemma D.1 in (Jin et al., 2020)). Let A, = A\ + Z§=1 gi)id);r, where ¢; € R* and X > 0. Then it holds that
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Lemma D.4 (Lemma 11 in (Abbasi-Yadkori et al., 2011)). Using the same notation as defined in this paper
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Lemma D.5. Let A € R4 be a positive definite matrix where its largest eigenvalue \,q.(A) < \. Let 1, ...,z be k
vectors in R%. Then it holds that
k
[ED3E
i=1

< VAR hel2)
=1

Proof. For any vector v € R4,
|| Av|| = [|AY2 A2y
< AMR|| AP
= |AY2|[||v]) a-

Here the inequality follows from the definition of the operator norm || A*/2||. Moreover, [|A'/2|| < /X since A\pqaz(A) < A

Thus,
k k
Ain <V Zx (40)
i=1 i=1 lla
Now by Cauchy-Schwarz inequality,
k 2 ko k
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Combining (40) and (41), proves the lemma. O

D.3. Covering numbers and self-normalized processes

Lemma D.6 (Lemma D.4 in (Jin et al., 2020)). Ler {s;}52, be a stochastic process on state space S with corresponding
filtration {F;}32,. Let {$;}52, be an R%-valued stochastic process where ¢; € F;_1, and ||¢;|| < 1. Let Ay =
M+ Zle ¢i®; . Then for any § > 0, with probability at least 1 — 6, for all k > 0, and any V € V withsup,cs |V (s)| < H,
we have

2 2 d. k+X N.1 | 8k%¢
2 €
H; ol V(o) ~ BV () | e}, < 42 [Flos("57) + 10w 5 | + =5
where N, is the e-covering number of V with respect to the distance dist(V,V') = sup,cs |V (s) — V'(s)|.

Lemma D.7 (Covering number of Euclidean ball, (Vershynin, 2018) ). For any € > 0, the e-covering number, N, of the
Euclidean ball of radius B > 0 in R? satisfies

2B\d B\d
N. < (1+—) < (3—) .
€ €
Lemma D.8. Consider a class of functions V : S — R which has the following parametric form

V() = (min{o(,) 70, H} " n(-]) .

A



Randomized Exploration for Reinforcement Learning with General Value Function Approximation

where the parameter 6 satisfies ||0|| < B and for all (s,a) € S x A, we have ||¢(s, a)|| < L. If Ny . denotes the e-covering
number of V with respect to the distance dist(V,V') = sup,cg |V (s) — V'(s)|, then

log Ny . < dlog(l+ 2B/e) < dlog(3B/e¢).

Proof. Consider any two functions V1, V5 € V with parameters 6, and 62, respectively. Note that min{-, H } is a contraction
mapping. Thus we have

dist(V1, V2) < Slslp|<¢(5a )01 — (s, ) 0z, 7(- | )l

< sup [¢76; — o6,
sillsl<1
sup | (01 — 02|
sillsl<1

< sup |61 — 22|92
¢:||loll<1

=161 — 62|, (42)

where the second inequality follows from the triangle inequality and the third inequality follows from the Cauchy-Schwarz
inequality.

If Ny . denotes the e-covering number of {¢ € R?|||0|| < B}, Lemma D.7 implies
2B\ 4 3B\¢
Noe< (1+2) < (2£2)
€ €
Let Cy . be an e-cover of {# € R?|||§|| < B} with cardinality Ny .. Consider any V; € V. By (42), there exists 62 € Cy -

such that V5 parameterized by 0 satisfies dist(V7, V2) < e. Thus we have

log Ny . <log Ny . < dlog(1+2B/e) < dlog(3B/e),

which concludes the proof. O

E. Experiment Details

In this section we include the figure for the RiverSwim environment from (Osband et al., 2013).

Figure 5: The 6 state RiverSwim environment (Osband et al., 2013). State s; has a small reward while state s has a large
reward. The action whose transition is denoted with a dashed arrow deterministically moves the agent left. The other action
is stochastic, and with relative high probability moves the agent towards the goal state sg. This action represents swimming
against the current, hence the name RiverSwim.



