
What Are Bayesian Neural Network Posteriors Really Like?

EXPERIMENTS

CIFAR-10 CIFAR-100 IMDB
METHOD HYPER-PARAMETER WAS TUNED RESNET-20-FRN RESNET-20-FRN CNN LSTM

HMC

PRIOR VARIANCE X 1
5

1
5

1
40

STEP SIZE X 10−5 10−5 10−5

NUM. BURNIN ITERATIONS 7 50 50 50
NUM. SAMPLES PER CHAIN 7 240 40 400
NUM. OF CHAINS 7 3 3 3
TOTAL SAMPLES 7 720 120 1200

TOTAL EPOCHS 5 · 107 8.5 · 106 3 · 107

SGD

WEIGHT DECAY X 10 10 3
INITIAL STEP SIZE X 3 · 10−7 1 · 10−6 3 · 10−7

STEP SIZE SCHEDULE 7 COSINE COSINE COSINE
BATCH SIZE X 80 80 80
NUM. EPOCHS 7 500 500 500
MOMENTUM 7 0.9 0.9 0.9

TOTAL EPOCHS 5 · 102 5 · 102 5 · 102

DEEP ENSEMBLES NUM. MODELS 7 50 50 50

TOTAL EPOCHS 2.5 · 104 2.5 · 104 2.5 · 104

SGLD

PRIOR VARIANCE X 1
5

1
5

1
5

STEP SIZE X 10−6 3 · 10−6 1 · 10−5

STEP SIZE SCHEDULE X CONSTANT CONSTANT CONSTANT
BATCH SIZE X 80 80 80
NUM. EPOCHS 7 10000 10000 10000
NUM. BURNIN EPOCHS 7 1000 1000 1000
NUM. SAMPLES PER CHAIN 7 900 900 900
NUM. OF CHAINS 7 5 5 5
TOTAL SAMPLES 7 4500 4500 4500

TOTAL EPOCHS 5 · 104 5 · 104 5 · 104

MFVI

PRIOR VARIANCE 7 1
5

1
5

1
5

NUM. EPOCHS 7 300 300 300
OPTIMIZER X ADAM ADAM ADAM
INITIAL STEP SIZE X 10−4 10−4 10−4

STEP SIZE SCHEDULE 7 COSINE COSINE COSINE
BATCH SIZE X 80 80 80
VI MEAN INIT 7 SGD SOLUTION SGD SOLUTION SGD SOLUTION
VI VARIANCE INIT X 10−2 10−2 10−2

NUMBER OF SAMPLES 7 50 50 50

TOTAL EPOCHS 8 · 102 8 · 102 8 · 102

Table 3. Hyper-parameters for CIFAR and IMDB. We report the hyper-parameters for each method our main evaluations on CIFAR
and IMDB datasets in Section 6. For each method we report the total number of training epochs equivalent to the amount of compute
spent. We run HMC on a cluster of 512 TPUs, and the baselines on a cluster of 8 TPUs. For each of the hyper-parameters we report
whether it was tuned via cross-validation, or whether a value was selected without tuning.
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EXPERIMENTS

METHOD HYPER-PARAMETER WAS TUNED CONCRETE YACHT ENERGY BOSTON NAVAL

HMC

PRIOR VARIANCE X 1
10

1
10

1
10

1
10

1
40

STEP SIZE X 10−5 10−5 10−5 10−5 5 · 10−7

NUM. BURNIN ITERATIONS 7 10 10 10 10 10
NUM. ITERATIONS 7 90 90 90 90 90
NUM. OF CHAINS 7 1 1 1 1 1

SGD

WEIGHT DECAY X 10 10−1 10 10−1 1
INITIAL STEP SIZE X 3 · 10−5 3 · 10−6 3 · 10−6 3 · 10−6 10−6

STEP SIZE SCHEDULE 7 COSINE COSINE COSINE COSINE COSINE
BATCH SIZE 7 927 277 691 455 10740
NUM. EPOCHS X 1000 5000 5000 500 1000
MOMENTUM 7 0.9 0.9 0.9 0.9 0.9

SGLD

PRIOR VARIANCE X 1
10

1
10

1
10

1
10

1
STEP SIZE X 3 · 10−5 10−4 3 · 10−5 3 · 10−5 10−6

STEP SIZE SCHEDULE 7 CONSTANT CONSTANT CONSTANT CONSTANT CONSTANT
BATCH SIZE 7 927 277 691 455 10740
NUM. EPOCHS 7 10000 10000 10000 10000 10000
NUM. BURNIN EPOCHS 7 1000 1000 1000 1000 1000
NUM. SAMPLES PER CHAIN 7 900 900 900 900 900
NUM. OF CHAINS 7 1 1 1 1 1

Table 4. Hyper-parameters for UCI. We report the hyper-parameters for each method our main evaluations on UCI datasets in Section 6.
For HMC, the number of iterations is the number of HMC iterations after the burn-in phase; the number of accepted samples is lower. For
each of the hyper-parameters we report whether it was tuned via cross-validation, or whether a value was selected without tuning.

HYPER-PARAMETER WAS TUNED SGLD SGHMC SGHMC
CLR

SGHMC
CLR-PREC

INITIAL STEP SIZE X 10−6 3 · 10−7 3 · 10−7 3 · 10−5

STEP SIZE SCHEDULE 7 CONSTANT CONSTANT CYCLICAL CYCLICAL
MOMENTUM X 0. 0.9 0.95 0.95

PRECONDITIONER 7 NONE NONE NONE RMSPROP
NUM. SAMPLES PER CHAIN 7 900 900 180 180

NUM. OF CHAINS 7 3 3 3 3

Table 5. SGMCMC hyper-parameters on CIFAR-10. We report the hyper-parameter values used by each of the SGMCMC methods
in Section 9. The remaining hyper-parameters are the same as the SGLD hyper-parameters reported in Table 3. For each of the
hyper-parameters we report whether it was tuned via cross-validation, or whether a value was selected without tuning.

Appendix Outline
This appendix is organized as follows. We present the
Hamiltonian Monte Carlo algorithm that we implement in
the paper in Algorithm 1, Algorithm 2. In Appendix A
we provide the details on hyper-parameters used in our ex-
periments. In Appendix B we provide ablations of HMC
hyper-parameters and intuition behind them. In Appendix C
we compare the BMA predictions using two independent
HMC chains on a synthetic regression problem. In Ap-
pendix D we provide a description of the R̂ statistic used
in Section 5.1. In Appendix E we provide posterior density
surface visualizations. In Appendix F we explore whether or
not our HMC chains converge. In Appendix G we provide
complete results of our experiments on CIFAR and IMDB
datasets. In Appendix H we show that BNNs are not robust

to distribution shift and discuss the reasons for this behav-
ior. In Appendix I we apply BNNs to OOD detection. In
Appendix J we provide a further discussion of the effect of
posterior temperature. In Appendix K we study the perfor-
mance of BNNs with Gaussian priors as a function of prior
variance. Finally, in Appendix L we compare the predictive
entropies and calibration curves between HMC and scalable
approximate inference methods.

A. Hyper-Parameters and Details
CIFAR and IMDB. In Table 3 we report the hyperparam-
eters used by each of the methods in our main evaluation on
CIFAR and IMDB datasets in Section 6. HMC was run on
a cluster of 512 TPUs and the other baselines were run on a
cluster of 8 TPUs. On CIFAR datasets the methods used a
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subset of 40960 datapoints. All methods were ran at poste-
rior temperature 1. We tuned the hyper-parameters for all
methods via cross-validation maximizing the accuracy on a
validation set. For the step sizes we considered an exponen-
tial grid with a step of

√
10 with 5-7 different values, where

the boundaries were selected for each method so it would not
diverge. We considered weight decays 1, 5, 10, 20, 40, 100
and the corresponding prior variances. For batch sizes we
considered values 80, 200, 400 and 1000; for all methods
lower batch sizes resulted in the best performance. For
HMC we set the trajectory length according to the strategy
described in Section B.1. For SGLD, we experimented with
using a cosine learning rate schedule decaying to a non-zero
final step size, but it did not improve upon a constant sched-
ule. For MFVI we experimented with the SGD and Adam
optimizers; we initialize the mean of the MFVI distribution
with a pre-trained SGD solution, and the per-parameter vari-
ance with a value σVI

Init; we tested values 10−2, 10−1, 100 for
σVI

Init. For all HMC hyper-parameters, we provide ablations
illustrating their effect in Section 4. Producing a single sam-
ple with HMC on CIFAR datasets takes roughly one hour
on our hardware, and on IMDB it takes 105 seconds; we
can run up to three chains in parallel.

Temperature scaling on IMDB. For the experiments in
Section 7 we run a single HMC chain producing 40 samples
after 10 burn-in epochs for each temperature. We used step
sizes 5 · 10−5, 3 · 10−5, 10−5, 3 · 10−6, 10−6 and 3 · 10−7

for temperatures 10, 3, 1, 0.3, 0.1 and 0.03 respectively,
ensuring that the accept rates were close to 100%. We used
a prior variance of 1/50 in all experiments; the lower prior
variance compared to Table 3 was chosen to reduce the
number of leapfrog iterations, as we chose the trajectory
length according to the strategy described in Section B.1.
We ran the experiments on 8 NVIDIA Tesla V-100 GPUs,
as we found that sampling at low temperatures requires
float64 precision which is not supported on TPUs.

UCI Datasets. In Table 4 we report the hyperparameters
used by each of the methods in our main evaluation on UCI
datasets in Section 6. For each datasets we construct 20
random splits with 90% of the data in the train and 10% of
the data in the test split. In the evaluation, we report the
mean and standard deviation of the results across the splits.
We use another random split for cross-validation to tune the
hyper-parameters. For all datasets we use a fully-connected
network with a single hidden layer with 50 neurons and 2
outputs representing the predictive mean and variance for
the given input. We use a Gaussian likelihood to train each
of the methods. For the SGD and SGLD baselines, we did
not use mini-batches: the gradients were computed over the
entire dataset. We run each experiment on a single NVIDIA
Tesla V-100 GPU.

Algorithm 1 Hamiltonian Monte Carlo
Input: Trajectory length τ , number of burn-in interations
Nburnin, initial parameters winit, step size ∆, number of
samples K, unnormalized posterior log-density function
f(w) = log p(D|w) + log p(w).
Output: Set S of samples w of the parameters.
w ← winit; Nleapfrog ← τ

∆ ;
# Burn-in stage
for i← 1 . . . Nburnin do
m ∼ N (0, I);
(w,m)← Leapfrog(w,m,∆, Nleapfrog, f);

end for
# Sampling
S ← ∅;
for i← 1 . . .K do
m ∼ N (0, I);
(w′,m′)← Leapfrog(w,m,∆, Nleapfrog, f);

# Metropolis-Hastings correction
paccept ← min

{
1, f(w′)

f(w) · exp
(

1
2‖m‖2 − ‖m′‖2

)}
;

u ∼ Uniform[0, 1];
if u ≤ paccept then
w ← w′;

end if
S ← S ∪ {w};

end for

Algorithm 2 Leapfrog integration
Input: Parameters w0, initital momentum m0, step size
∆, number of leapfrog steps Nleapfrog, posterior log-
density function f(w) = log p(w|D).
Output: New parameters w; new momentum m.
w ← w0; m← m0;
for i← 1 . . . Nleapfrog do
m← m+ ∆

2 · ∇f(w);
w ← w + ∆ ·m;
m← m+ ∆

2 · ∇f(w);
end for
Leapfrog(w0,m0,∆, Nleapfrog, f)← (w,m)
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Figure 6. Effect of HMC hyper-parameters. BMA accuracy, log-likelihood and expected calibration error (ECE) as a function of (a):
the trajectory length τ and (b): number of HMC chains. The orange curve shows the results for a fixed number of samples in (a) and for a
fixed number of samples per chain in (b); the brown curve shows the results for a fixed amount of compute. All experiments are done on
CIFAR-10 using the ResNet-20-FRN architecture on IMDB using CNN-LSTM. Longer trajectory lengths decrease correlation between
subsequent samples improving accuracy and log-likelihood. For a given amount of computation, increasing the number of chains from
one to two modestly improves the accuracy and log-likelihood.

SGMCMC Methods. In Table 5 we report the hyper-
parameters of the SGMCMC methods on the CIFAR-10
dataset used in the evaluation in Section 9. We considered
momenta in the set of {0.9, 0.95, 0.99} and step sizes in
{10−4, 3 · 10−5, 10−5, 3 · 10−6, 10−6, 3 · 10−7, 10−7}. We
selected the hyper-parameters with the best accuracy on the
validation set. SGLD does not allow a momentum.

B. Effect of HMC Hyper-Parameters
We perform ablations of HMC hyper-parameters using
ResNet-20-FRN on CIFAR-10 and CNN-LSTM on IMDB.

B.1. Trajectory length τ

The trajectory length parameter τ determines the length of
the dynamics simulation on each HMC iteration. Effec-
tively, it determines the correlation of subsequent samples
produced by HMC. To suppress random-walk behavior and
speed up mixing, we want the length of the trajectory to be
relatively high. But increasing the length of the trajectory
also leads to an increased computational cost: the number of
evaluations of the gradient of the target density (evaluations
of the gradient of the loss on the full dataset) is equal to the
ratio τ/∆ of the trajectory length to the step size.

We suggest the following value of the trajectory length τ :

τ̂ =
παprior

2 , (2)

where αprior is the standard deviation of the prior distribution
over the parameters. If applied to a spherical Gaussian
distribution, HMC with a small step size and this trajectory
length will generate exact samples6. While we are interested

6Since the Hamiltonian defines a set of independent harmonic
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Figure 7. Marginal distributions of the weights. Log-scale his-
tograms of estimated marginal posterior standard deviations for
ResNet-20-FRN on CIFAR-10 and CNN-LSTM on IMDB. The
histograms show how many parameters have empirical standard
deviations that fall within a given bin. For most of the parame-
ters (notice that the plot is logarithmic) the posterior scale is very
similar to that of the prior distribution.

in sampling from the posterior rather than from the spherical
Gaussian prior, we argue that in large BNNs the prior tends
to determine the scale of the posterior.

In order to test the validity of our recommended trajectory
length, we perform an ablation and report the results in
Figure 6(a). As expected, longer trajectory lengths provide
better performance in terms of accuracy and log-likelihood.
Expected calibration error is generally low across the board.
The trajectory length τ̂ provides good performance in all
three metrics. This result confirms that, despite the expense,
when applying HMC to BNNs it is actually helpful to use
tens of thousands of gradient evaluations per iteration.

In Figure 7 we examine the intuition that the posterior scale
is determined by the prior scale. For each parameter, we
estimate the marginal standard deviation of that parame-

oscillators with period 2πα, τ = πα/2 applies a quarter-turn in
phase space, swapping the positions and momenta.
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ter under the distribution sampled by HMC. Most of the
marginal scales are close to the prior scale, and only a few
are significantly larger (note logarithmic scale), confirming
that the posterior’s scale is determined by the prior.

B.2. Effect of HMC Step Size ∆

The step size parameter ∆ determines the discretization
step size of the Hamiltonian dynamics and consequently the
number of leapfrog integrator steps. Lower step sizes lead to
a better approximation of the dynamics and higher rates of
proposal acceptance at the Metropolis-Hastings correction
step. However, lower step sizes require more gradient evalu-
ations per iteration to hold the trajectory length τ constant.

Using ResNet-20-FRN on CIFAR-10, we run HMC for 50
iterations with step sizes of 1 · 10−5, 5 · 10−5, 1 · 10−4,
and 5 · 10−4 respectively, ignoring the Metropolis-Hastings
correction. We find the chains achieve average accept prob-
abilities of 72.2%, 46.3%, 22.2%, and 12.5%, reflecting
large drops in accept probability as step size is increased.
We also observe BMA log-likelihoods of −0.331, −0.3406,
−0.3407, and −0.895, indicating that higher accept rates
result in higher likelihoods.

B.3. Number of HMC Chains

We can improve the coverage of the posterior distribution by
running multiple independent chains of HMC. Effectively,
each chain is an independent run of the procedure using a dif-
ferent random initialization. Then, we combine the samples
from the different chains. The computational requirements
of running multiple chains are hence proportional to the
number of chains.

We report the Bayesian model average performance as a
function of the number of chains in Figure 6(b). Holding
compute budget fixed, using two or three chains is only
slightly better than using one chain. This result notably
shows that HMC is relatively unobstructed by energy bar-
riers in the posterior surface that would otherwise require
multiple chains to overcome. We explore this result further
in Section 5.

C. HMC Predictive Distributions in Synthetic
Regression

We consider a one-dimensional synthetic regression prob-
lem. We follow the general setup of Izmailov et al. (2019)
and Wilson & Izmailov (2020). We generate the training
inputs as a uniform grid with 40 points in each of the follow-
ing intervals (120 datapoints in total): [−10,−6], [6, 10] and
[14, 18]. We construct the ground truth target values using a
neural network with 3 hidden layers, each of dimension 100,
one output and two inputs: following Izmailov et al. (2019),

−10 0 10 20

−0.4

−0.2

0.0
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(a) Chain 1 (b) Chain 2 (c) Overlaid

Figure 8. HMC chains on synthetic regression. We visualize
the predictive distributions for two independent HMC chains on a
synthetic regression problem with a fully-connected network. The
data is shown with red circles, and the true data generating function
is shown with a black line. The shaded region shows 3 standard
deviations of the predictive distribution, and the predictive mean
is shown with a line of the same color. In panels (a), (b) we show
the predictive distributions for each of the two chains individually,
and in panel (c) we overlay them on top of each other. The chains
provide almost identical predictions, suggesting that HMC mixes
well in the prediction space.

for each datapoint x we pass x and x2 as inputs to the net-
work to enlarge the class of functions that the network can
represent. We draw the parameters of the network from a
Gaussian distribution with mean 0 and standard deviation
0.1. We show the sample function used to generate the target
values as a black line in each of the panels in Figure 8. We
then add Gaussian noise with mean 0 and standard deviation
0.02 to each of the target values. The final dataset used in
the experiment is shown with red circles in Figure 8.

For inference, we use the same model architecture that was
used to generate the data. We sample the initialization
parameters of the network from a Gaussian distribution with
mean 0 and standard deviation 0.005. We use a Gaussian
distribution with mean zero and standard deviation 0.1 as the
prior over the parameters, same as the distribution used to
sample the parameters of the ground truth solution. We use
a Gaussian likelihood with standard deviation 0.02, same as
the noise distribution in the data. We run two HMC chains
from different random initializations. Each chain uses a
step size of 10−5 and the trajectory length is set according
to the strategy described in Section B.1, resulting in 15708
leapfrog steps per HMC iteration. We run each chain for 100
HMC iterations and collect the predictions corresponding to
all the accepted samples, resulting in 89 and 82 samples for
the first and second chain respectively. We discard the first
samples and only use the last 70 samples from each chain.
For each input point we compute the mean and standard
deviation of the predictions.

We report the results in Figure 8. In panels (a), (b) we show
the predictive distributions for each of the chains, and in
panel (c) we show them overlaid on top of each other. Both
chains provide high uncertainty away from the data, and low
uncertainty near the data as desired (Yao et al., 2019). More-
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over, the true data-generating function lies in the 3σ-region
of the predictive distribution for each chain. Finally, the pre-
dictive distributions for the two chains are almost identical.
This result suggests that on the synthetic problem under con-
sideration HMC is able to mix in the space of predictions,
and provides similar results independent of initialization
and random seed. We come to the same conclusion for more
realistic problems in Section 5.

D. Description of R̂ Statistics
R̂ (Gelman et al., 1992) is a popular MCMC convergence di-
agnostic. It is defined in terms of some scalar function ψ(θ)
of the Markov chain iterates {θmn|m ∈ {1, . . . ,M}, n ∈
{1, . . . , N}}, where θmn denotes the state of the mth of M
chains at iteration n of N . Letting ψmn , ψ(θmn), R̂ is
defined as follows:

ψ̄m· ,
1

N

∑
n

ψmn; ψ̄·· ,
1

MN

∑
m,n

ψmn; (3)

B

N
,

1

M − 1

∑
m

(ψ̄m· − ψ̄··)2; (4)

W ,
1

M(N − 1)

∑
m,n

(ψmn − ψ̄m·)2; (5)

σ̂2
+ ,

N − 1

N
W +

B

N
; (6)

R̂ ,
M + 1

M

σ̂2
+

W
− N − 1

MN
. (7)

If the chains were initialized from their stationary distribu-
tion, then σ̂2

+ would be an unbiased estimate of the station-
ary distribution’s variance. W is an estimate of the average
within-chain variance; if the chains are stuck in isolated
regions, then W should be smaller than σ̂2

+, and R̂ will be
clearly larger than 1. The M+1

M and N−1
MN terms are there

to account for sampling variability—they vanish as N gets
large if W approaches σ̂2

+.

Since R̂ is defined in terms of a function of interest ψ, we
can compute it for many such functions. In Section 5.1 we
evaluated it for each weight and each predicted softmax
probability in the test set.

E. Posterior Visualizations
To further investigate how HMC is able to explore the pos-
terior over the weights, we visualize a cross-section of the
posterior density in subspaces of the parameter space con-
taining the samples. Following Garipov et al. (2018), we
study two-dimensional subspaces of the parameter space of
the form

S = {w|w = w1 · a+ w2 · b+ w3 · (1− a− b)}. (8)

S is the unique two-dimensional affine subspace (plane) of
the parameter space that includes parameter vectors w1, w2

and w3.

In Figure 9(a) we visualize the posterior log-density, log-
likelihood and log-prior density of a ResNet-20-FRN on
CIFAR-10. For the visualization, we use the subspace S
defined by the parameter vectors w1, w51 and w101, the
samples produced by HMC at iterations 1, 51 and 101 af-
ter burn-in respectively. We observe that HMC is able to
navigate complex geometry: the samples fall in three seem-
ingly isolated modes in our two-dimensional cross-section
of the posterior. In other words, HMC samples from a single
chain are not restricted to any specific convex Gaussian-like
mode, and instead explore a region of high posterior density
of a complex shape in the parameter space. We note that
popular approximate inference procedures, such as varia-
tional methods, and Laplace approximations, are typically
constrained to unimodal Gaussian approximations to the
posterior, which we indeed expect to miss a large space of
compelling solutions in the posterior.

In Figure 9(b) we provide a visualization for the samples
produced by 3 different HMC chains at iteration 51 after
burn-in. Comparing the visualizations for samples from
the same chain and samples from independent chains in
Figure 9, we see that the shapes of the posterior surfaces
are different, with the latter appearing more regular and
symmetric. The qualitative differences between (a) and (b)
suggest that while each HMC chain is able to navigate the
posterior geometry the chains do not mix perfectly in the
weight space, confirming our results in Section 5.1.

In Figure 9(c, d) we provide analogous visualizations for the
CNN-LSTM architecture on IMDB. On IMDB, the posterior
log-density is dominated by the prior, and the correspond-
ing panels (c, d) are virtually indistinguishable in Figure 9.
For the CNN-LSTM on IMDB the number of parameters
is much larger than the number of data points, and hence
the scale of the prior density values is much larger than the
scale of the likelihood. Note that the likelihood still affects
the posterior typical set, and the HMC samples land in the
modes of the likelihood in the visualization. In contrast,
on ResNet-20, the number of parameters is smaller and the
number of data points is larger, so the posterior is domi-
nated by the likelihood in Figure 9 (a, b). On IMDB, the
visualizations for samples from a single chain and for sam-
ples from three independent chains are qualitatively quite
similar, hinting at better parameter-space mixing compared
to CIFAR-10 (see Section 5.1).

In Figure 9 (e), we visualize the likelihood cross-sections
using our runs with varying posterior temperature on IMDB.
The visualizations show that, as expected, low temperature
leads to a sharp likelihood, while the high-temperature like-
lihood appear soft. In particular, the scale of the lowest
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Figure 9. Posterior density visualizations. Visualizations of posterior log-density, log-likelihood and log-prior in two-dimensional
subspaces of the parameter space spanned by three HMC samples on IMDB using CNN-LSTM. (a, c): samples from the same chain and
(b, d): independent chains; (e): Log-likelihood surfaces for samples from the same chain at posterior temperatures T = 1, 10 and 0.1.
We use (a, b): ResNet-20-FRN on CIFAR-10 and (c, d, e): CNN-LSTM on IMDB.

likelihood values at T = 10 is only 103 while the scale at
T = 0.1 is 106.

How are the visualizations created? To create the vi-
sualizations we pick the points in the parameter space
corresponding to three HMC samples: w1, w2, w3. We
construct a basis in the 2-dimensional affine subspace
passing through these three points: u = w2 − w1 and
v = w3−w1. We then orthogonalize the basis: û = u/‖u‖,
v̂ = (v − ûT v)/‖v − ûT v‖. We construct a 2-dimensional
uniform grid in the basis û, v̂. Each point in the grid corre-
sponds to a vector of parameters of the network. We evaluate
the log-likelihood, log-prior and posterior log-density for
each of the points in the grid, converting them to the corre-
sponding network parameters. Finally, we produce contour
plots using the collected values. The procedure is analogous
to that used by Garipov et al. (2018)7.

F. Convegence of the HMC Chains
As another diagnostic, we look at the convergence of the
performance of HMC BMA estimates and individual sam-
ples as a function of the length of the burn-in period. For a

7See also the blogpost https://izmailovpavel.
github.io/curves_blogpost/, Section ”How to Visual-
ize Loss Surfaces?”.

C
IF

A
R

-1
0

20 40 60 80 100
Burn-in Iterations

0.800

0.825

0.850

0.875

0.900

A
cc

ur
ac

y

20 40 60 80 100
Burn-in Iterations

−0.8

−0.6

−0.4

L
og

-L
ik

el
ih

oo
d

20 40 60 80 100
Burn-in Iterations

0.06

0.08

0.10

0.12

E
C

E

IM
D

B

20 40 60 80 100
Burn-in Iterations

0.800

0.825

0.850

0.875

A
cc

ur
ac

y

20 40 60 80 100
Burn-in Iterations

−0.7

−0.6

−0.5

−0.4

−0.3

L
og

-L
ik

el
ih

oo
d

20 40 60 80 100
Burn-in Iterations

0.05

0.10
E

C
E

HMC BMA HMC Sample

Figure 10. HMC convergence. The performance of an individual
HMC sample and a BMA ensemble of 100 samples from each
one of 3 HMC chains after the burn-in as a function of burn-in
length. The dashed line indicates the burn-in length of 50 that we
used in the main experiments in this paper. We use ResNet-20-
FRN on CIFAR-10 and CNN-LSTM on IMDB. On IMDB, there
is no visible dependence of the results on the burn-in length; on
CIFAR-10, there is a weak trend that slows down over time.

converged chain, the performance of the BMA and individ-
ual samples should be stationary and not show any visible
trends after a sufficiently long burn-in. We use the samples
from 3 HMC chains, and evaluate performance of the en-
semble of the first 100 HMC samples in each chain after
discarding the first nbi samples, where nbi is the length of

https://izmailovpavel.github.io/curves_blogpost/
https://izmailovpavel.github.io/curves_blogpost/
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METHOD CIFAR-10 CIFAR-100 IMDB

ACC LOG-LIK ECE ACC LOG-LIK ECE ACC LOG-LIK ECE

SGD 83.4 -0.800 0.119 47.8 -2.364 0.193 82.9 -0.755 0.136
HMC 90.7 -0.307 0.059 69.3 -1.134 0.134 86.8 -0.308 0.033
SGLD 89.3 -0.341 0.052 63.6 -1.404 0.148 86.1 -0.314 0.007

DE 89.2 -0.331 0.028 65.6 -1.385 0.170 85.8 -0.358 0.042
SGLD (5 CHAINS) 90.1 -0.327 0.066 66.9 -1.342 0.195 86.6 -0.306 0.006

MFVI 86.5 -0.409 0.019 54.9 -1.749 0.032 85.4 -0.341 0.038

Table 6. Detailed results on CIFAR and IMDB. Accuracy, log-likelihood and expected calibration error for Hamiltonian Monte Carlo
(HMC), stochastic gradient Langevin dynamics (SGLD) with 1 and 5 chains, mean field variational inference (MFVI), stochastic gradient
descent (SGD), and deep ensembles. We use ResNet-20-FRN on CIFAR datasets, and CNN-LSTM on IMDB. Bayesian neural networks
via HMC outperform all baselines on all datasets in terms of accuracy and log-likelihood; on IMDB the performance of 5-chain SGLD is
similar. All methods perform similarly well on ECE, except for SGD which is consistently poorly calibrated.
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Figure 11. Performance under corruption. We show accuracy, log-likelihood and ECE of HMC, SGD, Deep Ensembles, SGLD and
SGHMC-CLR-Prec for all 16 CIFAR-10-C corruptions as a function of corruption intensity. HMC shows poor accuracy on most of the
corruptions with a few exceptions. SGLD provides the best robustness on average.
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the burn-in. Additionally, we evaluate the performance of
the individual HMC samples after nbi iterations in each of
the chains.

We report the results for ResNet-20-FRN on CIFAR-10 and
CNN-LSTM on IMDB in Figure 10. On IMDB, there is no
visible trend in performance, so a burn-in of just 10 HMC
iterations should be sufficient. On CIFAR-10, we observe
a slowly rising trend that saturates at about 50 iterations,
indicating that a longer burn-in period is needed compared
to IMDB. We therefore use a burn-in period of 50 HMC
iterations on both CIFAR and IMDB for the remainder of
the paper.

Is HMC Converging? In general, it is not possible to
ensure that an MCMC method has converged to sampling
from the true posterior distribution: theoretically, there may
always remain regions of the posterior that cannot be dis-
covered by the method but that contain most of the posterior
mass. To maximize the performance of HMC, we choose
the hyper-parameters that are the most likely to provide con-
vergence: long trajectory lengths, and multiple long chains.
In Section 5, we study the convergence of HMC using the
available convergence diagnostics. We find that while HMC
does not mix perfectly in weight space, in the space of
predictions we cannot find evidence of non-mixing.

G. Detailed Results on CIFAR and IMDB
In Table 6 we report the accuracy, log-likelihood and ex-
pected calibration error for each of the methods we consider
on CIFAR and IMDB datasets. BNNs via HMC provide the
best performance on all datasets in terms of accuracy and
log-likelihood (with 5-chain SGLD achieving competitive
results on IMDB), and all methods except SGD show good
calibration in terms of ECE.

H. BNNs are not Robust to Domain Shift
In Section 6.2, Figure 4 we have seen that surprisingly
BNNs via HMC underperform significantly on corrupted
data from CIFAR-10-C compared to SGLD, deep ensembles
and even MFVI and SGD. We provide detailed results in Fig-
ure 11. HMC shows surprisingly poor robustness in terms
of accuracy and log-likelihood across the corruptions. The
ECE results are mixed. In most cases, the HMC ensemble
of 720 models loses to a single SGD solution!

The poor performance of HMC on OOD data is surprising.
Bayesian methods average the predictions over multiple
models for the data, and faithfully represent uncertainty.
Hence, Bayesian deep learning methods are expected to be
robust to noise in the data, and are often explicitly evaluated
on CIFAR-10-C (e.g. Wilson & Izmailov, 2020; Dusenberry
et al., 2020). Our results suggest that the improvements
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Figure 12. Robustness on MNIST. Performance of SGD, BMA
ensembles and individual samples constructed by HMC at temper-
atures T = 1 and T = 10−3 on the MNIST test set corrupted by
Gaussian noise. We use a fully-connected network. Temperature 1
HMC shows very poor robustness, while lowering the temperature
allows us to close the gap to SGD.

achieved by Bayesian methods on corrupted data may be a
sign of poor posterior approximation.

To further understand the robustness results, we reproduce
the same effect on a small fully-connected network with
two hidden layers of width 256 on MNIST. We run HMC at
temperatures T = 1 and T = 10−3 and SGD and report the
results for both the BMA ensembles and individual samples
in Figure 12. For all methods, we train the models on the
original MNIST training set, and evaluate on the test set
with random Gaussian noise N (0, σ2I) of varying scale σ.
We report the test accuracy as a function of σ. We find that
while the performance on the original test set is very close
for all methods, the accuracy of HMC at T = 1 drops much
quicker compared to that of SGD as we increase the noise
scale.

Notably, the individual sample performance of T = 1 HMC
is especially poor compared to SGD. For example, at noise
scale σ = 3 the SGD accuracy is near 60% while the HMC
sample only achieves around 20% accuracy!

HMC can be though of as sampling points at a certain sub-
optimal level of the training loss, significantly lower than
that of SGD solutions. As a result, HMC samples are indi-
vidually inferior to SGD solutions. On the original test data
ensembling the HMC samples leads to strong performance
significantly outperforming SGD (see Section 6). However,
as we apply noise to the test data, ensembling can no longer
close the gap to the SGD solutions. To provide evidence
for this explanation, we run evaluate HMC at a very low
temperature T = 10−3, as low temperature posteriors con-
centrate on high-performance solutions similar to the ones
found by SGD. We find that at this temperature, HMC per-
forms comparably with SGD, closing the gap in robustness
We have also experimented with varying the prior scale but
were unable to close the gap in robustness at temperature
T = 1.

We hypothesize that using a lower temperature with HMC
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AUC-ROC

OOD DATASET HMC DEEP ENS ODIN MAHALANOBIS

CIFAR-100 0.857 0.853 0.858 0.882
SVHN 0.8814 0.8529 0.967 0.991

Table 7. Out-of-distribution detection. We use a ResNet-20-FRN model trained on CIFAR-10 to detect out-of-distribution data coming
from SVHN or CIFAR-100. We report the results for HMC, deep ensembles and specialized ODIN (Liang et al., 2017) and Mahalanobis
(Lee et al., 2018) methods. We report the AUC-ROC score (higher is better) evaluating the ability of each method to distinguish
between in-distribution and OOD data. The predictive uncertainty from Bayesian neural networks allows us to detect OOD inputs: HMC
outpeforms deep ensembles on both datasets. Moreover, HMC is competitive with ODIN on the harder near-OOD task of detecting
CIFAR-100 images, but underperforms on the easier far-OOD task of detecting SVHN images.

ACC, T = 1 ACC, T = 0.1 CE, T = 1 CE, T = 0.1

BN + AUG 87.46 91.12 0.376 0.2818
FRN + AUG 85.47 89.63 0.4337 0.317
BN + NO AUG 86.93 85.20 0.4006 0.4793
FRN + NO AUG 84.27 80.84 0.4708 0.5739

Table 8. Role of data augmentation in the cold posterior effect. Results of a single chain ensemble constructed with the SGHMC-
CLR-Prec sampler of Wenzel et al. (2020) at temperatures T = 1 and T = 0.1 for different combinations of batch normalization (BN) or
filter response normalization (FRN) and data augmentation (Aug). We use the ResNet-20 architecture on CIFAR-10. Regardless of the
normalization technique, the cold posteriors effect is present when data augmentation is used, and not present otherwise.

would also significantly improve robustness on CIFAR-10-
C. Verifying this hypothesis, and generally understanding
the robustness of BNNs further is an exciting direction of
future work8.

I. Out-of-Distribution Detection
Bayesian deep learning methods are often evaluated on out-
of-distribution detection. In Table 7 we report the perfor-
mance of an HMC-based Bayesian neural network on out-
of-distribution (OOD) detection. To detect OOD data, we
use the level of predicted confidence (value of the softmax
class probability for the predicted class) from the HMC
ensemble, measuring the area under the receiving operator
characteristic curve (AUC-ROC). We train the methods on
CIFAR-10 and use CIFAR-100 and SVHN as OOD data
sources.

We find that BNNs perform competitively with the special-
ized ODIN method in the challenging near-OOD detection
setting (i.e. when the OOD data distribution is similar to the
training data) of CIFAR-100, while underperforming in the
easier far-OOD setting on SVHN relative to the baselines
(Liang et al., 2017; Lee et al., 2018).

8In a follow-up work, Izmailov et al. (2021) provide a de-
tailed explanation for why Bayesian neural networks can fail under
covariate shift. In particular, they find that tempering does not
generally improve robustness, and propose alternative resolutions.

J. Further Discussion of Cold Posteriors
In Section 7 we have seen that the cold posteriors are not
needed to achieve strong performance with BNNs. We have
even shown that cold (as well as warm) posteriors may
hurt the performance. On the other hand, in Appendix H
we have shown that lowering the temperature can improve
robustness under the distribution shift, at least for a small
MLP on MNIST. Here, we discuss the potential reasons for
why the cold posteriors effect was observed in Wenzel et al.
(2020).

J.1. What Causes the Difference with Wenzel et al.
(2020)?

There are several key differences between the experiments
in our study and Wenzel et al. (2020).

First of all, the predictive distributions of SGLD (a ver-
sion of which was used in Wenzel et al. (2020)) are highly
dependent on the hyper-parameters such as the batch size
and learning rate, and are inherently biased: SGLD with a
non-vanishing step size samples from a perturbed version of
the posterior, both because it omits a Metropolis-Hastings
accept-reject step and because its updates include minibatch
noise. Both of these perturbations should tend to make the
entropy of SGLD’s stationary distribution increase with its
step size; we might expect this to translate to approximations
to the BMA that are overdispersed.

Furthermore, Wenzel et al. (2020) show in Figure 6 that
with a high batch size they achieve good performance at
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Figure 13. HMC samples are (over)confident classifiers. Plots show the probability assigned by a series of HMC samples to the true
label of a held-out CIFAR-10 image. In many cases these probabilities are overconfident (i.e., assign the right answer probability near 0),
but there are always some samples that assign the true label high probability, so the Bayesian model average is both accurate and well
calibrated. These samples were generated with a spherical Gaussian prior with variance 1

5
.

T = 1 for the CNN-LSTM. Using the code provided by the
autors9 with default hyper-parameters we achieved strong
performance at T = 1 for the CNN-LSTM (accuracy of
0.855 and cross-entropy of 0.35, compared to 0.81 and 0.45
reported in Figure 1 of Wenzel et al. (2020)); we were,
however, able to reproduce the cold posteriors effect on
CIFAR-10 using the same code.

On CIFAR-10, the main difference between our setup and
the configuration in Wenzel et al. (2020) is the use of batch
normalization and data augmentation. In the appendix K
and Figure 28 of Wenzel et al. (2020), the authors show
that if both the data augmentation and batch normalization
are turned off, we no longer observe the cold posteriors
effect. In Table 8 we confirm using the code provided by
the authors that in fact it is sufficient to turn off just the data
augmentation to remove the cold posteriors effect. It is thus
likely that the results in Wenzel et al. (2020) are at least
partly affected by the use of data augmentation.

K. Effect of Gaussian Prior Scale
We use priors of the form N (0, α2I) and vary the prior
variance α2. For all cases, we use a single HMC chain
producing 40 samples. These are much shorter chains than
the ones we used in Section 6, so the results are not as
good; the purpose of this section is to explore the relative
performance of BNNs under different priors.

We report the results for the CIFAR-10 and IMDB datasets

9https://github.com/google-research/
google-research/tree/master/cold_posterior_
bnn
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Figure 14. Effect of prior variance. The effect of prior variance
on BNN performance. In each panel, the dashed line shows the
performance of the SGD model from Section 6. While low prior
variance may lead to over-regularization and hurt performance, all
the considered prior scales lead to better results than the perfor-
mance of an SGD-trained neural network of the same architecture.

in Figure 14. When the prior variance is too small, the
regularization is too strong, hindering the performance. Set-
ting the prior variance too large does not seem to hurt the
performance as much. On both problems, the performance
is fairly robust: a wide window of prior variances lead to
strong performance. In particular, for all considered prior
scales, the results are better than those of SGD training.

Why are BNNs so robust to the prior scale? One pos-
sible explanation for the relatively flat curves in Figure 14
is that large prior variances imply a strong prior belief that
the “true” classifier (i.e., the model that would be learned
given infinite data) should make high-confidence predictions.
Since the model is powerful enough to achieve any desired
training accuracy, the likelihood does not overrule this prior

https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
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belief, and so the posterior assigns most of its mass to very
confident classifiers. Past a certain point, increasing the
prior variance on the weights may have no effect on the clas-
sifiers’ already saturated probabilities. Consequently, nearly
every member of the BMA may be highly overconfident.
But the ensemble does not have to be overconfident—a mix-
ture of overconfident experts can still make well-calibrated
predictions. Figure 13 provides some qualitative evidence
for this explanation; for some CIFAR-10 test set images,
the HMC chain oscillates between assigning the true label
probabilities near 1 and probabilities near 0.

L. Predictive Entropy and Calibration Curves
for HMC and Scalable BDL Methods

In Figure 15 we visualize the distribution of predictive en-
tropies and the calibration curves for HMC, SGD, deep en-
sembles, MFVI, SGLD and SGHMC-CLR-Prec on CIFAR-
10 using ResNet-20-FRN.
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Figure 15. Distribution of predictive entropies (left) and calibra-
tion curve (right) of posterior predictive distributions for HMC,
SGD, deep ensembles, MFVI, SGLD and SGHMC-CLR-Prec for
ResNet20-FRN on CIFAR-10. On the left, for all methods, except
HMC we plot a pair of histograms: for HMC and for the corre-
sponding method. SGD, Deep ensembles and MFVI provide more
confident predictions than HMC. SGMCMC methods appear to
fit the predictive distribution of HMC better: SGLD is slightly un-
derconfident relative to HMC while SGHMC-CLR-Prec is slightly
over-confident.

All methods except fot SGD make conservative predictions:
their confidences tend to underestimate their accuracies (Fig-
ure 15, right); SGD on the other hand is very over-confident
(in agreement with the results in Guo et al., 2017). Deep
ensembles and MFVI provide the most calibrated predic-
tions, while SGLD and SGHMC-CLR-Prec match the HMC
entropy distribution and calibration curve closer.


