
Distributed Second Order Methods with Fast Rates
and Compressed Communication

Rustem Islamov 1 2 Xun Qian 1 Peter Richtárik 1

Abstract

We develop several new communication-efficient
second-order methods for distributed optimiza-
tion. Our first method, NEWTON-STAR, is a vari-
ant of Newton’s method from which it inherits its
fast local quadratic rate. However, unlike New-
ton’s method, NEWTON-STAR enjoys the same
per iteration communication cost as gradient de-
scent. While this method is impractical as it relies
on the use of certain unknown parameters charac-
terizing the Hessian of the objective function at
the optimum, it serves as the starting point which
enables us to design practical variants thereof
with strong theoretical guarantees. In particular,
we design a stochastic sparsification strategy for
learning the unknown parameters in an iterative
fashion in a communication efficient manner. Ap-
plying this strategy to NEWTON-STAR leads to
our next method, NEWTON-LEARN, for which we
prove local linear and superlinear rates indepen-
dent of the condition number. When applicable,
this method can have dramatically superior con-
vergence behavior when compared to state-of-the-
art methods. Finally, we develop a globalization
strategy using cubic regularization which leads to
our next method, CUBIC-NEWTON-LEARN, for
which we prove global sublinear and linear con-
vergence rates, and a fast superlinear rate. Our
results are supported with experimental results on
real datasets, and show several orders of magni-
tude improvement on baseline and state-of-the-art
methods in terms of communication complexity.

*Equal contribution 1King Abdullah University of Science
and Technology, Thuwal, Saudi Arabia 2Moscow Institute of
Physics and Technology, Dolgoprudny, Russia. Correspondence
to: Rustem Islamov <islamov.ri@phystech.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1. Introduction
The prevalent paradigm for training modern supervised ma-
chine learning models is based on (regularized) empirical
risk minimization (ERM) (Shalev-Shwartz and Ben-David,
2014), and the most commonly used optimization methods
deployed for solving ERM problems belong to the class of
stochastic first order methods (Robbins and Monro, 1951;
Nemirovski et al., 2009). Since modern training data sets
are very large and are becoming larger every year, it is
increasingly harder to get by without relying on modern
computing architectures which make efficient use of dis-
tributed computing. However, in order to develop efficient
distributed methods, one has to keep in mind that communi-
cation among the different parallel workers (e.g. processors
or compute nodes) is typically very slow, and almost invari-
ably forms the main bottleneck in deployed optimization
software and systems (Bekkerman et al., 2011). For this
reason, further advances in the area of communication effi-
cient distributed first order optimization methods for solving
ERM problems are highly needed, and research in this area
constitutes one of the most important fundamental endeav-
ors in modern machine learning. Indeed, this research field
is very active, and numerous advances have been made over
the past decade (Seide et al., 2014; Wen et al., 2017; Alistarh
et al., 2017; Bernstein et al., 2018; Mishchenko et al., 2019;
Stich and Karimireddy, 2019; Tang et al., 2019).

1.1. Distributed optimization

We consider L2 regularized empirical risk minimization
problems of the form

min
x∈Rd

[
P (x) := f(x) + λ

2 ‖x‖
2
]
, (1)

where f : Rd → R is a smooth1 convex function of the
“average of averages” structure

f(x) := 1
n

n∑
i=1

fi(x), fi(x) := 1
m

m∑
j=1

fij(x), (2)

1Function φ : Rd → R is smooth if it is differentiable, and has
Lφ Lipschitz gradient: ‖∇φ(x)−∇φ(y)‖ ≤ Lφ‖x− y‖ for all
x, y ∈ Rd. We say that Lφ is the smoothness constant of φ.

and λ ≥ 0 is a regularization parameter. Here n is the
number of parallel workers (nodes), and m is the number
of training examples handled by each node2. The value
fij(x) denotes the loss of the model parameterized by vector
x ∈ Rd on the jth example owned by the ith node. This
example is denoted as aij ∈ Rd, and the corresponding loss
function is ϕij : R→ R, and hence we have

fij(x) := ϕij(a
>
ijx). (3)

Thus, f represents the average loss/risk over all nm training
datapoints, and problem (1) seeks to find the model whose
(L2 regularized) empirical risk is minimized. We make the
following assumption throughout the paper.

Assumption 1.1. Problem (1) has at least one optimal
solution x∗. For all i and j, the loss function ϕij : R→ R
is γ-smooth, twice differentiable, and its second derivative
ϕ′′ij : R→ R is ν-Lipschitz continuous.

Note that in view of (3), the Hessian of fij at point x is

Hij(x) := ∇2fij(x) = hij(x)aija
>
ij , (4)

where
hij(x) := ϕ′′ij(a

>
ijx). (5)

In view of Assumption 1.1, we have |ϕ′′ij(t)| ≤ γ for all
t ∈ R, and

|hij(x)−hij(y)| ≤ ν|a>ijx− a>ijy| ≤ ν‖aij‖‖x− y‖ (6)

for all x, y ∈ Rd. Let R := maxij ‖aij‖. The Hessian of
fi is given by

Hi(x)
(2)
= 1

m

m∑
j=1

Hij(x)
(4)
= 1

m

m∑
j=1

hij(x)aija
>
ij , (7)

and the Hessian of f is given by

H(x)
(2)
= 1

n

n∑
i=1

Hi(x)
(7)
= 1

nm

n∑
i=1

m∑
j=1

hij(x)aija
>
ij . (8)

1.2. The curse of the condition number

All first order methods—distributed or not—suffer from a
dependence on an appropriately chosen notion of a condition
number3—a number that describes the difficulty of solving
the problem by the method at hand. A condition number is a
function of the goal we are trying to achieve (e.g., minimize

2All our results can be extended in a straightforward way to
the more general case when node i contains mi training examples.
We decided to present the results in the special case m = mi for
all i in order to simplify the notation.

3Example: if one wishes to minimize an L-smooth µ-strongly
convex function and one cares about the number of gradient type
iterations, the appropriate notion of a condition number is κ := L

µ
.

the number of iterations vs minimize the number of com-
munications), choice of the loss function, structure of the
model we are trying to learn, and last but not least, the size
and properties of the training data. In fact, most research
in this area is motivated by the desire to design methods
that would have a reduced dependence on the condition
number. This is the case for many of the tricks heavily stud-
ied in the literature, including minibatching (Takáč et al.,
2013), importance sampling (Needell et al., 2015; Zhao
and Zhang, 2015), random reshuffling (Mishchenko et al.,
2020), variance reduction (Schmidt et al., 2017; Johnson
and Zhang, 2013; Xiao and Zhang, 2014; Defazio et al.,
2014), momentum (Loizou and Richtárik, 2017a;b), adap-
tivity (Malitsky and Mishchenko, 2019), communication
compression (Alistarh et al., 2017; Bernstein et al., 2018;
Mishchenko et al., 2019), and local computation (Ma et al.,
2017; Stich, 2020; Khaled et al., 2020). Research in this
area is becoming saturated, and new ideas are needed to
make further progress.

1.3. Newton’s method to the rescue?

One of the ideas that undoubtedly crossed everybody’s mind
is the trivial observation that there is a very old and simple
method which does not suffer from any conditioning issues:
Newton’s method. Indeed, when it works, Newton’s method
has a fast local quadratic convergence rate which is entirely
independent of the condition number of the problem (Beck,
2014). While this is a very attractive property, developing
scalable distributed variants of Newton’s method that could
also provably outperform gradient based methods remains
a largely unsolved problem. To highlight the severity of
the issues with extending Newton’s method to stochastic
and distributed settings common in machine learning, we
note that until recently, we did not even have any Newton-
type analogue of SGD that could provably work with small
minibatch sizes, let alone minibatch size one (Kovalev et al.,
2019). In contrast, SGD with minibatch size one is one of
the simplest and well understood variants thereof (Needell
et al., 2015), and much of modern development in the area
of SGD methods is much more sophisticated. Most variants
of Newton’s method proposed for deployment in machine
learning are heuristics, which is to say that they are not
supported with any convergence guarantees, or have conver-
gence guarantees without explicit rates, or suffer from rates
that are worse than the rates of first order methods.

1.4. Contributions summary

We develop several new fundamental Newton-type methods
which we hope make a marked step towards the ultimate
goal of developing practically useful and communication
efficient distributed second order methods. Our methods
are designed with the explicit goal of supporting efficient
communication in a distributed setting, and in sharp contrast

Table 1. Summary of algorithms proposed and convergence results proved in this paper.
Convergence

Method result † type rate
Rate

independent of the
condition number?

Theorem

NEWTON-STAR
(
NS
)

(12)
rk+1 ≤ cr2k local quadratic 3 2.1

MAX-NEWTON
(
MN

)
Algorithm 4

rk+1 ≤ cr2k local quadratic 3 H.1

NEWTON-LEARN
(
NL1

)
Algorithm 1

local linear 3 3.2
rk+1 ≤ cθk1 rk local superlinear 3 3.2

NEWTON-LEARN
(
NL2

)
Algorithm 2

Φk
2 ≤ θ

k
2Φ0

2 local linear 3 3.5
rk+1 ≤ cθk2 rk local superlinear 3 3.5

CUBIC-NEWTON-LEARN
(
CNL

)
Algorithm 3

∆k ≤ c
k global sublinear 7 F.3

∆k ≤ c exp(−k/c) global linear 7 F.4
Φk

3 ≤ θ
k
3Φ0

3 local linear 3 F.5
rk+1 ≤ cθk3 rk local superlinear 3 F.5

Quantities for which we prove convergence: (i) distance to solution rk :=
∥∥∥xk − x∗

∥∥∥; (ii) Lyapunov function Φk
q :=

∥∥∥xk − x∗
∥∥∥2 +

cq
∑n

i=1

∑m
j=1(hk

ij − hij(x∗))2 for q = 1, 2, 3, where hij(x∗) = ϕ′′ij(a>ijx
∗) (see (5)); (iii) Function value suboptimality

∆k := P (xk)− P (x∗)

† constant c is possibly different each time it appears in this table. Refer to the precise statements of the theorems for the exact values.

with most recent work, their design was heavily influenced
by our desire to equip them with strong convergence guar-
antees typical for the classical Newton’s method (Wallis,
1685; Raphson, 1697) and cubically regularized Newton’s
method (Griewank, 1981; Nesterov and Polyak, 2006). Our
convergence results are summarized in Table 1.

• First new method and its local quadratic convergence.
We first show that if we know the Hessian of the objective
function at the optimal solution, then we can use it instead of
the typical Hessian appearing in Newton’s method, and the
resulting algorithm, which we call NEWTON-STAR (NS),
inherits local quadratic convergence behavior of Newton’s
method (see Theorem 2.1). In a distributed setting with a
central orchestrating sever, each compute node only needs
to send the local gradient to the server node, and no matrices
need to be sent. While this method is not practically useful,
it acts as a stepping stone to our next method, in which
these deficiencies are removed. This method is described
in Section 2. A somewhat different method with similar
properties, which we call MAX-NEWTON4, is described in
Section H.

• Second new method and its local linear and super-
linear convergence. Motivated by the above result, we
propose a learning scheme which enables us to learn the
Hessian at the optimum iteratively in a communication ef-
ficient manner. This scheme gives rise to our second new
method: NEWTON-LEARN (NL). We analyze this method
in two cases: (i) all individual loss functions are convex and
λ > 0 (giving rise to the NL1 method), and (ii) the aggregate
loss function P is strongly convex (giving rise to the NL2
method). Besides the local full gradient, each worker node

4In fact, this was the first method we developed, in Summer
2020, when we embarked on the research which eventually lead to
the results presented in this paper.

needs to send additional information to the server node in
order to learn the Hessian at the optimum. However, our
learning scheme supports compressed communication with
arbitrary compression level. This level can be chosen so that
in each iteration, each node sends an equivalent of a few
gradients to the server only. That is, we can achieve O(d)
communication complexity in each iteration. In both cases,
we prove local linear convergence for a carefully designed
Lyapunov function, and local superlinear convergence for
the squared distance to optimum (see Theorems 3.2 and 3.5).
Remarkably, all these rates are independent of the condition
number.5 The NL1 and NL2 methods and the associated
theory are described in Section 3.

• Third new method and its global convergence. Next,
we equip our learning scheme with a cubic regularization
strategy (Griewank, 1981; Nesterov and Polyak, 2006),
which leads to a new globally convergent method: CUBIC-
NEWTON-LEARN (CNL). We establish global sublinear
and linear convergence (for function values) guarantees for
convex and strongly convex problems, respectively. The
method can also achieve a fast local linear (for a Lyapunov
function) and superlinear (for squared distance to solution)
convergence in the strongly convex case. We describe this
method and the associated theory in Section F.

• Experiments. Our theory is corroborated with numerical
experiments showing the superiority of our methods to sev-
eral state-of-the-art benchmarks, including DCGD (Khirirat
et al., 2018), DIANA (Mishchenko et al., 2019; Horváth et al.,
2019b), ADIANA (Li et al., 2020), BFGS (Broyden, 1967;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), and DINGO
(Crane and Roosta, 2019). Our methods can achieve com-

5However, the size of the neighborhood of local convergence
is not independent of the condition number.

munication complexity which is several orders of magnitude
better than competing methods (see Section 4).

2. Three Steps Towards an Efficient
Distributed Newton Type Method

In order to better explain the algorithms and results of this
paper, we will proceed through several steps in a gradual
explanation of the ideas that ultimately lead to our methods.
While this is not the process we used to come up with
our methods, in retrospect we believe that our methods
and results will be understood more easily when seen as
having been arrived at in this way. In other words, we have
constructed what we believe is a plausible discovery story,
one enabling faster and better comprehension. If these ideas
seem to follow naturally, it is because we made a conscious
effort to make then appear that way. The goal of this paper
is to develop communication efficient variants of Newton’s
method for solving the distributed optimization problem (1).

2.1. Naive distributed implementation of Newton’s
method

Newton’s method applied to problem (1) performs the itera-
tion

xk+1 = xk −
(
∇2P (xk)

)−1∇P (xk)

(1)
= xk −

(
H(xk) + λI

)−1∇P (xk). (9)

A naive way to implement this method in the parameter
server framework is for each node i to compute the Hessian
Hi(x

k) and gradient ∇fi(xk) and to communicate these
objects to the server. The server then averages the local
Hessians Hi(x

k) to produce H(xk) via (8), and averages
the local gradients∇fi(xk) to produce∇f(xk). The server
then adds λI to the Hessian, producing H(xk) + λI =
∇2P (xk), adds λxk to the gradient, producing∇P (xk) =
∇f(xk)+λxk, and subsequently performs the Newton step
(9). The resulting vector xk+1 is then broadcasted to the
nodes and the process is repeated.

This implementation mirrors the way GD and many other
first order methods are implemented in the parameter server
framework. However, unlike in the case of GD, where only
O(d) floats need to be sent and received by each node in
each iteration, the upstream communication in Newton’s
method requires O(d2) floats to be communicated by each
worker to the server. Since d is typically very large, this
is prohibitive in practice. Moreover, computation of the
Newton’s step by the parameter server is much more ex-
pensive than simple averaging of the gradients performed
by gradient type methods. However, in this paper we will
not be concerned with the cost of the Newton step itself,
as we will assume the server is powerful enough and the

network connection is slow enough for this step not to be
the main bottleneck of the iteration. Instead, we assume that
the communication steps in general, and the O(d2) com-
munication of the Hessian matrices in particular, is what
forms the bottleneck. The O(d) per node communication
cost of the local gradients is negligible, and so is the O(d)
broadcast of the updated model.

2.2. A better implementation taking advantage of the
structure of Hij(x)

The above naive implementation can be improved in the
setting when m < d2 by taking advantage of the explicit
structure (7) of the local Hessians as a conic combination of
positive semidefinite rank one matrices:

Hi(x) = 1
m

m∑
j=1

hij(x)aija
>
ij . (10)

Indeed, assuming that the server has direct access to all
the training data vectors aij ∈ Rd (these vectors can be
sent to the server at the start of the process), node i can
send the m coefficients hi1(x), . . . , him(x) to the server
instead, and the server is then able to reconstruct the Hessian
matrix Hi(x) from this information. This way, each node
sends O(m+ d) floats to the server, which is a substantial
improvement on the naive implementation in the regime
when m � d2. However, when m � d, the upstream
communication cost is still substantially larger than theO(d)
cost of GD. If the server does not have enough memory to
store all vectors aij , this procedure does not work.

2.3. NEWTON-STAR: Newton’s method with a single
Hessian

We now introduce a simple idea which, surprisingly, en-
ables us to remove the need to iteratively communicate any
coefficients altogether. Assume, for the sake of argument,
that we know the values hij(x∗) for all i, j. That is, as-
sume the server has access to coefficients hij(x∗) for all
i, j, and that each node i has access to coefficients hij(x∗)
for j = 1, . . . ,m, i.e., to the vector

hi(x) := (hi1(x), . . . , him(x)) ∈ Rm (11)

for x = x∗. Next, consider the following new Newton-
like method which we call NEWTON-STAR (NS), where the
“star” points to the method’s reliance on the knowledge of
the optimal solution x∗:

xk+1 = xk −
(
∇2P (x∗)

)−1∇P (xk)

(1)
= xk − (H(x∗) + λI)

−1∇P (xk). (12)

Since the server knows H(x∗), all that the nodes need to
communicate are the local gradients∇fi(xk), which costs

O(d) per node. The server then computes xk+1, broad-
casts it back to the nodes, and the process is repeated. This
method has the same per-iteration O(d) communication
complexity as GD. However, as we show next, the number
of iterations (which is the same as the number of com-
munications) of NEWTON-STAR does not depend on the
condition number – a property it borrows from the clas-
sical Newton’s method. The following theorem says that
NEWTON-STAR enjoys local quadratic convergence.
Theorem 2.1 (Local quadratic convergence). Let Assump-
tion 1.1 hold, and assume that H(x∗) � µ∗I for some
µ∗ ≥ 0 (for instance, this holds if f is µ∗-strongly convex)
and that µ∗ + λ > 0. Then for any starting point x0 ∈ Rd,
the iterates of NEWTON-STAR for solving problem (1) sat-
isfy the following inequality6:

‖xk+1−x∗‖ ≤ ν
2(µ∗+λ) ·

(
1
nm

n∑
i=1

m∑
j=1

‖aij‖3
)
·‖xk−x∗‖2.

Note that we do not need to assume f to be convex or
strongly convex. Instead, all we need to assume is positive
definiteness of the Hessian at the optimum. This implies
local strong convexity, and since our convergence result is
local, that is all we need.

Remark. Besides NEWTON-STAR, we have designed an-
other new Newton-type method with a local quadratic rate.
This method, which we call MAX-NEWTON, is similar to
NEWTON-STAR in that it relies on the knowledge of the
coefficients hij(x∗) for j = 1, . . . ,m. We describe this
method in Appendix H.

3. NEWTON-LEARN: Learning the Hessian and
Local Convergence Theory

In Sections 2.1, 2.2 and 2.3 we have gone through three steps
in our story, with the first true innovation and contribution
of this paper being the NEWTON-STAR method and its rate.
We have now sufficiently prepared the ground to motivate
our first key contribution: the NEWTON-LEARN method.
We only outline the basic insights behind this method here;
the details are included in Section 3.

3.1. The main iteration

In NEWTON-LEARN we maintain a sequence of vectors

hki = (hki1, . . . , h
k
im) ∈ Rm,

6While this inequality holds for any x0 ∈ Rd, it is only
meaningful if it leads to a contraction in the distance to opti-
mum, and this means that Theorem 2.1 ensures convergence to
x∗ only if x0 is sufficiently close to x∗. That is, the theorem
implies local quadratic convergence only. To see this, let c > 0
be the constant on the right hand side of the inequality, so that
‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2 for all k. It is easy to see that
requiring ‖x0 − x∗‖ ≤ 1

2c
suffices to ensure convergence.

for all i = 1, . . . , n throughout the iterations k ≥ 0 with the
goal of learning the values hij(x∗) for all i, j. That is, we
construct the sequence with the explicit intention to enforce

hkij → hij(x
∗) as k →∞. (13)

Using hkij ≈ hij(x∗) we estimate the Hessian H(x∗) via

H(x∗) ≈ Hk := 1
nm

n∑
i=1

m∑
j=1

hkijaija
>
ij , (14)

and then perform a similar iteration to (12):

xk+1 = xk −
(
Hk + λI

)−1∇P (xk). (15)

3.2. Learning the coefficients: the idea

To complete the description of the method, we need to
explain how the vectors hk+1

i are updated. This is also the
place where we can force the method to be communication
efficient. Indeed, if we can design a rule that would enforce
the update vectors hk+1

i − hki to be sparse, say

‖hk+1
i − hki ‖0 ≤ s (16)

for some 1 ≤ s ≤ m and all i and k, then the upstream
communication by each node in each iteration would be of
the orderO(s+d) only (provided the server has access to all
vectors aij)! That is, each node i only needs to communicate
s entries of the update vector hk+1

i −hki as the rest are equal
to zero, and each node also needs to communicate the d
dimensional gradient ∇fi(xk). Note that O(s + d) can
be interpreted as an interpolation between the O(m + d)
per-iteration communication complexity of the structure-
aware implementation of Newton’s method from Section 2.2,
and of the O(d) per-iteration communication complexity of
NEWTON-STAR described in Section 2.3.

In the more realistic regime when the server does not have
access to the data {aij}, we ask each worker i to additionally
send the corresponding s vectors aij , which costs extra
O(sd) in communication per node. However, when s =
O(1), this is the same per-iteration communication effort as
that of GD.

We develop two different update rules defining the evolution
of the vectors hk1 , . . . , h

k
n. This first rule (see (19)) applies

to the λ > 0 case and leads to our first variant of NEWTON-
LEARN which we call NL1 (see Algorithm 1). This rule and
the method are described in Section 3.5. The second rule ap-
plies also to the λ = 0 cases and leads to our second variant
of NEWTON-LEARN which we call NL2 (see Algorithm 2).
This rule and the method are described in Section 3.6.

3.3. Outline of fast local convergence theory

We show in Theorem 3.2 (covering NL1) and Theorem 3.5
(covering NL2) that NEWTON-LEARN enjoys a local linear

rate wrt a certain Lyapunov function which involves the term
‖xk − x∗‖2 and also all terms of the form ‖hki − hi(x∗)‖2.
This means that i) the main iteration (15) works, i.e., xk

converges to x∗ at a local linear rate, and that ii) the learning
procedure works, and the desired convergence described
in (13) occurs at a local linear rate. In addition, we also
establish a local superlinear rate of ‖xk−x∗‖2. Remarkably,
these rates are independent of any condition number, which
is in sharp contrast with virtually all results on distributed
Newton-type methods we are aware of.

Moreover, we wish to remark that second order methods
are not typically analyzed using a Lyapunov style analysis.
Indeed, we only know of a couple works that do so. First,
Kovalev et al. (2019) develop stochastic Newton and cubic
Newton methods of a different structure and scope from
ours. They do not consider distributed optimization nor
communication compression. Second, Kovalev et al. (2020)
develop a stochastic BFGS method. Again, their method
and scope is very different from ours. Hence, our analysis
may be of independent interest as it adds to the arsenal
of theoretical tools which could be used in a more precise
analysis of other second order methods.

3.4. Compressed learning

Instead of merely relying on sparse updates for the vectors
hki (see (16)), we provide a more general communication
compression strategy which includes sparsification as a spe-
cial case (Alistarh et al., 2017). We do so via the use of a
random compression operator. We say that a randomized
map C : Rm → Rm is a compression operator (compres-
sor) if there exists a constant ω ≥ 0 such that the following
relations hold for all x ∈ Rm:

E [C(x)] = x (17)
E
[
‖C(x)‖2

]
≤ (ω + 1)‖x‖2. (18)

The identity compressor C(x) ≡ x satisfies these relations
with ω = 0. The larger the variance parameter ω is allowed
to be, the easier it can be to construct a compressor C for
which the value C(x) can be encoded using a small number
of bits only. We refer the reader to (Beznosikov et al., 2020)
for a list of several compressors and their properties.

3.5. NL1 (learning in the λ > 0 case)

We now consider the case where all loss functions ϕij are
convex and λ > 0.
Assumption 3.1. Each ϕij is convex, λ > 0.

When combined with Assumption 1.1, Assumption 3.1 im-
plies that ϕ′′ij(t) ≥ 0 for all t, hence hij(x) = ϕ′′ij(a

>
i x) ≥

0 for all x ∈ Rd. In particular, hij(x∗) ≥ 0 for all
i, j. Since we wish to construct a sequence of vectors
hki = (hki1, . . . , h

k
im) ∈ Rm satisfying hkij → hij(x

∗), it

makes sense to try to enforce all vectors in this sequence to
have nonnegative entries: hkij ≥ 0.

Since Hk arises as a linear combination of the rank-one ma-
trices aija>ij (see (14)), this makes Hk positive semidefinite,
which in turn means that the matrix Hk + λI appearing in
the main iteration (15) of NEWTON-LEARN is invertible,
and hence the iteration is well defined.7

The learning iteration and the NL1 algorithm. In particu-
lar, in NEWTON-LEARN each node i computes the vector
hi(x

k) ∈ Rm of second derivatives defined in (11), and
then performs the update

hk+1
i =

[
hki + ηCki (hi(x

k)− hki)
]
+
, (19)

where η > 0 is a learning rate, Cki is a freshly sampled
compressor by node i at iteration k. By [·]+ we denote
the positive part function applied element-wise, defined for
scalars as follows: [t]+ = t if t ≥ 0 and [t]+ = 0 otherwise.

We remark that it is possible to interpret the learning proce-
dure (19) as one step of projected stochastic gradient descent
(SGD) applied to a certain quadratic optimization problem
whose unique solution is the vector hi(xk).

The NL1 algorithm (Algorithm 1) arises as the combination
of the Newton-like update (15) (adjusted to take account of
the explicit regularizer) and the learning procedure (19). It
is easy to see that the update rule for Hk in NL1 is designed
to ensure that Hk remains of the form Hk = 1

n

∑n
i=1 H

k
i ,

where Hk
i = 1

m

∑m
j=1 h

k
ijaija

>
ij . The update rule for xk,

performed by the server, is identical to (15), with an extra
provision for the regularizer. The vector xk+1 is broadcasted
to all workers. Let us comment on how the key commu-
nication step is implemented. If the server does not have
direct access to the training data vectors {aij}, we choose
Option 1, otherwise we choose Option 2. A key property
of NL1 is that the server is able to maintain copies of the
learning vectors hki without the need for these vectors to be
communicated by the workers to the server. Indeed, pro-
vided the workers and the server agree on the same set of
initial vectors h0

1, . . . , h
0
n, update (19) can be independently

computed by the server as well from its memory state hki
and the compressed message Cki (hi(x

k)−hki) received from
node i. This strategy is reminiscent of the way the key step
in the first-order method DIANA (Mishchenko et al., 2019;
Horváth et al., 2019b) is executed. In this sense, NL1 can
be seen as arising from a successful marriage of Newton’s
method and the DIANA trick.

7Positive definiteness of Hessian estimates is enforced in sev-
eral popular quasi-Newton methods as well; for instance, in the
BFGS method (Broyden, 1967; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970). However, quasi-Newton methods operate in a
markedly different manner, and the way in which positive definite-
ness is enforced there is also different.

Algorithm 1 NL1: NEWTON-LEARN (λ > 0 case)
Parameters: learning rate η > 0
Initialization: x0 ∈ Rd; h0

1, . . . , h
0
n ∈ Rm+ ; H0 =

1
nm

n∑
i=1

m∑
j=1

h0
ijaija

>
ij ∈ Rd×d

for k = 0, 1, 2, . . . do
Broadcast xk to all workers
for each node i = 1, . . . , n do

Compute local gradient∇fi(xk)
hk+1
i = [hki + ηCki (hi(x

k)− hki)]+
Send∇fi(xk) andmk

i = Cki (hi(x
k)−hki) to server

Option 1: Send {aij : hk+1
ij − hkij 6= 0} to server

Option 2: Do nothing if server knows {aij : ∀j}
end for
xk+1 = xk−

(
Hk + λI

)−1
(

1
n

n∑
i=1

∇fi(xk) + λxk
)

For each i, compute hk+1
i via hk+1

i = [hki + ηmk
i]+

Hk+1 = Hk + 1
nm

n∑
i=1

m∑
j=1

(hk+1
ij − hkij)aija>ij

end for

Theory. In our theoretical results we rely on the Lyapunov
function

Φk1 := ‖xk − x∗‖2 + 1
3mnην2R2Hk,

where Hk :=
∑n
i=1 ‖hki − hi(x∗)‖2. Our main theorem

follows.
Theorem 3.2 (Convergence of NL1). Let Assumptions 1.1
and 3.1 hold. Let η ≤ 1

ω+1 and assume that ‖xk − x∗‖2 ≤
λ2

12ν2R6 for all k ≥ 0. Then for Algorithm 1 we have the
inequalities

E[Φk1] ≤ θk1Φ0
1,

E
[
‖xk+1−x∗‖2
‖xk−x∗‖2

]
≤ θk1

(
6η + 1

2

)
ν2R6

λ2 Φ0
1,

where θ1 := 1−min
{
η
2 ,

5
8

}
.

Since the stepsize bound η ≤ 1
ω+1 is independent of the

condition number, and since from the proof of Lemma 3.3
we have ν2R6

λ2 Φ0
1 ≤ 1

12 + 1
36η , the linear convergence rates

of E[Φk1] and E
[
‖xk+1−x∗‖2
‖xk−x∗‖2

]
are both independent of the

condition number. Next, we explore under what conditions
we can guarantee for all the iterates to stay in a small neigh-
borhood.
Lemma 3.3. Let Assumptions 1.1 and 3.1 hold. Assume hkij
is a convex combination of {hij(x0), hij(x

1), ..., hij(x
k)}

for all i, j and k. Assume ‖x0 − x∗‖2 ≤ λ2

12ν2R6 . Then

‖xk − x∗‖2 ≤ λ2

12ν2R6 for all k ≥ 0.

It is easy to verify that if we choose h0
ij = hij(x

0)
and use the random sparsification compressor and η ≤

1
ω+1 , then hkij is always a convex combination of
{hij(x0), hij(x

1), ..., hij(x
k)} for k ≥ 0. Thus, from

Lemma 3.3 we can guarantee that all the iterates stay in
the small neighborhood assumed in Theorem 3.2 as long as
the initial point x0 is in it.

3.6. NL2 (learning in the λ ≥ 0 case)

In this subsection, we consider the case where P is µ-
strongly convex. Note that we do not require the compo-
nents fij to be convex.
Assumption 3.4. P is µ-strongly convex, |hkij | ≤ γ for
k ≥ 0.

The learning iteration and the NL2 algorithm. As in
Algorithm 1, we use a sequence of vectors {hki }k≥0 to learn
hi(x

∗). However, this time we rely on a different technique
for enforcing positive definiteness of the Hessian estimator.
Since λ can be zero, our previous technique aimed at forcing
the coefficients hkij to be nonnegative will not work. So, we
give up on this, and instead of (19) we use the simpler
update

hk+1
i = hki + ηCki (hi(x

k)− hki). (20)

In order to guarantee positive definiteness of the Hessian
estimator Hk + λI we instead rely on the second part of
Assumption 3.4. Provided that there exists γ > 0 such that
|hkij | ≤ γ for all i, j, note that hij(xk)+2γ

hk
ij+2γ

is always positive.

Noticing that each aija>ij is positive semidefinite and that
∇2f(xk) can be expressed in the form

1
nm

n∑
i=1

m∑
j=1

(
hij(xk)+2γ

hk
ij+2γ

· (hkij + 2γ)− 2γ
)
aija

>
ij ,

for βk := maxi,j
hij(xk)+2γ

hk
ij+2γ

, we get the inequal-

ity 1
nm

∑n
i=1

∑m
j=1

[
βk(hkij + 2γ)− 2γ

]
aija

>
ij −

∇2f(xk) = 1
nm

∑n
i=1

∑m
j=1

[
βk − hij(xk)+2γ

hk
ij+2γ

]
(hkij +

2γ)aija
>
ij � 0, where 0 is the d × d zero matrix, and

A � B means A−B is positive semidefinite. Thus, if we
can maintain the Hessian estimator in the form

Hk := 1
nm

n∑
i=1

m∑
j=1

[
βk(hkij + 2γ)− 2γ

]
aija

>
ij ,

then Hk + λI � ∇2f(xk) + λI = ∇2P (xk) � µI,
where the last inequality follows from Assumption 3.4.
To achieve this goal, we use an auxiliary matrix Ak, and
maintain Ak = 1

nm

∑n
i=1

∑m
j=1(hkij + 2γ)aija

>
ij , and

Hk = βkAk − 2γ · 1
nm

∑n
i=1

∑m
j=1 aija

>
ij . The rest of

Algorithm 2 is the same as Algorithm 1.

Theory. Our analysis of NL2 relies on the Lyapunov func-
tion

Φk2 := ‖xk − x∗‖2 + 1
3mnην2R2Hk,

Algorithm 2 NL2: NEWTON-LEARN (general case)
Parameters: η > 0; γ > 0
Initialization: x0 ∈ Rd; h0

i ∈ Rm+ ; A0 =
1
nm

∑n
i=1

∑m
j=1(h0

ij + 2γ)aija
>
ij ∈ Rd×d

for k = 0, 1, 2, . . . do
broadcast xk to all workers
for i = 1, . . . , n do

Compute local gradient∇fi(xk)
hk+1
i = hki + ηCki (hi(x

k)− hki)

βki = maxj∈[m]
hij(xk)+2γ

hk
ij+2γ

Send∇fi(xk), βki , and ηCki (hi(x
k)− hki) to server

Option 1: Send {aij : hk+1
ij − hkij 6= 0} to server

Option 2: Do nothing if server knows {aij : ∀j}
end for
βk = maxi{βki }

Hk = βkAk − 2γ · 1
nm

n∑
i=1

m∑
j=1

aija
>
ij ∈ Rd×d

xk+1 = xk−
(
Hk + λI

)−1
(

1
n

n∑
i=1

∇fi(xk) + λxk
)

Ak+1 = Ak+ 1
nm

n∑
i=1

m∑
j=1

(ηCki (hi(x
k)−hki))jaija

>
ij

end for

whereHk :=
∑n
i=1 ‖hki − hi(x∗)‖2. We now present our

main convergence result for NL2.

Theorem 3.5 (Convergence of NL2). Let Assumptions 1.1
and 3.4 hold. Assume η ≤ 1

ω+1 and ‖xk − x∗‖2 ≤
µ2

432mnν2R6 for all k ≥ 0. Then for Algorithm 2 we have the
inequalities

E[Φk2] ≤ θk2Φ0
2,

E
[
‖xk+1−x∗‖2
‖xk−x∗‖2

]
≤ θk2 (3mnη + 1) 72ν2R6

µ2 Φ0
2,

where θ2 := 1−min
{
η
2 ,

1
2

}
.

As before, we give sufficient conditions guaranteeing that
the iterates stay in a small neighborhood of the optimum.

Lemma 3.6. Let Assumptions 1.1 and 3.4 hold. Assume hkij
is a convex combination of {hij(x0), hij(x

1), ..., hij(x
k)}

for all i, j and k. Assume ‖x0 − x∗‖2 ≤ µ2

432mnν2R6 . Then

‖xk − x∗‖2 ≤ µ2

432mnν2R6 for all k ≥ 0.

If we choose h0
ij = hij(x

0), use a random compressor
with variance ω, and choose stepsize η ≤ 1

ω+1 , then hkij
is a convex combination of {hij(x0), hij(x

1), ..., hij(x
k)}

for all k ≥ 0. Thus, via Lemma 3.6 we can guarantee all
the iterates to be in the small neighborhood required by
Theorem 3.5 as long as the initial point x0 is in it.

4. Experiments
We now study the empirical performance of our second
order methods NL1, NL2 and CNL, and compare them with
relevant benchmarks and with state-of-the-art methods. We
test on the regularized logistic regression problem

min
x∈Rd

{
1
n

n∑
i=1

1
m

m∑
j=1

log
(
1 + exp(−bija>ijx)

)
+ λ

2 ‖x‖
2

}
,

where {aij , bij}j∈[m] are data samples at the i-th node.

Data sets. In our experiments we use four standard datasets
from the LIBSVM library: a2a, a7a, a9a, and w8a. More
experiments are provided in the appendix.

Compression operators. For the first order methods we use
three compression operators: random sparsification (Stich
et al., 2018), random dithering (Alistarh et al., 2017), and
natural compression (Horváth et al., 2019a). For random-r
sparsification, the number of communicated bits per itera-
tion is 32r+ log2

(
d
r

)
, and we choose r = d/4. For random

dithering, we choose s =
√
d, which means the number of

communicated bits per iteration is 2.8d + 32. For natural
compression, the number of communicated bits per iteration
is 9d bits. For NL1 and NL2 we use the random-r sparsifi-
cation operator with different values of r. For CNL we use
the random sparsification Cp (the definition is given in the
appendix) with p = 1/20 and r = 1.

Parameter setting. In our experiments, we use the theoreti-
cal parameters (e.g., stepsizes) for all the three algorithms:
vanilla Distributed Compressed Gradient Descent (DCGD)
(Khirirat et al., 2018), DIANA (Mishchenko et al., 2019), and
ADIANA (Li et al., 2020). As the initial approximation of the
Hessian in BFGS (Broyden, 1967; Fletcher, 1970; Goldfarb,
1970; Shanno, 1970), we use H0 = ∇2P (x0), and the step-
size is 1. We set the same constants in DINGO (Crane and
Roosta, 2019) as they did: θ = 10−4, φ = 10−6, ρ = 10−4,
and use backtracking line search for DINGO to select the
largest stepsize in {1, 2−1, 2−2, 2−4, . . . , 2−10}. We con-
duct experiments for two values of the regularization pa-
rameter λ: 10−3, 10−4. For the a2a dataset, we set num-
ber of nodes to n = 15 and the size of local dataset to
m = 151. For the remaining datasets we choose: a7a

(n = 100,m = 161), a9a (n = 80,m = 407), w8a
(n = 142,m = 350). In the figures we plot the relation of
the optimality gap P (xk) − P (x∗) and the number of ac-
cumulated transmitted bits or iterations. The optimal value
P (x∗) in each case is the function value at the 20-th iterate
of standard Newton’s method. In all plots, “communicated
bits” refers to the total number of bits that all nodes send to
the server. We adopt the realistic setting where the server
does not have access to the local data (Option 1).

0 10 20 30
iterations

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤
)

Newton
NL1, r=1
NL1, r=3
NL2, r=1
NL2, r=3

210 213 216 219 222
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤
)

Newton
NL1, r=1
NL1, r=3
NL2, r=1
NL2, r=3

(a) artificial, λ = 10−4 (b) artificial, λ = 10−4

0 10 20 30
iterations

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤
)

Newton
NL1, r=1
NL1, r=3
NL2, r=1
NL2, r=3

210 213 216 219 222
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤
)

Newton
NL1, r=1
NL1, r=3
NL2, r=1
NL2, r=3

(c) artificial, λ = 10−5 (d) artificial, λ = 10−5

Figure 1. Comparison of NL1 and NL2, with Newton’s method in
terms of iteration complexity for (a), (c); in terms of communica-
tion complexity for (b), (d).

4.1. Comparison with Newton’s method

In our next experiment we compare NL1 and NL2, using
different values of r for random-r compression, with New-
ton’s method; see Figure 1. We clearly see that Newton’s
method performs better than NL1 and NL2 in terms of itera-
tion complexity, as expected. However, our methods have
better communication efficiency than Newton’s method, by
several orders of magnitude. Moreover, we see that the
smaller r is, the better NL1 and NL2 perform in terms of
communication complexity.

4.2. Comparison with BFGS

In our next test, we compare NL1 and NL2 using r = 1 with
BFGS in Figure 2(a). The experimental results clearly show
that our methods have faster convergence rate in terms of
communication complexity.

4.3. Comparison with ADIANA

Next, we compare NL1 and NL2 with ADIANA with three
different compressors: random sparsification, random dither-
ing, and natural compression; see Figure 2(b). The results
indeed show that our methods converge to the optimum us-
ing fewer bits than ADIANA for all three compressors. For
brevity, we denote ADIANA with natural compression, ran-
dom sparsification, and random dithering by ADIANA-NC,
ADIANA-RS, and ADIANA-RD, respectively.

4.4. Comparison with DINGO

We now compare NL1 and NL2 with DINGO. The results in
Figure 2(c) show that our methods are more communication
efficient than DINGO, by many orders of magnitude.

220 223 226 229 232
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤
)

NL1, r=1
NL2, r=1; p=1=20
BFGS

218 221 224 227 230
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤
)

NL1, r=1
NL2, r=1; p=1=20
ADIANA-NC
ADIANA-RS, r= d=4
ADIANA-RD, s=

p
d

(a) a9a, λ = 10−3 (b) a9a, λ = 10−3

221 223 225 227
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤
)

NL1, r=1
NL2, r=1; p=1=20
DINGO

218 221 224 227 230 233
communicated bits

10-15

10-12

10-9

10-6

10-3

100

103

P
(x
k
)
¡
P
(x

¤
)

CNL, r=1; p=1=20
DCGD-NC
DCGD-RS, r= d=4
DIANA-NC
DIANA-RS, r= d=4

(c) a7a, λ = 10−4 (d) a7a, λ = 10−4

Figure 2. Comparison of NL1 and NL2 (a) with BFGS; (b) with
ADIANA; (c) with DINGO; (d) CNL with DIANA and DCGD; in
terms of communication complexity.

4.5. Comparison with DCGD and DIANA

Finally, we compare CNL using the random sparsification
Cp with DCGD and DIANA with two compression opera-
tors: random sparsification and natural compression in Fig-
ure 2(d). According to the numerical experiments, CNL is
more communication efficient method than others. We use
the same notation as mentioned above.

References
D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic.

QSGD: Communication-efficient SGD via gradient quan-
tization and encoding. Advances in Neural Information
Processing Systems, pages 1709–1720, 2017.

Amir Beck. Introduction to Nonlinear Optimization: Theory,
Algorithms, and Applications with MATLAB. Society for
Industrial and Applied Mathematics, USA, 2014. ISBN
1611973643.

Ron Bekkerman, Mikhail Bilenko, and John Langford. Scal-
ing up machine learning: Parallel and distributed ap-
proaches. Cambridge University Press, 2011.

J. Bernstein, Y. X. Wang, K. Azizzadenesheli, and A. Anand-
kumar. SignSGD: Compressed optimisation for non-
convex problems. The 35th International Conference
on Machine Learning, pages 560–569, 2018.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik,
and Mher Safaryan. On biased compression for dis-
tributed learning. arXiv:2002.12410, 2020.

Charles G Broyden. Quasi-Newton methods and their appli-
cation to function minimisation. Mathematics of Compu-
tation, 21(99):368–381, 1967.

Rixon Crane and Fred Roosta. DINGO: Distributed
Newton-type method for gradient-norm optimiza-
tion. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems,
volume 32, pages 9498–9508. Curran Associates,
Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
9718db12cae6be37f7349779007ee589-Paper.
pdf.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien.
SAGA: A fast incremental gradient method with sup-
port for non-strongly convex composite objectives. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 27, pages 1646–1654. Curran
Associates, Inc., 2014.

Rodger Fletcher. A new approach to variable metric algo-
rithms. The Computer Journal, 13(3):317–323, 1970.

Avishek Ghosh, Raj Kumar Maity, Arya Mazumdar, and
Kannan Ramchandran. Communication efficient dis-
tributed approximate Newton method. In IEEE Inter-
national Symposium on Information Theory (ISIT), 2020.
doi: 10.1109/ISIT44484.2020.9174216.

Donald Goldfarb. A family of variable-metric methods de-
rived by variational means. Mathematics of Computation,
24(109):23–26, 1970.

Nicholas IM Gould, Daniel P Robinson, and H Sue Thorne.
On solving trust-region and other regularised subprob-
lems in optimization. Mathematical Programming Com-
putation, 2(1):21–57, 2010.

Andreas Griewank. The modification of Newton’s method
for unconstrained optimization by bounding cubic terms.
Technical report, Department of Applied Mathematics
and Theoretical Physics, University of Cambridge, 1981.
Technical Report NA/12.

Filip Hanzely, Nikita Doikov, Yurii Nesterov, and Peter
Richtarik. Stochastic subspace cubic Newton method. In
International Conference on Machine Learning, pages
4027–4038. PMLR, 2020.

Samuel Horváth, Chen-Yu Ho, Ľudovı́t Horváth,
Atal Narayan Sahu, Marco Canini, and Peter Richtárik.
Natural compression for distributed deep learning. arXiv
preprint arXiv:1905.10988, 2019a.

Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko,
Sebastian Stich, and Peter Richtárik. Stochastic dis-
tributed learning with gradient quantization and variance
reduction. arXiv preprint arXiv:1904.05115, 2019b.

Rie Johnson and Tong Zhang. Accelerating stochastic gradi-
ent descent using predictive variance reduction. In NIPS,
pages 315–323, 2013.

Ahmed Khaled, Konstantin Mishchenko, and Peter
Richtárik. Tighter theory for local SGD on identical
and heterogeneous data. In The 23rd International Con-
ference on Artificial Intelligence and Statistics (AISTATS
2020), 2020.

Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Jo-
hansson. Distributed learning with compressed gradients.
In arXiv preprint arXiv:1806.06573, 2018.

Dmitry Kovalev, Konstanting Mishchenko, and Peter
Richtárik. Stochastic Newton and cubic Newton meth-
ods with simple local linear-quadratic rates. In NeurIPS
Beyond First Order Methods Workshop, 2019.

Dmitry Kovalev, Robert M. Gower, Peter Richtárik, and
Alexander Rogozin. Fast linear convergence of random-
ized BFGS. arXiv:2002.11337, 2020.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik.
Acceleration for compressed gradient descent in dis-
tributed and federated optimization. In International
Conference on Machine Learning, 2020.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A uni-
versal catalyst for first-order optimization. arXiv preprint
arXiv:1506.02186, 2015.

Nicolas Loizou and Peter Richtárik. Linearly convergent
stochastic heavy ball method for minimizing general-
ization error. In NIPS Workshop on Optimization for
Machine Learning, 2017a.

Nicolas Loizou and Peter Richtárik. Momentum and
stochastic momentum for stochastic gradient, New-
ton, proximal point and subspace descent methods.
arXiv:1712.09677, 2017b.

Chenxin Ma, Jakub Konečný, Martin Jaggi, Virginia Smith,
Michael I. Jordan, Peter Richtárik, and Martin Takáč.
Distributed optimization with arbitrary local solvers. Op-
timization Methods and Software, 32(4):813–848, 2017.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradi-
ent descent without descent. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pages 6702–6712.
PMLR, 13–18 Jul 2019.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč,
and Peter Richtárik. Distributed learning with compressed
gradient differences. arXiv preprint arXiv:1901.09269,
2019.

https://proceedings.neurips.cc/paper/2019/file/9718db12cae6be37f7349779007ee589-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9718db12cae6be37f7349779007ee589-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9718db12cae6be37f7349779007ee589-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9718db12cae6be37f7349779007ee589-Paper.pdf

Konstantin Mishchenko, Ahmed Khaled, and Peter
Richtárik. Random reshuffling: Simple analysiswith vast
improvements. In 34th Conference on Neural Information
Processing Systems (NeurIPS 2020), 2020.

Deanna Needell, Nathan Srebro, and Rachel Ward. Stochas-
tic gradient descent, weighted sampling, and the random-
ized Kaczmarz algorithm. Mathematical Programming,
155(1–2):549–573, 2015.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and
Alexander Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on
Optimization, 19(4):1574–1609, 2009.

Yurii Nesterov and Boris T. Polyak. Cubic regularization of
Newton method and its global performance. Mathemati-
cal Programming, 108(1):177–205, 2006.

Boris Polyak and Andrey Tremba. New versions of Newton
method: step-size choice, convergence domain and under-
determined equations. arXiv preprint arXiv:1703.07810,
2019.

Boris Polyak and Andrey Tremba. New versions of new-
ton method: step-size choice, convergence domain and
under-determined equations. Optimization Methods and
Software, 35(6):1272–1303, 2020.

Josepho Raphson. Analysis aequationum universalis seu
ad aequationes algebraicas resolvendas methodus gener-
alis, & expedita, ex nova infinitarum serierum methodo,
deducta ac demonstrata. Oxford: Richard Davis, 1697.

Sashank J. Reddi, Jakub Konečný, Peter Richtárik, Barnabás
Póczos, and Alex Smola. AIDE: fast and communica-
tion efficient distributed optimization. arXiv:1608.06879,
2016.

H. Robbins and S. Monro. A stochastic approximation
method. Annals of Mathematical Statistics, 22:400–407,
1951.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite
sums with the stochastic average gradient. Math. Pro-
gram., 162(1-2):83–112, 2017.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochas-
tic gradient descent and its application to data- parallel
distributed training of speech DNNs. Fifteenth Annual
Conference of the International Speech Communication
Association, 2014.

Shai Shalev-Shwartz and Shai Ben-David. Understanding
machine learning: from theory to algorithms. Cambridge
University Press, 2014.

Ohad Shamir, Nati Srebro, and Tong Zhang.
Communication-efficient distributed optimization
using an approximate Newton-type method. In Proceed-
ings of the 31st International Conference on Machine
Learning, PMLR, volume 32, pages 1000–1008, 2014.

David F Shanno. Conditioning of quasi-Newton methods
for function minimization. Mathematics of computation,
24(111):647–656, 1970.

S. U. Stich and S. P. Karimireddy. The error-feedback
framework: Better rates for SGD with delayed gradients
and compressed communication. arXiv: 1909.05350,
2019.

Sebastian U. Stich. Local SGD converges fast and commu-
nicates little. In International Conference on Learning
Representations, 2020.

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin
Jaggi. Sparsified SGD with memory. In Advances in Neu-
ral Information Processing Systems, pages 4447–4458,
2018.

Martin Takáč, Avleen Bijral, Peter Richtárik, and Nathan
Srebro. Mini-batch primal and dual methods for SVMs.
In 30th International Conference on Machine Learning,
pages 537–552, 2013.

H. Tang, X. Lian, T. Zhang, and J. Liu. DoubleSqueeze: Par-
allel stochastic gradient descent with double-pass error-
compensated compression. In Proceedings of the 36th
International Conference on Machine Learning, pages
6155–6165, 2019.

John Wallis. A treatise of algebra, both histori-
cal and practical. Philosophical Transactions
of the Royal Society of London, 15(173):1095–
1106, 1685. doi: 10.1098/rstl.1685.0053. URL
https://royalsocietypublishing.org/
doi/abs/10.1098/rstl.1685.0053.

Shusen Wang, Fred Roosta, Peng Xu, and Michael W
Mahoney. Giant: Globally improved approximate
newton method for distributed optimization. In
S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems,
volume 31, pages 2332–2342. Curran Associates,
Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/
dabd8d2ce74e782c65a973ef76fd540b-Paper.
pdf.

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, and H. Li. Tern-
grad: Ternary gradients to reduce communication in dis-
tributed deep learning. Advances in Neural Information
Processing Systems, pages 1509–1519, 2017.

https://royalsocietypublishing.org/doi/abs/10.1098/rstl.1685.0053
https://royalsocietypublishing.org/doi/abs/10.1098/rstl.1685.0053
https://proceedings.neurips.cc/paper/2018/file/dabd8d2ce74e782c65a973ef76fd540b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dabd8d2ce74e782c65a973ef76fd540b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dabd8d2ce74e782c65a973ef76fd540b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dabd8d2ce74e782c65a973ef76fd540b-Paper.pdf

Lin Xiao and Tong Zhang. A proximal stochastic gradi-
ent method with progressive variance reduction. SIAM
Journal on Optimization, 24(4):2057–2075, 2014.

Jiaqi Zhang, Keyou You, and Tamer Başar. Distributed
adaptive Newton methods with globally superlinear con-
vergence. arXiv preprint arXiv:2002.07378, 2020.

Yuchen Zhang and Lin Xiao. DiSCO: Distributed optimiza-
tion for self-concordant empirical loss. In Proceedings of
the 32nd International Conference on Machine Learning,
PMLR, volume 37, pages 362–370, 2015.

Peilin Zhao and Tong Zhang. Stochastic optimization with
importance sampling. The 32nd International Conference
on Machine Learning, 37:1–9, 2015.

