
Alternative Microfoundations for Strategic Classification

For all of the proofs in the Appendix, we assume WLOG that the utility of a positive outcomes γ is equal to 1.

A. Additional discussion of assumptions
A.1. Cost function

Let us discuss some context and implications of Assumption 1 defining a valid cost function. Unlike prior work (Milli et al.,
2019; Miller et al., 2020; Braverman and Garg, 2020), we model a nonzero cost for all modifications to features, regardless
of whether these modifications are in the right direction. In the spirit of generalizing beyond standard microfoundations, this
accounts for how agents may erroneously expend effort on changing their features in an incorrect direction, as empirically
demonstrated in Example 3. We further note that the definition of a valid cost function does not require symmetry in the
arguments, which differentiates it from a metric.

A.2. Measurability requirements for alternative microfoundations

We now describe the measurability requirements that we need in order to define and work with maps M ∈ M. If we
ignore measurability requirements for a moment, then notice that each map M ∈M can be associated with a distribution
DT XY ∈ ∆(T ×X ×Y ) given by (M(x,y),x,y). Since it is easier to define measurability requirements on DT XY , we specify
requirements on DT XY , which gives an implicit specification of requirements on M. First, we define the probability space.
Consider the sample space T ×X × Y . We can define a sigma algebra F over Ω by viewing T as the set of functions
X ×Θ→ X, and using that X ⊆R

d ,Θ ⊆R
d . The probability measure can then be given by DT XY .

Since image(M) = supp(DT XY ) contains a very small fraction of the sample space T ×X ×Y , we can work with a much
smaller probability space in this context. This probability space is defined as follows: the sample space is supp(DT XY ) ∈ F
(i.e. a subset of T ×X ×Y in the sigma-algebra), and the sigma-algebra is intersections of every set in F with supp(DT XY ).
The probability measure given by DT XY can be defined over this smaller probability space.

The distribution map D can thus be viewed as random variables over this probability space. In particular, D(θ) is the
distribution of the random variable (Rt(x,θ), y). In order for this random variable to be well-defined, we place the following
measurability assumption.

Assumption 2 (Measurability requirement on R). We require that for each θ ∈Θ the function Fθ : supp(DT XY )→ X ×Y
given by Fθ(t,x,y) = (Rt(x,θ), y) is measurable.

A.3. Assumption on gaming behavior

In Proposition 3, we make the assumption that agent cannot have differing types solely on the basis of their true label. In
other words, the map M cannot take into account the true label.

Assumption 3. For a map M ∈M, we require that M(x,0) =M(x,1) for all x ∈ X.

Assumption 3 means that agents with features x who have true label 0 versus true label 1 have identical distributions over
response types in aggregate. We need this assumption to reason about performatively optimal points, because a decision
maker has no access to the true labels beyond agents’ reported features when anticipating strategic behavior.

A.4. Compactness of X

The compactness assumption guarantees that the behavior of agents who follow standard microfoundations is well-defined.

Fact 1. Suppose that c is a valid cost function, and X is compact. Then supx′∈X(fθ(x
′) − c(x,x′)) is attained on some

x∗ ∈ X and the behavior of rational agents with perfect information is well-defined.

B. Proofs for Section 2
B.1. Proof of Proposition 1

In order to prove Proposition 1, we show that the gaming behavior of rational agents with perfect information can be
characterized in the following way: Any rational agent with perfect information either will not change their features at all or
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will change their features exactly up to the decision boundary. We use the notation:

RtSM(x,θ) := argmax
x′∈X

(fθ(x
′)− c(x,x′)) (5)

to denote how an agent with features x who follows standard microfoundations will change their features in response to fθ .

Lemma 9. Suppose that c is a valid cost function. Then for any x the response (5) is either RtSM
(x,θ) = x or RtSM

(x,θ) is
on the decision boundary of fθ .

Proof of Lemma 9. By Fact 1, we know that the quantity argmaxx′∈X(fθ(x
′) − c(x,x′)) is well defined. It suffices to

show that if RtSM(x,θ) , x, then RtSM(x,θ) is on the decision boundary of fθ . If RtSM(x,θ) , x, then we know that
c(x,RtSM(x,θ)) > 0. This means that fθ(x) = 0 and RtSM(x,θ) ∈ argmaxx′∈X(fθ(x

′) − c(x,x′)) = argminx′∈Xpos
c(x,x′),

where Xpos := {x ∈ X | fθ(x) = 1}. Assume for sake of contradiction that RtSM(x,θ) is not on the decision boundary. Then
since x < Xpos and RtSM(x,θ) ∈ Xpos, there must exist x′ on the line segment between x and RtSM(x,θ) such that x′ is on
boundary ofXpos, and thus the decision boundary of fθ . Moreover, by Assumption 1, we know that c(x,x′) < c(x,RtSM(x,θ)).
SinceXpos is closed, we see that fθ(x′) = 1. Thus, [fθ(x′)−c(x,x′)] < [fθ(RtSM(x,θ))−c(x,x

′)] which is a contradiction.

Now, we use Lemma 9 to prove Proposition 1.

Proof of Proposition 1. It suffices to show thatD(θ) is either equal toDXY or is a discontinuous distribution. LetQ(θ) ⊆ X
be the set of agents who change their features at fθ , i.e.

Q(θ) :=
{
x ∈ X | RtSM(x,θ) , x

}
.

If P(x,y)∈DXY [x ∈ Q(θ)] = 0, then D(θ) = DXY . Otherwise, suppose that P(x,y)∈DXY [x ∈ Q(θ)] > 0. By Lemma 9, all of
the agents in Q(θ) will game to somewhere on the decision boundary: that is, RtSM(x,θ) will be on the decision boundary
for all x ∈ Q(θ). Thus, in D(θ), there will be at least a P(x,y)∈DXY [x ∈ Q(θ)] probability mass of agents at the decision
boundary, which is measure 0. This means that D(θ) is not a continuous distribution.

B.2. Proof of Proposition 2

For convenience, we break down Proposition 2 into a series of propositions, roughly corresponding to part (a), part (b), and
part (c), which we prove one-by-one.

First, let’s consider the case where p = 0. By the assumptions in Setup 1, we know that there exists a unique θ ∈Θ such that
p(θ) = 0.5. We call this value θSL (and it is in the interior of Θ). We claim that this is the unique locally stable point when
p = 0.

Lemma 10. Consider Setup 1, where a p = 1 fraction of agents are non-strategic. Then, θSL (defined above) is the unique
locally stable point.

Proof. Since p = 1, the distribution map is given by D(θ) =DXY . A locally stable point θ must be a local minimum or a
stationary point of the following optimization problem:

min
θ∈Θ

E(x,y)∈DXY [1{fθ(x) = y}] = min
θ∈Θ

(
E(x,y)∈DXY [1{x ≥ θ}(1− p(x))] +E(x,y)∈DXY [1{x < θ}p(x)]

)
.

Notice that the unique such θ is θSL.

We introduce some basic properties and notation for agents who behave according to standard microfoundations. By Lemma
9, we know if an agent games when the classifier fθ is deployed, then they will game up to boundary, which in this case, is
θ. We adopt similar notation to the proof of Proposition 1, and we denote the set of who game by:

Q(θ) :=
{
x ∈ X | RtSM(x,θ) , x

}
= {x ∈ X | c(x,θ) ≤ 1,x < θ} .

(Technically, the agents x ∈ Q(θ) for whom c(x,θ) = 1 are indifferent between not gaming and gaming to θ, but this
is a measure 0 set by the assumption that DXY is continuous, and the assumption that c is valid (Assumption 1)). For
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θ ,min(Θ), we see that for D(θ), there will be a point mass at θ (from agents in Q(θ)), the region Q(θ) will have zero
probability density, and the rest of the distribution will remain identical to DXY .

We first characterize the set of stable points at p = 0. This follows a very similar argument to Lemma 3.2 in (Milli et al.,
2019), but since our assumptions as well as our requirements for stability are slightly weaker, the characterization result
looks slightly different. (In particular, points above the Stackelberg equilibrium can be locally stable points.)

Lemma 11. Consider Setup 1, where a p = 0 fraction of agents are non-strategic. Then, there exists a locally stable point,
and moreover, the set of locally stable points forms an interval [θmin,max(Θ)], where θmin is the unique value such that:

E(x,y)∈DXY [p(x)Ix∈Q(θmin)]

E(x,y)∈DXY [Ix∈Q(θmin)]
= 0.5.

(Moreover, it holds that θmin > θSL, and c(θSL,θmin) < 1.)

Proof. First, we show that θ∗ =min(Θ) cannot be a stable point. Notice that D(θ∗) =DXY . Thus, θ∗ is a local minimum
or stationary point of minθ∈ΘE(x,y)∼DXY ) 1{y , fθ(x)}. However, this is not possible because p(min(Θ)) < 0.5 by the
assumptions in Setup 1.

Now, we consider θ ,min(Θ). In this case, as discussed above, D(θ) has a point mass at θ. Roughly speaking, the only
property that needs to be satisfied for θ in the interior of Θ to be a local minimum of E(x,y)∈D(θ)[1{fθ′ (x) = y}] is that it
needs to be suboptimal for the decision maker to move just above the point mass (the decision maker never benefits from
moving to θ −ε because there is a region of zero probability density underneath θ). The loss induced from the point mass at
θ is E(x,y)∈DXY [(1− p(x))1{x ∈ Q(θ)}], while if the decision-maker moves just above θ is E(x,y)∈DXY [p(x)1{x ∈ Q(θ)}].
The condition thus becomes E(x,y)∈DXY [p(x)1{x ∈Q(θ)}] ≥ E(x,y)∈DXY [(1− p(x))1{x ∈Q(θ)}], which can be written as

Γ (θ) :=
E(x,y)∈DXY [p(x)1{x ∈Q(θ)}]
E(x,y)∈DXY [1{x ∈Q(θ)}]

≥ 0.5. (6)

It suffices to show that the set of points where (6) is satisfied is an interval of the form [θmin,max(Θ)].

First, we show that the set of stable points forms an interval. It suffices to show that Γ (θ) is continuous and strictly increasing
in θ. By the assumption on c (Assumption 1), we see that the endpoints of the interval Q(θ) are strictly increasing in θ.
This, coupled with the fact that ` is strictly increasing in x (assumed in Setup 1), implies that Γ (θ) is continuous and strictly
increasing as desired.

Furthermore, when p(θ) ≤ 0.5, the condition in (6) is never satisfied, and thus all stable points θ satisfy θ > θSL, and hence
θmin > θSL.

Lastly, we show that this interval is not nonempty, and that c(θSL,θmin) ≤ 1. Consider θ such that c(θSL,θ) = 1 (which we
know exists by Setup 1), we see that Qθ = [θSL,θ]. Using the conditions on `, this means that condition (6) is satisfied and
there is actually a strict equality. Using that c is valid, this means that c(θSL,θmin) < 1.

We now prove that no locally stable points exist for 0 < p < 1.

Lemma 12. Consider Setup 1, where a 0 < p < 1 fraction of agents are non-strategic. Then, there are no locally stable
points.

Proof. When 0 < p < 1, we show that there are no locally stable points. Assume for sake of contradiction that θ∗ is a
locally stable point. Recall that for θ∗ to be locally stable, θ∗ must either be a stationary point or a local minimum of
minθ∈ΘE(x,y)∼D(θPS) 1{y , fθ(x)}. We divide into three cases: (1) θ∗ = min(Θ), (2) θ∗ > min(Θ) ∧ p(θ∗) ≤ 0.5, (3)
θ∗ >min(Θ)∧ p(θ∗) > 0.5, and show that each results in a contradiction.

For the case (1), where θ∗ := min(Θ), we see that D(θ∗) = DXY . Thus, θ∗ is a local minimum or stationary point of
minθ∈ΘE(x,y)∼DXY ) 1{y , fθ(x)}. However, this is not possible because p(min(Θ)) < 0.5 by the assumptions in Setup 1.
For the remaining two cases, we know that D(θ∗) has a point mass at θ∗. This means that E(x,y)∈D(θ∗)1{y , fθ′ (x)} is not
differentiable at θ′ = θ∗, and so θ∗ must be a local minimum.

For case (2), notice thatQ(θ∗) consists a nonzero density of agents for whom p(x) < 0.5, and for all agents x ∈Q(θ∗), it holds
that p(x) ≤ 0.5. The decision maker thus wishes to move just to the other side of the point mass. (This is possible because
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θ∗ <max(Θ) based on the fact that p(θ∗) < 0.5 and the assumptions in Setup 1.) In particular, limε→0E(x,y)∈D(θ)1{y ,
fθ∗+ε(x)} < limε→0E(x,y)∈D(θ)1{y , fθ∗(x)}.

For case (3), notice that there exists ε > 0 such that p(θ) > 0.5 and θ ∈ Q(θ∗) for all θ ∈ (θ∗ − ε,θ∗). The presence of
non-strategic agents means that the decision-maker wishes to move to θ∗ − ε to achieve better performance on non-strategic
agents. Since there are no strategic agents within (θ∗−ε,θ∗), this can be done without affecting the classification of strategic
agents. In particular, E(x,y)∈D(θ)1{y , fθ−ε(x)} < E(x,y)∈D(θ)1{y , fθ(x)}.

Now, we prove that repeated risk minimization oscillates when 0 < p < 1.

Lemma 13. Consider Setup 1, where a 0 < p < 1 fraction of agents are non-strategic. Repeated risk minimization will
oscillate according to the following behavior. Let θ1PS denotes the (unique) locally performatively stable point at p = 1 and
let θ0PS denotes the minimum locally performatively stable point at p = 0. RRM will oscillate between θ1PS and a threshold
f (p) > θ1PS, where f (p) is decreasing in p, approaching θ1PS as p→ 1 and approaching θ0PS as p→ 0.

Proof. Using Lemma 10, we see that there is a unique performatively stable point for p = 1, given by θ1PS := θSL. Using
Lemma 11, we see that the smallest locally stable point is given by θ0PS := θmin.

In the case of p ∈ (0,1), the distribution map D(θ) takes the form of a mixture with p weight on DXY and with 1−p weight
on the distribution map of agents who behave according to standard microfoundations (which has a point mass at θ, zero
density within Qθ , and the same as the original distribution elsewhere). The main step in our proof is an analysis of the
global optima of

B(θ) = argminθ′∈ΘE(x,y)∼D(θ) 1{y , fθ′ (x)}.

for each θ ∈Θ. For convenience, we let

DPR(θ,θ′) := E(x,y)∼D(θ) 1{y , fθ′ (x)}.

We split into three cases: (a) θ ≥ θmin, (b) θ < θSL, and (c) θSL ≤ θ ≤ θmin.

Case (a): θ ≥ θmin. We claim that B(θ) = {θSL}. In this case, the proof of Lemma 11 tells us that moving just
above the point mass will incur no better risk than at θ. Moreover, since p(x) > 0.5 for all x ≥ θ ≥ θmin, we see that
DPR(θ,θ′) > DPR(θ,θ) for all θ′ > θ. Because of the presence of non-strategic agents, a p fraction of agents will be
present in Qθ , and these agents do not change their features. Moreover, for θ′ < min(Qθ), D(θ) looks like the base
distribution. Since p(x) > 0.5 for θSL < x ≤ θmin, we see that DPR(θ,θ′) < DPR(θ,θ) for all θSL ≤ θ′ ≤ θ. Moreover,
this argument actually shows that θSL = argminθSL≤θ′≤θDPR(θ,θ′). Lastly, since p(x) < 0.5 for x < θSL, we see that
DPR(θ,θ′) > DPR(θ,θSL) for all θ′ < θSL.

Case (b): θ < θSL. If θ < θSL, then we claim that B(θ) = {θSL}. In this case, all agents x below θSL in D(θ) have
p(x) < 0.5. Thus, θSL = argminθ≤θ′≤θSL

DPR(θ,θ′). Moreover, above θSL, D(θ) looks like the base distribution. This
means that DPR(θ,θ′) > DPR(θ,θSL) for all θ′ > θSL, as desired.

Case (c): θSL ≤ θ ≤ θmin. Using the same argument as Case (a), we see that DPR(θ,θ′) > DPR(θ,θSL) for all θ′ < θSL.
Moreover, we also see that the risk obtained by the threshold right above the point mass beats any higher threshold: that is,
limε→0,ε≥0 DPR(θ,θ + ε) < DPR(θ,θ′) for any θ′ > θ. This is because all agents x > θ have p(x) > 0.5.

Thus, all we need to do is to compare the threshold right above the point mass with the threshold θSL. Notice that these two
classifiers behave the same on strategic agents with true features x < Qθ (this is because θSL ∈ Qθ , because by Lemma
11, we know that c(θSL,θ) < c(θSL,θmin) < 1.). Moreover, they also behave the same on non-strategic agents not in
θSL ≤ x ≤ θ. Thus, we only need to focus on strategic agents with true features in Qθ and non-strategic agents with
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θSL ≤ x ≤ θ. Thus, we use the expression in the proof of Lemma 11 to see that:

lim
ε→0,ε>0

DPR(θ,θ + ε)−DPR(θ,θSL)

= p ·E(x,y)∈DXY [1{x ∈ [θSL,θ]}p(x)] + (1− p)E(x,y)∈DXY [1{x ∈Q(θ)}p(x)]
− pE(x,y)∈DXY [1{x ∈ [θSL,θ]}(1− p(x))]− (1− p)E(x,y)∈DXY [1{x ∈Q(θ)}(1− p(x))]
= 2pE(x,y)∈DXY [1{x ∈ [θSL,θ]}p(x)] + 2(1− p)E(x,y)∈DXY [1{x ∈Q(θ)}p(x)]
− pE(x,y)∈DXY [1{x ∈ [θSL,θ]}]− (1− p)E(x,y)∈DXY [1{x ∈Q(θ)}].

The relevant quantity is:

Z(p) := p
(
E(x,y)∈DXY [Ix∈[θSL,θ](2p(x)− 1)]

)
+ (1− p)

(
E(x,y)∈DXY [Ix∈Q(θ)(2p(x)− 1)]

)
Let’s denote by θ+ the parameter weights “right above the point mass” (that is, the parameter weights given by approaching
θ from above θ, without ever reaching θ). We see that B(θ) = {θSL} if and only if Z(p) > 0, B(θ) = {θ+} if and only if
Z(p) < 0, and B(θ) = {θ+,θSL} if and only if Z(p) = 0.

Now, we show that Z(p) is increasing in θ. Let pbase be the pdf of DXY . The derivative of the first term is:
p(2p(θ)0− 1)pbase(θ) > 0, and the derivative of the second term is: (1− p)(2p(θ)− 1)pbase(θ)− (1− p)(2p(min(Q(θ))−
1)pbase(min(Q(θ))) > 0, as desired.

Moreover, at θ = θSL, we see that Z(p) < 0; at θ = θmin, on the other hand, Z(p) > 0.

Thus, repeated retraining will oscillate between θSL and f (p), where f (p) is the value such that Z(f (p)) = 0. To see
that f (p) is decreasing in p, notice that Z(p) is increasing in p for all θSL ≤ θ ≤ θmin. As p→ 0, it is easy to see that
f (p)→ θmin. As p→ 1, it is easy to see that f (p)→ θSL.

Using the above results, we can conclude Proposition 2.

Proof of Proposition 2. When p = 1, we can apply Lemma 10. When p = 0, we can apply Lemma 11 to see that a locally
stable point exists. When 0 < p < 1, we can apply Lemma 12 to see that no locally stable point exists. For the behavior of
repeated risk minimization, we can apply Lemma 13.

B.3. Formal Statement and Proof of Proposition 3

We give a formal statement of Proposition 3 using the technology of alternative microfoundations. Let c be a valid cost
function. First, we formalize expenditure monotonicity (Property 1) in the language of alternative microfoundations.

Property 4. Let Θ be a function class of threshold functions, and let c be a cost function. A mapping M ∈ M satisfies
expenditure monotonicity if c(Rt(x,θ),x) ≤ γ for every θ ∈ Θ and every t ∈ Image(M), and if fθ(Rt(x;θ)) = 1, then
fθ′ (Rt(x;θ′)) = 1 for all θ′ ≤ θ.

LetM∗ be the set of maps M such that every t ∈ ∪(x,y)∈Xsupp(M(x)) satisfies expenditure monotonicity (Property 4) and
such that Assumption 3 is satisfied. LetD be the set of distribution maps D(·;M) for M ∈M∗.
Proposition 14. Consider Setup 1. LetD be the class of distribution maps defined above. Then:

θPO(DSM) ≥ θPO(D)
Burden(θPO(DSM)) ≥ Burden(θPO(D)).

where DSM denotes the distribution map given by standard microfoundations, and θPO(D) denotes the minimal performa-
tively optimal point associated with the distribution map D.

Proof. For ease of notation, let θSL be the unique value such that p(θSL) = 0.5. It is easy to see that θ′ = θPO(DSM) is the
unique point such that c(θSL,θ

′) = 1 and θ′ > θSL.

Since Burden(·) is monotonic in its argument, all we need to do is to show θPO(DSM) ≥ θPO(D). It suffices to show that for
θ > θPO(DSM) and for any D ∈ D, it holds that PR(θ) ≤ PR(θPO(DSM)), where the performative risk is with respect to D.
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First, let’s consider the set of agents S1 := {(t,x,y) | x < θSL}. For (t,x,y) ∈ S1, notice that c(x,θ) > c(x,θPO(DSM)) >
c(θSL,θPO(DSM)) = c(θSL,θPO(DRDPI)) ≥ 1. By the expenditure constraint, this means that these agents will not game
on fθ or fθPO(DSM): i.e, Rt(x,θ) = x and Rt(x,θPO(DSM)) = x for (t,x,y) ∈ S1. Thus, fθPO(DSM)(Rt(x,θPO(DSM))) =
fθ(Rt(x,θ)) = 0. The performative risk with respect to D is thus equivalent on S1 for fθ and fθPO(DSM).

Now, let’s consider the remaining set of agents S2 := {(t,x,y) | x ≥ θSL}. Let S ′2 ⊆ S2 be the set

S ′2 = {(t,x,y) ∈ S2 | fθ(Rt(x,θ)) = 1} .

and
S ′′2 =

{
(t,x,y) ∈ S2 | fθPO(DSM)(Rt(x,θPO(DSM))) = 1

}
.

We claim that S ′2 ⊆ S
′′
2 . This is because of the second condition in expenditure monotonicity that if x was labeled positively

by fθ , then x is also labeled positively by fθPO(DSM): in particular, we can thus conclude that fθ(Rt(x,θ) = 1 implies that
fθPO(DSM)(Rt(x,θPO(DSM))) = 1.

Now, we claim that the performative risk with respect to D on S2 is no better for θ than for θPO(DSM). This follows
from the fact that S ′2 ⊆ S

′′
2 , and the fact that p(x) ≥ 0.5 for (t,x,y) ∈ S2 coupled with Assumption 3. This completes the

proof.

C. Proofs for Section 3
C.1. Microfounding any Distribution Map

With such a flexible model, any distribution map can be microfounded, albeit with complex response types, as long as
feature manipulations do not change the fraction of positively labeled agents in the population.

Proposition 15. Let DXY be a non-atomic distribution. Let D(θ) be any distribution map that preserves the marginal
distribution over Y of DXY . Then, there exists a mapping M ∈M such that D( · ;M) is equal to D( · ).

This result primarily serves as an existence property that implies that our general framework for microfoundations can
capture any aggregate distribution, including continuous distributions that are observed empirically (e.g. Examples 1–2).

We prove Proposition 15. The intuition is that there is a response type for every possible agent response, and it remains to
show that the appropriate choice of agent response types can “shift the mass” from DXY to D(θ). In fact, M only needs to
map the population to two different response types. Now, we formally prove this result.

Proof of Proposition 15. We prove Proposition 15 by construction and show that there is an M that can microfound any
distribution map. We construct M as follows. We construct response types t0 and t1, and define M(x,0) = t0 for all x ∈ X
and M(x,1) = t1 for all x ∈ X. In other words, we associate agents with true label 0 with the type t0 and agents with true
label 1 with the type t1.

In order to construct t0 and t1, we define the following probability measures over the measure space X ⊆ R
D equipped

with the Borel sigma-algebra. We consider µ0(θ) to be the probability measure given by the distribution over x when
(x,y) ∈ D(θ) and y = 0. We define µ1(θ) similarly. We let µ0XY be the probability measure given by the distribution x where
(x,y) ∈ DXY and y = 0, and we define µ1XY analogously.

First, we claim that it suffices to prove that for each θ ∈Θ there is a measurable map f0,θ : X→ X that maps the probability
measure µ0XY to µ0(θ), and a measurable map f1,θ : X → X that maps µ1XY to µ1(θ). In this case, we can define t0 to
be given by Rt0(x,θ) = f0,θ(x) and t1 to be given by Rt1(x,θ) = f1,θ(x). Let’s now consider the distribution given by
(Rt(x,θ), y) where (t,x,y) ∼ DT XY . The condition distribution over y = 0 is given by µ0(θ) and the conditional distribution
over y = 1 is given by µ1(θ), which means that the distribution over all is given by D(θ), as desired. Moreover, the
measurability requirements on f0,θ and f1,θ guarantee that Assumption 2 is satisfied.

Thus, it suffices to construct f0,θ and f1,θ for θ ∈Θ that satisfy the above conditions. To do this, we make use of Proposition
3 in (Gatzouras, 2002), which says that there exists a Borel mapping from any tight non-atomic measure to any other
probability measure. Since the probability measure associated to DXY is non-atomic, we see that µ0XY and µ1XY are
non-atomic as desired, and so a Borel mapping from µ0XY to µ0(θ) exists and a Borel mapping from µ1XY to µ1(θ) exists.
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C.2. Connection between Aggregate Smoothness and Continuity for 1-d Example

We formalize the connection between aggregate smoothness and the continuity of the distribution map. In particular, the
existence of the partial derivative of DPRM (θ,θ′) with respect to θ′ guarantees that each distribution D(θ;M) is sufficiently
continuous (and cannot have a point mass at the decision boundary), and assuming continuity of the derivative we guarantee
that D(θ;M) changes continuously in θ. This connection between aggregate smoothness and continuity of the distribution
map can be made explicit in the case of 1-dimensional features:

Proposition 16. Suppose that X ⊆ R, and let Θ ⊆ R be a function class of threshold functions. Then, if the distribution
map D( · ;M) has the following properties, the mapping M satisfies aggregate smoothness w.r.t. Θ:

1. For each θ, the probability density pθ(x,y) of D(θ;M) exists everywhere and is continuous in x.

2. For each x,y, the probability density pθ(x,y) is continuous in θ.

Proof of Proposition 16. To prove Proposition 16 we show that dPRθ(θ′) is continuous in θ and θ′ . We see that

DPR(θ,θ′) =
∫
x′≥θ′

pθ((x
′ ,0))dx′ +

∫
x′<θ′

pθ((x
′ ,1))dx′ .

Let’s take a derivative with respect to θ′ to obtain:

dPRθ(θ
′) = −pθ((θ′ ,0)) + pθ((θ′ ,1)).

The first continuity requirement tells us that this is continuous in θ′ , and the second continuity requirement tells us that this
continuous in θ.

C.3. Proof of Theorem 5

We first recall the definition of the decoupled performative risk (Perdomo et al., 2020):

DPR(θ,θ′) := E(x,y)∈D(θ) [1 (fθ′ (x) , y)] .

The gradient of the decoupled performative risk plays an important role in our analysis of locally stable points. In order to
take derivatives at the boundary, we consider an open set Θ′ ⊃Θ that is also bounded and convex, and assume there are
classifiers associated with each θ ∈ Θ′ , although the decision maker only considers classifier weights in Θ. We use the
notation:

dPRθ(θ
′) := ∇θ′DPR(θ,θ′) = ∇θ′E(x,y)∼D(θ)[ 1{y , fθ′ (x)}]

to denote the gradient of the decoupled performative risk with respect to the second argument. To prove Theorem 5 we
show that the continuity of the derivatives of the decoupled performative risk guarantees the existence of stable points under
mixtures with non-strategic agents.

Proof of Theorem 5. Our main technical ingredient is this proof is applying Brouwer’s fixed point theorem on Ggd(θ) =
ProjΘ(θ + ηdPRθ(θ)). It thus suffices to show that the map θ 7→ ProjΘ(θ + ηdPRθ(θ)) is continuous.

First, we show that aggregate risk smoothness implies that θ 7→ ProjΘ(θ + ηdPRθ(θ)) is a continuous map. By aggregate
risk smoothness, we know that dPRθ(θ) exists for all θ ∈Θ. Moreover, for any θ ∈Θ, aggregate risk smoothness tells us
that:

lim
θ′→θ

∥∥∥dPRθ(θ)−dPRθ′ (θ′)∥∥∥ ≤ lim
θ′→θ

‖dPRθ(θ)−dPRθ′ (θ)‖+ lim
θ′→θ

∥∥∥dPRθ′ (θ)−dPRθ′ (θ′)∥∥∥ .
Thus, dPRθ(θ) is continuous in θ. Moreover, since the sum of continuous functions is continuous, this means that
θ 7→ θ + ηdPRθ(θ) is continuous. Now, since projection onto a convex set is a contraction map, we can conclude that
θ 7→ ProjΘ(θ + ηdPRθ(θ)) is continuous as desired.
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C.4. Proof of Proposition 6

We now prove Proposition 6.

Proof of Proposition 6. Since derivatives are linear, we can break dPRθ(θ) into a term for non-strategic agents and a term
for strategic agents. Since the sum of two continuous function is continuous, it suffices to show that dPRθ(θ) exists
and is continuous for non-strategic agents and for strategic agents. For strategic agents, this follows from aggregate risk
smoothness. For non-strategic agents, since the (non-performative) risk R(θ) := E(x,y)∈DXY 1{fθ(x) = y} is differentiable in
θ and dPRθ(θ) = ∇θR(θ) is continuous in θ as desired.

D. Proofs for Section 4
D.1. Proof of Proposition 7

Proof of Proposition 7. We use the following notation for this proof. Let’s extend the cost function to be defined and valid
on all of R rather than just X. For x ∈ X, let’s use the notation lx ∈ R to denote the unique value such that lx < x and
c(lx,x) = 1. Similarly, let ux ∈R denote the unique value such that ux > x and c(x,ux) = 1. These values are unique by the
definition of a valid cost function.

Fix σ ∈ (0,∞), and x′ ∈ X. Let’s characterize the agents who will change their features to x′ when the threshold is θ. Either
the agents’ true features are equal to x′ and their perception function P (θ) < (x′ ,ux′ ], or the agents’ perception function
P (θ) = x′ and their true features x are in [lx′ ,x′]. Since the base distribution and the noise distribution are continuous, this
means that there are no point masses in the distribution. To see that a probability density function exists everywhere and is
continuous, let’s compute the density. Let pbase denote the pdf of the base distribution (which is assumed to exist and be
continuous since DXY is a continuous distribution), and let pnoise denote the pdf of D (which is continuous since it is the pdf
of a gaussian). Notice that the probability density of D(θ) at (x′ , y′) is

pbase((x
′ , y′)) ·PD [η < (x′ −θ,ux′ −θ)] + pnoise(x

′ −θ) ·PDXY [x ∈ [lx′ ,x
′], y = y′].

This is continuous in x′ because ux′ and lx′ are continuous in x′ . Moreover, this is nonzero on all x′ because for all x′ ∈ X,
we see that pbase((x′ , y′)) > 0 and PD [η < (x′ −θ,ux′ −θ)] > 0 as well.

Now, we show aggregate smoothness. We see that the probability density pθ((x′ , y′)) at (x′ , y′) is continuous in x′ because
each term is continuous in x′ . Similarly, we see that this is continuous in θ because each term is continuous in θ. By
Proposition 16, this implies aggregate smoothness.

D.2. Social burden of noisy responses in general

We show that for any valid cost function, noisy responses results in an optimal point with no higher social burden than the
optimal point deduced from standard microfoundations.

Proposition 17. Let σ ∈ (0,∞), and let c be a valid cost function. Consider a 1-dimensional setting where X ⊆R and Θ is
a function class of threshold functions. Then, the following holds:

θPO(MSM) ≥ θPO(Mσ )

Burden(θPO(MSM)) ≥ Burden(θPO(Mσ )),

where MSM is the mapping induced by standard microfoundations.

Proof. By Proposition 14, it suffices to show that Mσ satisfies expenditure monotonicity and Assumption 3. The fact
that Mσ satisfies Assumption 3 follows from its definition. For expenditure monotonicity, note that the first condition
follows from the fact that the optimization problem in (4) tells us that fuzzy perception agents never exceed their utility of a
positive outcome from manipulation expenditure. We now show that the second condition is satisfied. Note that each agents’
perception function takes the form P (θ) = θ + η for some fixed η. Thus, any given agent either consistently overshoots or
consistently undershoots the threshold. If η < 0, then the agent will only be positively classified if and only if θ ≤ x where x
are the agent’s true features. If η > 0, then the agent will be positively classified if and only if c(x,θ + η) ≤ 1 or θ ≤ x. This
proves the desired statement.
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D.3. Proof of Proposition 8

Proof of Proposition 8. By Proposition 17, we see that θPO(DSM) ≥ θPO(D). It thus suffices to show that θPO(DSM) >
θPO(D). To show this, it suffices to show that the derivative of the performative risk exists and is nonzero at θPO(DSM).

Like in the proof of Theorem 7, we use the notation lx, ux, pbase, and PD . By the expenditure constraint, we know that agents

with true features x ≤ lθ will all be classified as 0, and so their net contribution to the performative risk is
∫ lθ
−∞pbase((x,1))dx.

By the properties of noisy response, we know that agents with true features x ≥ θ will be classified as 1, so their net
contribution to the performative risk is

∫ lθ
−∞pbase((x,1))dx. For agents with true features x ∈ (θ − 1,θ), agents will be

classified as 1 if and only if they manipulate features to x′ ≥ x if and only if η ∈ [0,ux −θ]. Putting this all together, we see
that the performative risk is thus equal to:

PR(θ) =
∫ ∞
θ
pbase((x,0))dx+

∫ θ−1

−∞
pbase((x,1))dx+

∫ θ

θ−1
pbase((x

′ ,0))PD [η ∈ [0,ux′ −θ]]dx′

+
∫ θ

θ−1
pbase((x

′ ,1))PD [η < [0,ux′ −θ]]dx′

=
∫ ∞
θ
pbase((x,0))dx+

∫ θ−1

−∞
pbase((x,1))dx+

∫ θ

θ−1
pbase((x

′ ,0))PD [η ∈ [0,x′ +1−θ]]dx′

+
∫ θ

θ−1
pbase((x

′ ,1))PD [η < [0,x
′ +1−θ]]dx′

=
∫ ∞
θ
pbase((x,0))dx+

∫ θ−1

−∞
pbase((x,1))dx+

∫ 1

0
pbase((θ − 1+ x,0))PD [η ∈ [0,x]]dx

+
∫ 1

0
pbase((θ − 1+ x,1))PD [η < [0,x]]dx

=
∫ ∞
θ
pbase((x,0))dx+

∫ θ−1

−∞
pbase((x,1))dx+PDXY [x ∈ (θ − 1,θ), y = 0]

+
∫ 1

0
(pbase((θ − 1+ x,1))− pbase((θ − 1+ x,0)))PD [η < [0,x]]dx.

Let’s write
∫ 1
0 (pbase((θ − 1+ x,1))− pbase((θ − 1+ x,0)))PD [η < [0,x]]dx in a slightly different form.

∫ 1

0
(pbase((θ − 1+ x,1))− pbase((θ − 1+ x,0)))PD [η < [0,x]]dx

= (PD [η ∈ [−∞,0]] +PD [η ∈ [1,∞]])
∫ 1

0
(pbase((θ − 1+ x,1))− pbase((θ − 1+ x,0)))dx

+
∫ 1

0
(pbase((θ − 1+ x,1))− pbase((θ − 1+ x,0)))PD [η ∈ [x,1]]dx

= (PD [η ∈ [−∞,0]] +PD [η ∈ [1,∞]])(PDXY [x ∈ (θ − 1,θ), y = 1]−PDXY [x ∈ (θ − 1,θ), y = 0])

+
∫ 1

0
(pbase((θ − 1+ x,1))− pbase((θ − 1+ x,0)))PD [η ∈ [x,1]]dx.
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We can rewrite:∫ 1

0
(pbase((θ − 1+ x,1))− pbase((θ − 1+ x,0)))PD [η ∈ [x,1]]dx

=
∫ 1

0

∫ 1

x
(pbase((θ − 1+ x,1))− pbase((θ − 1+ x,0)))pnoise(z)dzdx

=
∫ 1

0
pnoise(z)

∫ z

0
(pbase((θ − 1+ x,1))− pbase((θ − 1+ x,0)))dxdz

=
∫ 1

0
pnoise(z)(PDXY [x ∈ ((θ − 1,θ − 1+ z)), y = 1]−PDXY [x ∈ ((θ − 1,θ − 1+ z))), y = 0])dz

When we take a derivative with respect to θ, we obtain:

∂PR(θ)
∂θ

= −pbase((θ,0)) + pbase((θ − 1,1))− pbase((θ − 1,0)) + pbase((θ,0))

+ (PD [η ∈ [−∞,0]] +PD [η ∈ [1,∞]])(pbase((θ,1))− pbase((θ − 1,1))− pbase((θ,0)) + pbase((θ − 1,0)))

+
∫ 1

0
pnoise(z)(pbase((θ − 1+ z,1))− pbase((θ − 1,1))− pbase((θ − 1+ z,0)) + pbase((θ − 1,0)))dz.

Let’s analyze this expression at θ = θPO(DSM). By the assumptions on the cost function, and using that θSL +1 ∈Θ ∩X,
we see that θPO(DSM) = θSL + 1, so θ − 1 = θSL. This means that pbase((θ − 1,1)) − pbase((θ − 1,0)) = pbase((θSL,1)) −
pbase((θSL,0)) = 0. Thus, the expression simplifies to:

∂PR(θ)
∂θ

= (PD [η ∈ [−∞,0]] +PD [η ∈ [1,∞]])(pbase((θ,1))− pbase((θ,0)))

+
∫ 1

0
pnoise(z)(pbase((θ − 1+ z,1))− pbase((θ − 1+ z,0)))dz.

We see that pbase((θ′ ,1)) > pbase((θ′ ,0)) for all θ′ ≥ θSL by the assumption on µ in Setup 1. This implies that the first term
is positive and the second term is nonnegative, so ∂PR(θ)

∂θ is positive as desired.

E. Reducing the complexity of estimating the distribution map
Apart from defining a natural class of feasible microfoundations models, an additional advantage of Property 3 is that it
naturally constrains each agent’s range of manipulations. This can significantly reduce the complexity of estimating the
distribution map for a decision-maker who wants to compute a strategy robust classifier offline.

Assume the decision maker follows a two-stage estimation procedure to estimate a performatively optimal point, similar to
(Miller et al., 2021). First, they compute an estimate M̃ of the true mapping M and infer D( · ;M̃) from the base distribution
DXY . Second, they assume the model reflects the true decision dynamics and approximate optimal points as follows:

θPO(M̃) := argminθ∈ΘE(x,y)∼D(θ;M̃) [1{y , fθ(x)}] . (7)

The naive approach is to compute an estimate M̃ of M, such that supθ TV(D(θ;M̃),D(θ;M)) ≤ ξ. This guarantee that
PR(θPO(M))−PR(θPO(M̃)) ≤ 2ξ.

Lemma 18. Let M̃ be an estimate of the true distribution map M. Then the suboptimality of the performative risk
of θPO(M) as per (7) is bounded by: PR(θPO(M̃)) − PR(θPO(M)) ≤ 2supθ

{
TV

(
D(θ;M),D(θ;M̃)

)}
, where PR(θ) :=

E(x,y)∼D(θ) [1{y , fθ(x)}] denotes the performative risk with respect to M.

Proof of Lemma 18. Let ξ =
{
TV

(
D(θ;M),D(θ;M̃)

)}
. Let PR(θ;M) denote the performative risk at θ on D(θ;M) and

let PR(θ;M̃) denote the performative risk at θ on D(θ;M̃). It suffices to show that |PR(θ;M) − PR(θ;M̃)| ≤ ξ (since
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this would mean that PR(θPO(M̃);M) ≤ PR(θPO(M̃);M̃) + ξ ≤ PR(θPO(M);M̃) + ξ ≤ PR(θPO(M);M) + 2ξ, as desired).
Notice that:

|PR(θ;M)−PR(θ;M̃)| =
∣∣∣E(x,y)∼D(θ;M)[ 1{y , fθ(x)}]−E(t,x,y)∼D(θ;M̃)[ 1{y , fθ(x)}]

∣∣∣ .
Since the indicator variables are always constrained between 0 and 1, we can immediately obtain an upper bound of
T V (D(θ;M),D(θ;M̃)).

However, achieving a sufficient level of accuracy for the distribution map in terms of TV distance fundamentally requires a
full specification of the response types for every agent in the population.

The expenditure constraint helps to make this task more tractable, in that the decision-maker only needs to estimate responses
for a small fraction of the agents to achieve the same bound on the suboptimality of the obtained performative risk. To
formalize this, let’s assume the decision maker can define a set Θ0 ⊆Θ that contains the performatively optimal classifier
θPO(M). Then, given the implied restriction in the search space in (7), the expenditure constraint enables us to restrict the
set of covariates that are relevant for the optimization problem to

S(Θ0, c) := ∪θ∈Θ0
{x ∈ X : ∃x′ ∈ X : fθ(x

′) , fθ(x)∧ c(x,x′) ≤ γ}. (8)

The salient part S(Θ0, c) ⊆ X captures all agents who are sufficiently close to the decision boundary for some θ ∈Θ0 so
they are able to cross it without expending more than γ units of cost. The subset S(Θ0, c) can be entirely specified by the
cost function c and can be much smaller than X.

We now describe the implications of constraining to the salient part for a 1-dimensional setting where X ⊆ R and fθ is
a threshold function.9 Let us define an agent response oracle that given x and θ, outputs a draw x′ from the response
distribution (Rt(x,θ), y) where (x,y) ∼ DXY . We show with few calls to the oracle, the decision-maker can build an
sufficiently precise estimate of M.
Proposition 19. Let X ⊆R, let Θ ⊆R be the function class of threshold functions. Suppose that M satisfies the expenditure
constraint, the distribution map D(·;M) is 1-Lipschitz with respect to TV distance, and Θ0 ⊆Θ : θPO(M) ∈Θ0. We further
assume that an agent’s type does not depend on their label, i.e., M(x,0) =M(x,1) for all x ∈ X. Then, with O

(
ζ2 ln(1/ε)

2ε3

)
calls to the agent response oracle, where ζ := PDXY [x ∈ S(Θ0, c)], the decision maker can create an estimate M̃ so that:

PR(θPO(M̃)) ≤ PR(θPO(M)) + ε.

with probability 0.9.

The number of necessary calls to the response function oracle for estimating M decays with ζ := PDXY [x ∈ S(Θ0, c)].
Without any assumption on agent responses we have S(Θ0, c) = X and the value of ζ is equal to 1. However, when the
decision-maker is able to constrain S(Θ0, c) to a small part of the input space by relying on the expenditure constraint,
domain knowledge, or stronger assumptions on agent behavior, ζ and thus the number of oracle calls can be reduced
significantly.

The concept of a salient part bears resemblance to the approaches by Zhang and Conitzer (2021); Zhang et al. (2021), which
directly specify the set of feature changes that an agent may make, rather than implicitly specifying agent actions through a
cost function. While these models assume that agents best-respond, our key finding is that constraining agent behavior alone
can lessen the empirical burden on the decision-maker.

For the remainder of the section, we prove Proposition 19.

E.1. Proof of Proposition 19

To prove Proposition 19, first we show a bound on the performative risk in terms of the Kolmogrov-Sminorff (KS) distance
between the true distribution map and estimated distribution map. To state this bound, we introduce the following notation.
We use a subscript notation DS(Θ0,c)(θ;M) to denote the aggregate response distribution D(θ;M) restricted to agents with
true features x ∈ S(Θ0, c), where S(Θ0, c) is defined as in (8). Let D0

S(Θ0,c)
(θ;M) be the marginal distribution over x of

the conditional distribution of (x,y) ∼ DS(Θ0,c)(θ;M) conditional on y = 0. We define D1
S(Θ0,c)

(θ;M), D0
S(Θ0,c)

(θ;M̃), and

D1
S(Θ0,c)

(θ;M̃) analogously.

9Proposition 19 directly extends to posterior threshold functions (Milli et al., 2019).
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Lemma 20. Let Θ be a function class of posterior threshold functions, and c be an outcome-valid cost function. Suppose
that M,M̃ restricted to the domain (X \ S(Θ0, c))×Y are expenditure-constrained. Then, for any Θ0 ⊆Θ : θPO(M) ∈Θ0,
the predicted performative optima θPO(M̃) satisfies:

PRM (θPO(M̃) ≤ PRM (θPO(M))) + 2ξ

where ξ is defined to be
sup
θ

(Aθ +Bθ)

where

A(θ) := P[x ∈ S(Θ0, c) & y = 0]KS
(
D0
S(Θ0,c)

(θ;M),D0
S(Θ0,c)

(θ;M̃)
)

B(θ) := P[x ∈ S(Θ0, c) & y = 1]KS
(
D1
S(Θ0,c)

(θ;M),D1
S(Θ0,c)

(θ;M̃)
)
.

Proof. Let PR(θ;M) denote the performative risk at θ on D(θ;M) and let PR(θ;M̃) denote the performative risk at θ on
D(θ;M̃). It suffices to show that |PR(θ;M)−PR(θ;M̃)| ≤ ξ for all θ ∈Θ0 (since this would mean that PR(θPO(M̃);M) ≤
PR(θPO(M̃);M̃) + ξ ≤ PR(θPO(M);M̃) + ξ ≤ PR(θPO(M);M) + 2ξ, as desired). Notice that:

|PR(θ;M)−PR(θ;M̃)| =
∣∣∣E(x,y)∼D(θ;M)[ 1{y , fθ(x)}]−E(x,y)∼D(θ;M̃)[ 1{y , fθ(x)}]

∣∣∣ .
Let’s let DT XY be the distribution of (t,x,y) where (x,y) ∼ DXY and t ∼M(x,y). Similarly, let D̃T XY be the distribution
of (t,x,y) where (x,y) ∼ DXY and t ∼ M̃(x,y). Notice that:

|PR(θ;M)−PR(θ;M̃)| =
∣∣∣E(t,x,y)∼DT XY [ 1{y , fθ(Rt(x,θ))}]−E(t,x,y)∼D̃T XY [ 1{y , fθ(Rt(x,θ))}]

∣∣∣ .
Now, we claim that for any agent (t,x) where x < S(Θ0, c) and for t ∈ supp(DT XY ) ∪ supp(D̃T XY), it holds that
fθ(Rt(x,θ)) = fθ(x) for every θ ∈ Θ0. Note that since M satisfies the expenditure constraint with respect to c, then
we know that if x < Sθ , it holds that fθ(Rt(x,θ)) = fθ(x). Moreover, note that since Sθ ⊆ S(Θ0, c) by definition, this yields
the desired statement. Thus we have that:∣∣∣E(t,x,y)∼DT XY [ 1{y , fθ(Rt(x,θ))}]−E(t,x,y)∼D̃T XY [ 1{y , fθ(Rt(x,θ))}]

∣∣∣
≤

∣∣∣E(t,x,y)∼DT XY [ 1{y , fθ(Rt(x,θ))} 1{x < S(Θ0, c)}]−E(t,x,y)∼D̃T XY [ 1{y , fθ(Rt(x,θ))} 1{x < S(Θ0, c)}]
∣∣∣

+
∣∣∣E(t,x,y)∼DT XY [ 1{y , fθ(Rt(x,θ))} 1{x ∈ S(Θ0, c)}]−E(t,x,y)∼D̃T XY [ 1{y , fθ(Rt(x,θ))} 1{x ∈ S(Θ0, c)}]

∣∣∣
=

∣∣∣E(t,x,y)∼DT XY [ 1{y , fθ(Rt(x,θ))} 1{x ∈ S(Θ0, c)}]−E(t,x,y)∼D̃T XY [ 1{y , fθ(Rt(x,θ))} 1{x ∈ S(Θ0, c)}]
∣∣∣

=
∣∣∣E(x,y)∼D(θ)[ 1{y , fθ(x)} 1{x ∈ S(Θ0, c)}]−E(x,y)∼D̃(θ)[ 1{y , fθ(x)} 1{x ∈ S(Θ0, c)}]

∣∣∣ .
We can break this into terms where y = 0 and terms where y = 1. Thus, it suffices to bound:∣∣∣E(x,y)∼D(θ;M)[ 1{y , fθ(x)} 1{x ∈ S(Θ0, c)} 1{y = 0}]−E(x,y)∼D(θ;M̃)[ 1{y , fθ(x)} 1{x ∈ S(Θ0, c)} 1{y = 0}]

∣∣∣
and ∣∣∣E(x,y)∼D(θ;M)[ 1{y , fθ(x)} 1{x ∈ S(Θ0, c)} 1{y = 1}]E(x,y)∼D(θ;M̃)[ 1{y , fθ(x)} 1{x ∈ S(Θ0, c)} 1{y = 1}]

∣∣∣ .
It suffices to show that the first term is upper bounded by A(θ) and the second term is upper bounded by B(θ). Since these
two bounds follow from analogous arguments, we only present the proof of the first bound.∣∣∣E(x,y)∼D(θ;M)[ 1{y , fθ(x)} 1{x ∈ S(Θ0, c)} 1{y = 0}]−E(x,y)∼D(θ;M̃)[ 1{y , fθ(x)} 1{x ∈ S(Θ0, c)} 1{y = 0}]

∣∣∣
= P[x ∈ S(Θ0, c) & y = 0]

∣∣∣∣∣E(x,y)∼D0
S(Θ0 ,c)

(θ;M)[ 1{p(x) ≥ θ}]−E(x,y)∼D0
S(Θ0 ,c)

(θ;M̃)[ 1{p(x) ≥ θ}]
∣∣∣∣∣

= P[x ∈ S(Θ0, c) & y = 0]
∣∣∣∣∣El∼D0

S(Θ0 ,c)
(θ;M)[ 1{l ≥ θ}]−El∼Dp,0S(Θ0 ,c)

(θ;M̃)
[ 1{l ≥ θ}]

∣∣∣∣∣
≤ P[x ∈ S(Θ0, c) & y = 0]KS

(
Dp,0S(Θ0,c)

(θ;M),D0
S(Θ0,c)

(θ;M̃)
)
.
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Now, we are ready to prove Proposition 19.

Proof of Proposition 19. Let Θnet be an ε net of Θ0. The decision-maker uses the agent response oracle as follows. For
each θ ∈Θnet, they can generate n0 samples as follows: draw a sample (x,y) ∼ DXY conditioned on y = 0. If x ∈ S(Θ0, c),
then query the agent response oracle on x at θ. It is easy to see that these samples are distributed as n0 independent samples
from Dp,0S(Θ0,c)

(θ). Similarly, the decision-maker uses the agent response oracle to draw n1 samples that are distributed as n1

independent samples from Dp,1S(Θ0,c)
(θ). (We will specify the values of n0 and n1 later.)

First, we define a distribution map D̃ using these samples and the base distribution. Let’s define D0(θ) to be the empirical
distribution of the n0 samples, and let D1(θ) be the empirical distribution of the n1 samples. Let D ′(θ) be the distribution
given by a mixture of (x,0) where x ∼D0(θ) with probability PDXY [y = 0 | x ∈ S(Θ0, c)] and x ∼D1(θ) with probability
PDXY [y = 1 | x ∈ S(Θ0, c)]. Let D ′′(θ) be the distribution given by (x,y) drawn from the conditional distribution of DXY
given x < S(Θ0, c). We let D̃ be the distribution given by a mixture of D ′(θ) with probability PDXY [x ∈ S(Θ0, c)] and
D ′′(θ) with probability 1−PDXY [x ∈ S(Θ0, c)].

We can microfound D̃ with a map M̃ as follows. Let M̃(x,y) = x when x < S(Θ0, c). Let M̃ on S(Θ0, c)×Y be defined in
such any way it microfounds D ′(θ) (this is possible because of Proposition 15). It is easy to see that M̃ microfounds D̃ and
that M̃ restricted to the domain (X \ S(Θ0, c))×Y is expenditure-constrained. This means that we can apply Lemma 20.

Now, we bound the performative risk PR(θPO(M̃)), where:

θPO(M̃) = argminθ∈Θ0
E(x,y)∼D(θ;M̃) [1{y , fθ(x)}] = argminθ∈Θnet

E(x,y)∼D(θ;M̃) [1{y , fθ(x)}] .

In order to apply Lemma 20, we need to bound:

sup
θ∈Θnet

{A(θ) +B(θ)} (9)

where:

A(θ) := P[x ∈ S(Θ0, c) & y = 0] ·KS
(
Dp,0S(Θ0,c)

(θ;M),Dp,0S(Θ0,c)
(θ;M̃)

)
B(θ) := P[x ∈ S(Θ0, c) & y = 1] ·KS

(
Dp,1S(Θ0,c)

(θ;M),Dp,1S(Θ0,c)
(θ;M̃)

)
.

To bound (9), we union bound over Θnet. This set has cardinality O(1/ε). Notice that with probability ≥ 1−α, we know
that:

KS
(
Dp,0S(Θ0,c)

(θ;M),Dp,0S(Θ0,c)
(θ;M̃)

)
≤

√
ln(2/α)
2n0

.

KS
(
Dp,1S(Θ0,c)

(θ;M),Dp,1S(Θ0,c)
(θ;M̃)

)
≤

√
ln(2/α)
2n0

.

We can now set α = Θ(ε/100) in the previous result to obtain that with probability ≥ 99/100, the expression in (9) is
bounded by:

E :=O

PDXY [x ∈ S(Θ0, c)∧ y = 0]

√
ln(2/ε)
2n0

+OPDXY [x ∈ S(Θ0, c)∧ y = 1]

√
ln(2/ε)
2n1

 .
We can now apply Lemma 20 to Θnet to see that:

PR(θPO(M̃)) ≤ E + min
θ∈Θnet

E(x,y)∼D(θ;M) [1{y , fθ(x)}] ,

Now, let’s use the Lipschitz requirement on the distribution map to move to the set Θ0. Let’s consider a distribution map D′
that is defined as follows: for θ ∈Θnet, we take D′(θ) :=D(θ) , and for θ <Θnet, we take D′(θ) :=D(θ′) where θ′ is the
closest element in Θnet to θ. Now, let’s apply Lemma 18 to D and D′ on Θ0 to obtain that:

min
θ∈Θnet

E(x,y)∼D(θ;M) [1{y , fθ(x)}]) ≤ ε+min
θ∈Θ0

E(x,y)∼D(θ;M) [1{y , fθ(x)}]

= ε+min
θ∈Θ

E(x,y)∼D(θ;M) [1{y , fθ(x)}] .
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This means that
PR(θPO(M̃)) ≤ E + ε+PR(θPO(M)).

Thus, it suffices to bound E and set n0 and n1 appropriately. Suppose that

n0 =Θ

(
PDXY [x ∈ S(Θ0, c) & y = 0]2

ln(1/ε)
2ε2

)
and

n1 =Θ

(
PDXY [x ∈ S(Θ0, c) & y = 1]2

ln(1/ε)
2ε2

)
.

Plugging in these expressions into the expression for E, we obtain the desired bounds. Moreover, notice that the total number
of queries to the oracle is Θ(1/ε) · (n0 +n1) ≤Θ

(
PDXY [x ∈ S(Θ0, c)]2

ln(1/ε)
2ε3

)
.


