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Abstract

When reasoning about strategic behavior in a ma-
chine learning context it is tempting to combine
standard microfoundations of rational agents with
the statistical decision theory underlying classifi-
cation. In this work, we argue that a direct combi-
nation of these ingredients leads to brittle solution
concepts of limited descriptive and prescriptive
value. First, we show that rational agents with
perfect information produce discontinuities in the
aggregate response to a decision rule that we of-
ten do not observe empirically. Second, when any
positive fraction of agents is not perfectly strate-
gic, desirable stable points—where the classifier
is optimal for the data it entails—no longer exist.
Third, optimal decision rules under standard mi-
crofoundations maximize a measure of negative
externality known as social burden within a broad
class of assumptions about agent behavior. Rec-
ognizing these limitations we explore alternatives
to standard microfoundations for binary classifi-
cation. We describe desiderata that help navigate
the space of possible assumptions about agent re-
sponses, and we then propose the noisy response
model. Inspired by smoothed analysis and empir-
ical observations, noisy response incorporates im-
perfection in the agent responses, which we show
mitigates the limitations of standard microfoun-
dations. Our model retains analytical tractability,
leads to more robust insights about stable points,
and imposes a lower social burden at optimality.

1. Introduction

Consequential decisions compel individuals to react in re-
sponse to the specifics of the decision rule. This individual-
level response in aggregate can disrupt both statistical pat-
terns and social facts that motivated the decision rule, lead-
ing to unforeseen consequences. A similar conundrum in
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the context of macroeconomic policy making fueled the
microfoundations program following the influential critique
of macroeconomics by Lucas in the 1970s (Lucas Jr, 1976).
Microfoundations refers to a vast theoretical project that
aims to ground theories of aggregate outcomes and popula-
tion forecasts in microeconomic assumptions about individ-
ual behavior. Oversimplifying a broad endeavor, the hope
was that if economic policy were microfounded, it would
better anticipate the response that the policy induces.

Predominant in neoclassical economic theory is the as-
sumption of an agent that exhaustively maximizes a util-
ity function on the basis of perfectly accurate informa-
tion. This modeling assumption about agent behavior under-
writes many celebrated results on markets, mechanisms, and
games. Although called into question by behavioral eco-
nomics and related fields (e.g. see (Camerer et al., 2004)),
the assumption remains central to economic theory and has
become standard in computer science, as well.

When reasoning about incentives and strategic behavior in
the context of classification tasks, it is tempting to com-
bine the predominant modeling assumptions from microeco-
nomic theory with the statistical decision theory underlying
classification. In the resulting model, agents have perfect in-
formation about the decision rule and compute best-response
feature changes according to their utility function with the
goal of achieving a better classification outcome. We refer
to this agent model as standard microfoundations. Assum-
ing that agents follow this model, the decision maker then
chooses the decision rule that maximizes their own objec-
tive in anticipation of the resulting agent response. This is
the conceptual route taken in the area of strategic classifi-
cation, but similar observations may apply more broadly to
the intersection of economics and learning.

1.1. Our work

We argue that standard microfoundations are a poor basis
for studying strategic behavior in binary classification. We
make this point through three observations that illustrate
the limited descriptive power of the standard model and the
problematic solution concepts it implies. In response, we
explore the space of alternative agent models for strategic
classification, and we identify desiderata that when satis-
fied by microfoundations lead to more realistic and robust
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insights. Guided by these desiderata, we propose noisy
response as a promising alternative to the standard model.

Limitations of standard microfoundations. In strategic
classification, agents respond strategically to the deploy-
ment of a binary decision rule fy specified by classifier
weights 6. The decision-maker assumes that agents follow
standard microfoundations: that is, agents have full informa-
tion about fy and change their features so as to maximize
their utility function. The utility function captures the bene-
fit of a positive classification outcome, as well as the cost
of feature change. Consequently, an agent only invests in
changing their features if the cost of feature change does
not exceed the benefit of positive classification.

Our first observation concerns the aggregate response—the
distribution D(6) over feature, label pairs induced by a clas-
sifier fy. We show that in the standard model, the aggregate
response necessarily exhibits discontinuities that we often
do not observe in empirical settings. The problem persists
even if we assume an approximate best response or allow
for heterogeneous cost functions.

Our second observation reveals that, apart from lacking
descriptive power, the standard model also leads to brittle
conclusions about the solution concept of performative sta-
bility. Performative stability (Perdomo et al., 2020) refers
to decision rules that are optimal on the particular distribu-
tion they entail. Stable points thus represent fixed points of
retraining methods, which repeatedly update the classifier
weights to be optimal on the data distribution induced by
the previous classifier weights. We show that the existence
of performatively stable classifiers breaks down whenever
a positive fraction of randomly chosen agents in the popu-
lation are non-strategic. This brittleness suggests that the
standard model does not constitute a reliable basis for inves-
tigating dynamics of retraining algorithms.

Our last observation concerns the solution concept of perfor-
mative optimality. Performative optimality (Perdomo et al.,
2020) refers to a decision rule that exhibits the highest accu-
racy on the distribution it induces. The global nature of this
solution concept means that finding performatively optimal
points requires the decision maker to anticipate strategic
feedback effects. We prove that relying on standard micro-
foundations to model strategic behavior leads to extreme
decision rules that maximize a measure of negative external-
ity called social burden within a broad class of alternative
models. Social burden, proposed in recent work, quantifies
the expected cost that positive instances of a classification
problem have to incur in order to be accepted. Standard
microfoundations thus produce optimal solutions that are
least favorable in terms of social burden.

Alternative microfoundations. We systematically explore
alternative assumptions on agent responses, encompassing

general agent behavior that need not be fully informed,
strategic, or utility maximizing. We formalize microfounda-
tions as a randomized mapping M : X x Y — 7 that assigns
each agent to a response type t € 7. The response type
t is associated with a response function R;: X x0O — X
specifying how agents of type ¢ change their features x
in response to each decision rule fy. Letting Dyy be the
base distribution over features and labels prior to any strate-
gic adaptation, the aggregate response to a classifier fy is
given by the distribution D(6; M) over induced feature, la-
bel pairs (R;(x, 6),y) for a random draw (x,y) ~ Dxy and
t = M(x,v). The mapping M thus microfounds the distribu-
tions induced by decision rules, endowing the distributions
with structure that allows the decision maker to deduce the
aggregate response from a model of individual behavior.

We describe a collection of properties that are desirable for a
model of agent responses to satisfy. The first condition, that
we call aggregate smoothness rules out discontinuities aris-
ing from standard microfoundations. Aggregate smoothness
requires that varying the classifier weights slightly must
change the aggregate response smoothly. We find that this
property alone is sufficient to guarantee the robust existence
of stable points under mixtures with non-strategic agents.

The second condition, that we call the expenditure con-
straint, helps ensure that the model encodes realistic agent-
level responses R;. At a high level, it requires that each
agent does not spend more on changing their features than
the utility of a positive outcome. This natural constraint
gives rise to a large set of potential models. For any such
model that satisfies a weak assumption, the social burden
of the optimal classifier is no larger than the social burden
of the optimal classifier deduced from standard microfoun-
dations. Moreover, the optimal points are determined by
local behavior, thus making it more tractable to find an
approximately optimal classifier.

Noisy response. We identify noisy response as a compelling
alternative to standard microfoundations for strategic clas-
sification. In this model, each agent best responds with
respect to 0 + &, where £ is an independent sample from
a zero mean noise distribution. This model is inspired by
smoothed analysis (Spielman and Teng, 2009) and encodes
imperfection in the population’s response to a decision rule
by perturbing the manipulation targets of individual agents.

Noisy response satisfies many desirable properties. First, it
satisfies aggregate smoothness, and thus leads to the robust
existence of stable points. Moreover, the model satisfies
the expenditure constraint, and thus encodes natural agent
responses which can be used to reason about metrics such
as social burden. When used to anticipate strategic feed-
back effects and compute optimal points, noisy response
leads to strictly less pessimistic acceptance thresholds than
those computed under standard microfoundations. In fact,
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we show via simulations that a larger variance of the noise
in the manipulation target leads to more conservative opti-
mal thresholds. Finally, the aggregate distribution induced
by noisy response can be estimated from individual experi-
ments alone, without ever deploying a classifier.

1.2. Related work

Existing work on strategic classification has mostly followed
standard microfoundations for modeling agent behavior in
response to a decision rule, e.g., (Dalvi et al., 2004; Briick-
ner and Scheffer, 2011; Hardt et al., 2016a; Khajehnejad
et al.; Tsirtsis and Gomez-Rodriguez, 2020) to name a few.
This includes works that focus on minimizing Stackelberg
regret (Dong et al., 2018; Chen et al., 2020), quantify the
price of transparency (Akyol et al., 2016), and investigate
the benefits of randomization in the decision rule (Braver-
man and Garg, 2020). Investigations of externalities such as
social cost (Milli et al., 2019; Hu et al., 2019) whether classi-
fiers incentivize improvement as opposed to gaming (Klein-
berg and Raghavan, 2019; Miller et al., 2020; Shavit et al.,
2020; Haghtalab et al., 2020), and practical considerations
for optimization (Levanon and Rosenfeld, 2021) have also
mostly built on standard microfoundations.

A handful of works have suggested potential limitations
of the standard strategic classification framework. Briick-
ner et al. (2012) recognized that the standard model leads
to very conservative Stackelberg solutions, and proposed
resorting to Nash equilibria as an alternative solution con-
cept. We instead advocate for altogether rethinking standard
microfoundations. Concurrent and independent work by
Ghalme et al. (2021) and Bechavod et al. (2021) relaxed
the perfect information assumption in the standard model
and studied strategic classification when the classifier is not
fully revealed to the agents. In this work, we argue that the
agents often do not perfectly respond to the classifier even
when the decision rule is fully transparent.

Related work in economics also investigates strategic re-
sponses to decision rules. This line of work, initiated by
Spence (1973), has investigated muddled information about
individuals from heterogeneous gaming behavior (Frankel
and Kartik, 2019), the role of commitment power of the
decision maker (Frankel and Kartik, 2020), the aggrega-
tion of multi-dimensional features (Ball, 2020), and the
performance of different training approaches (Hennessy and
Goodhart, 2020). A notable work by Bjorkegren et al. (2020)
investigates strategic behavior through a field experiment
in the micro-lending domain. An important distinction is
that these works tend to study regression, while we focus
on classification. These settings appear to be qualitatively
different in the context of strategic feedback effects; e.g. see
note in (Hennessy and Goodhart, 2020).

Our work is conceptually related to recent work in eco-

nomics that has recognized mismatches between the predic-
tions of standard models and empirical realities, for example
in macroeconomic policy (Stiglitz, 2018; Kaplan and Vi-
olante, 2018; Coibion et al., 2018) and in mechanism design
(Li, 2017). These works, and many others, have explored
incorporating richer behavioral and informational assump-
tions into the typical models used in economic settings.

1.3. Setup and basic notation

Let X C IR denote the feature space, and let Y = {0, 1} be
the space of binary outcomes. Each agent is associated to
a feature vector x € X and a binary outcome y € Y which
represents their true label. A feature, label pair (x,y) need
not uniquely describe an agent, and many agents may be as-
sociated to the same pair (x,y). The base distribution Dy
is a joint distribution over X x Y describing the population
prior to any strategic adaption. We assume that Dxy is con-
tinuous and has zero mass on the boundary of X. We focus
on binary classification where each classifier fy : X — {0,1}
is parameterized by 6 € IR?, and the decision-maker selects
classifier weights O from © C R? which is a compact, con-
vex set.! We adopt the notion of a distribution map D(6)
from (Perdomo et al., 2020) to describe the distribution over
X x Y induced by strategic adaptation of agents drawn from
the base distribution in response to the classifier fy.

2. Limitations of standard microfoundations

In the strategic classification literature, the typical agent
model is a rational agent with perfect information. The
core assumption is that agents have perfect knowledge of
the classifier and maximize their utility given the classifier
weights. The utility consists of two terms: a reward for
obtaining a positive classification and a cost of manipulating
features. The reward is denoted 7 > 0 and the manipulation
cost is represented by a function ¢ : X x X — R where
c(x, x’) reflects how much agents need to expend to change
their features from x to x’. A valid cost function satisfies a
natural monotonicity requirement as stated in Assumption 1.
Given a feature vector x and a classifier fy, agents solve the
following utility maximization problem:

argmax [y fo(x’) —c(x,x")]. (1)

x’'eX
We will refer to this model as standard microfoundations.

Assumption 1. A cost function ¢ : X x X — R is valid, if
it is continuous in both arguments, it holds that c(x, x’) = 0
for x = x’, and ¢ increases with distance? in the sense that
c(x, %) < c(x,x’) and ¢(X,x) < c(x’, x) for every X € X that

'We assume that for every 6 € ©, the set {x € X | fo(x)=1}is
closed, and the decision boundary is measure 0.

2We model a non-zero cost for all modifications to features,
regardless of whether they result in positive classification or not.
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lies on the line segment connecting the two points x, x” € X.

2.1. Discontinuities in the aggregate response

A striking property of distributions induced by standard mi-
crofoundations in response to binary classifiers is that they
are either trivial or discontinuous. The underlying cause
is that agents behaving according to standard microfounda-
tions either change their features exactly up to the decision
boundary, or they do not change their features at all.

Proposition 1. Given a base distribution Dxy, let D(0) be
the distribution induced by a classifier fy. Then, if D(0) is
continuous and D(0) = Dxy, there does not exist a valid
cost function ¢ such that D(0) is an aggregate of agents
following standard microfoundations.

In addition to the discontinuities implied by Proposition 1,
the aggregate response induced by standard microfounda-
tions faces additional degeneracies. Namely, any non-trivial
distribution arising from the standard model must have a
region of zero density below the decision boundary.

These properties are unnatural in many applications.

Example 1 (Bank lending decisions and credit scores). If
lending decisions are based on FICO scores, then under stan-
dard microfoundations, the distribution over credit scores
should exhibit a discontinuity at the threshold. However,
this is not what we observe empirically. In particular, previ-
ous work (Hardt et al., 2016b) studied a FICO dataset from
2003, where credit scores range from 300 to 850, and a
cutoff of 620 was commonly used for prime-rate loans. The
observed distribution over credit scores appears continuous
and is supported across the full range of scores.>

Example 2 (Yelp online ratings and rounding thresholds).
Restaurant ratings on Yelp are rounded to the nearest half
star, and the star rating of a restaurant influences restau-
rant customer flows. Strategic adaptation can arise from
restaurants leaving fake reviews. Under standard microfoun-
dations, the distribution of restaurant ratings would exhibit
discontinuities at the rounding thresholds. However, pre-
vious work (Anderson and Magruder, 2012) examined the
distribution of restaurant ratings, and showed that there is no
significant discontinuity in the density of restaurant ratings.
at the rounding thresholds (see Figure 4 in their work).

Similar observations apply to New York high school exit ex-
ams where students and teachers are rewarded when student
test scores meet designated cutoffs (Dee et al., 2019).4

3There could be many reasons why we do not observe discon-
tinuities, e.g. different lenders have different cutoffs, or features
beyond credit scores are used. In any case, the typical strategic
classification model does not describe this setting accurately.

4Interestingly, the distribution over test scores did appear dis-
continuous prior to 2012 as a result of teachers directly manipulat-

It is important to note that the degeneracies of standard
microfoundations arise from the fact that classification deci-
sions are discrete and based on a hard decision. Agents who
are not classified positively receive no reward: it does not
matter how close to the decision boundary the agent is. This
discontinuity in the utility does not arise in regression prob-
lems. However, in machine learning and statistical decision
theory, binary classification is ubiquitous, and degeneracies
that we have identified pertain to general settings where the
decisions are binary.

The reader might imagine that common variations and gen-
eralizations of standard microfoundations can mitigate these
issues. Unfortunately, the two variations of standard micro-
foundations that are typically considered—heterogeneous
cost functions (Hu et al., 2019), and approximate best re-
sponse (Miller et al., 2020)—result in similar degenera-
cies. Heterogeneity in the cost (or utility) function can only
change whether or not an agent decides to change their fea-
tures, but it does not change their target of manipulation. If
agents approximately best-respond, and thus move to fea-
tures x” that approximately maximize their utility, the model
no longer leads to point masses at the decision boundary, but
agents will never undershoot the decision boundary. This
means that any nontrivial aggregate distribution must have
a region of zero density below the decision boundary to
comply with standard microfoundations or these variants.

Agent behavior that is inconsistent with standard micro-
foundations and these variants has been observed in field
experiments.

Example 3 (Field Experiment (Bjorkegren et al., 2020)).
The authors deployed an app in Kenya that mimicked as-
pects of “digital credit” applications to empirically investi-
gate strategic behavior. Participants were rewarded if the
app guessed that they were a high-income earner. When the
participants were given access to the coefficients of the de-
cision rule, they tended to change their features in the right
direction, but exhibited a high variance in their responses—
see Table 5 in their work. Moreover, when participants were
given opaque access to the decision rule, agents often did
not even change their features in the right direction.

2.2. Brittleness under natural model misspecifications

We describe two scenarios where relying on standard micro-
foundations to model agent behavior leads to undesirable
properties under natural model misspecifications.

2.2.1. STABILITY AS A FRAGILE SOLUTION CONCEPT

Our first result demonstrates that the standard model does
not lead to robust insights about performative stability. In

ing student test scores. Following reforms to the grading procedure,
the test score distribution became continuous, demonstrating that
strategic adaptation by students does not result in discontinuities.
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particular, although performatively stable solutions are guar-
anteed to exist under standard microfoundations (see (Milli
et al., 2019)), stable points do not exist when any positive
fraction of randomly chosen individuals are non-strategic.

For our analysis, we consider a local relaxation of the notion
of performative stability that corresponds to fixed points of
repeated gradient descent (Perdomo et al., 2020). We say
Ops is locally stable if Opg is a local minimum or a stationary
point of the following optimization problem:

gleig E(x,p)~D(ops) L{y # fo(x)}. 2)
Local stability is closely related to the concept of a pure
strategy (local) Nash equilibrium in a simultaneous game
between the strategic agents and the decision maker who
responds to the observed distribution D(6).

To showcase that the existence of locally stable classi-
fiers under standard microfoundations crucially relies on
all agents following the modeling assumptions, we focus on
the following simple 1-dimensional setting.

Setup 1 (1-dimensional). Let X C IR and consider a thresh-
old functions fy(-) = 1{- > 0} with 0 € ® C R. Let p(x) be
the conditional probability over Dyy of the true label being
1 given features x. Suppose that p(x) is strictly increasing
in x and there is an O € Int(®) such that (6) = 0.5.

Proposition 2. Consider Setup 1. Suppose that a p fraction
of agents drawn from Dxy do not ever change their features,
and a 1 — p fraction of agents drawn independently from
Dxvy follow standard microfoundations with a valid cost
function c. Then, we have the following properties:

a) For p € {0,1}, locally stable points exist. (For p €
{0,1}, let 958 be the smallest locally stable point.)

b) Forp €(0,1), locally stable points do not exist.

¢) For p €(0,1), RRM will oscillate between 6[1)5 and a
threshold t(p) € (QII,S, 9?,5), where T(p) is decreasing
in p, approaching 61138 asp — 1 and 6195 asp — 0.

Proposition 2 implies that not only does the existence of lo-
cally stable points break down if a positive fraction p € (0,1)
of randomly chosen agents are non-strategic, but also re-
peated risk minimization oscillates between two extreme
points. The proof can be found in Appendix B.2. For illustra-
tion purposes, we have implemented a simple instantiation
of Setup 1, and we visualize the trajectories of RRM for
different values of p in Figure 1(a). The main insight is
that retraining methods start oscillating substantially even
when p is very close to 0 (only an € fraction of agents are
not following standard microfoundations). This sensitivity
of the trajectory to natural deviations from the modeling
assumptions suggests that standard microfoundations do not
constitute a reliable model to study algorithm dynamics.

2.2.2. NEGATIVE EXTERNALITIES AT OPTIMALITY

Our next result shows that standard microfoundations do
not constitute a good representative model of agent behavior
for investigating qualitative properties of optimal solutions.
We present a natural scenario where performatively optimal
classifiers computed under standard microfoundations lead
to the highest negative externalities within a broad class of
alternative models for agent responses.

Recall that a performatively optimal solution corresponds
to the best classifier for the decision maker from a global
perspective, but it is not necessarily stable under retraining.
These solutions are closely related to Stackelberg equilibria
in the game between the agents and the decision maker. For-
mally, a classifier Opg is performatively optimal (Perdomo
et al., 2020) if it minimizes the performative risk:

Opo(D) := argmingg E(xy)~po) L{y = fo(x)}.  (3)

The key challenge of computing performative optima is that
optimizing (3) requires the decision maker to anticipate the
population’s response D(0) to any classifier fy. A natural
approach to model this response is to build on microfoun-
dations and deduce properties of the distribution map from
individual agent behavior.

While the decision-maker is unlikely to have a fully spec-
ified model for agent behavior at hand, we outline a few
natural criteria that agent responses could reasonably sat-
isfy. To formalize these criteria, we again focus on the
1-dimensional setting.

Property 1 (Expenditure monotonicity). For every x € X,
any agent a with true features x must have manipulated
features R ,(x;0) in response to fg that satisfy:

a) c(x,R,(x;0)) <y forevery 6 € O.
b) fo(Ra(x:0)) =1 = for(Ra(x;6") =176’ <6.

Property 1 describes agents that a) do not expend more
on gaming than their utility from a positive outcome, and
b) do not have their outcome worsened if the threshold is
lowered. However, agents complying with Property 1 do not
necessarily behave according to standard microfoundations.
For example, Property 1 is satisfied by non-strategic agents
who do not ever change their features and by the imperfect
agents that we describe in Section 4.

We now show that within the class of microfoundations that
exhibit Property 1, the standard model leads to an extreme
acceptance threshold. The formal statement of our result
can be found in Appendix B.3.

Proposition 3 (Informal). Consider Setup 1. Let D be the
class of distribution maps D : © — A(X x Y) that can be
represented by a population of agents who all satisfy Prop-
erty 1. Then under mild assumptions, for every distribution
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Figure 1. Convergence of retraining algorithm in a 1d-setting for different values of p with € = 1072, The population consists of 105
individuals. Half of the individuals are sampled from x ~ A/(1,0.33) with true label 1 and the other half is sampled from x ~ N(0, 0.33)
with true label 0. Qgs and 9%)5 are defined as in Proposition 2 for standard microfoundations (and similarly for noisy response). The

parameter of the noisy responses (NR) in (b) is taken to be 02=0.1.

map D € D, it holds that
Opo(Dsy) = Opo(D)

where Dgy, is the distribution map induced by standard
microfoundations.

A problematic implication of Proposition 3 is that standard
microfoundations also maximize the negative externality
called social burden (Milli et al., 2019):

Burden(0) := ]E(x,y)epxy[min{c(x,X') | fo(x') =1}y =1].

Social burden quantifies the average cost that a positively la-
beled agent has to expend in order to be positively classified
by fp. While previous work introduced and studied social
burden within standard microfoundations, we use it to study
implications of different modeling assumptions on agent
behavior. In particular, the following corollary demonstrates
that standard microfoundations lead to worst possible social
burden across all microfoundations that satisfy Property 1.

Corollary 4. Under the same assumptions as Proposition 3,
for every distribution map D € 9, it holds that

Burden(6po(Dsyy)) = Burden(Opo(D)).

where Dgyy is the distribution map induced by standard
microfoundations.

This result has implications for the likely situation where
standard microfoundations do not exactly describe agent
behavior. In particular, relative to the performative optimal
point of the true agent responses, the solutions computed
using standard microfoundations would not only experience
suboptimal performative risk but also would cause unnec-
essarily high social burden. Thus, under natural modeling
misspecification, it is hard for the decision-maker to justify
using standard microfoundations. Implicit in our argument
is the following moral stance: given a set of criteria for
what defines a plausible model for microfoundations, the
decision-maker should not select the one that maximizes
negative externalities.

3. Alternative microfoundations

In this section, we depart from this classical approach and
systematically search for models that are more appropriate
for binary classification. We define the space of alternatives
and collect a set of useful properties that we show are de-
sirable for microfoundations to satisfy. These properties
serve as a “compass” to guide our search for an alternative
microfoundations for strategic classification in Section 4.

3.1. Defining the space of alternatives

The principle behind microfoundations for strategic classi-
fication is to equip the distribution map with structure by
viewing the distribution induced by a decision rule as an
aggregate of the responses of individual agents. We con-
sider a space of alternative microfoundations that capture
agent responses in full generality. We introduce a family
of response types 7 that represents the space of all pos-
sible ways that agents can react to the classifier fg. The
response type fully determines agent behavior through the
agent response function R; : X x ® — X. In particular, an
agent with true features x and response type t changes their
features to x” = R;(x, 0) when the classifier fy is deployed.

Remark. Non-strategic agents and the standard microfoun-
dations each correspond to one response type. In our frame-
work a population of agents could exhibit a mixture of dif-
ferent types, or even be described by a continuum of types.

We formalize microfoundations through a mapping M :
XxY — 7 from agents to response types. We denote the set
of possible mappings M by the collection M that consists
of all® possible randomized functions X x Y — 7. Concep-
tually, a mapping M € M sets up the rules of agent behavior.
The response types directly specify agent responses, rather

SThese mappings are subject to mild measurability constraints
that we describe in Appendix A.2.
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than specifying an underlying behavioral mechanism—this
is an aspect that distinguishes our framework from the ap-
proach to microfoundations in economics. An advantage
is that responses can be observed, whereas the behavioral
mechanism is harder to infer.

Importantly, the mapping M coupled with the base dis-
tribution Dyy fully specifies the population’s response to
a classifier fy. In particular, for each 6 € ©, the aggre-
gate response D(6; M) is the distribution over (R;(x,6),v)
where (x,y) ~ Dxy and t = M(x,y). We use the notation
D(;M): 0 — A(X x Y) to denote the aggregate response
map induced by M. The mapping M thus provides suffi-
cient information to reason about the performative risk; in
addition, it also provides sufficiently fine-grained informa-
tion about individuals to reason about metrics such as social
burden.

Naturally, with such a flexible model, any distribution map
can be microfounded. We provide a formal proof of this ex-
istence result in Appendix C.1. In the following subsections,
we focus on narrowing down the space of candidate models
and describe two properties that we believe microfounda-
tions should satisfy.

3.2. Aggregate smoothness

The first property we describe pertains to the induced dis-
tribution and its interactions with the function class. This
aggregate-level property rules out unnatural discontinuities
in the distribution map. We call this property aggregate
smoothness, and formalize it in terms of the decoupled per-
formative risk (Perdomo et al., 2020).

Property 2 (Aggregate smoothness). Define the decou-
pled performative risk induced by M to be DPR;(6,0’) :=
E(x,y)~po;m) 1y # for(x)}]. For a given base distribution
Dxy, a mapping M satisfies aggregate smoothness if the
derivative of the decoupled performative risk with respect
to 0’ exists and is continuous in 6 and 6’ across all of ©.

Intuitively, the existence and the continuity of the partial
derivative of DPR, (6, 8’) with respect to 6 guarantee that®

a) each distribution D(0; M) is sufficiently continuous
(and has no point mass at the decision boundary),

b) D(6; M) changes continuously in 6.

We believe that these two continuity properties are natural
and likely to capture practical settings, given the empirical
evidence in Examples 1-3. A consequence of aggregate
smoothness is that it is sufficient to guarantee the existence
of locally stable points.

Theorem 5. Given a base distribution Dxy and function
OThis correspondence between aggregate smoothness, and

continuity of the distribution map can be made explicit for 1-
dimensional features: see Appendix C.2.

class ©, for any mapping M that satisfies aggregate smooth-
ness, there exists a locally stable point.

In fact, Theorem 5 implies that stable points exist under
deviations from the model, as long as aggregate smooth-
ness is preserved. Our next result shows that under weak
assumptions on the base distribution this is the case for any
mixture with non-strategic agents. For ease of notation,
we formalize such a mixture through the operator ®,(M),
where for p € [0,1], we let ®,(M(x,y)) be equal to tns
with probability p and equal to M(x, ) otherwise.

Proposition 6. Suppose that the non-performative risk
E(xp)enyy Ufo(x) = v} is continuously differentiable for
all 6 € O. Then, for any p € [0,1], aggregate smoothness
of a mapping M is preserved under the operator ®,(M) .

Proposition 6, together with Theorem 5, implies the ro-
bust existence of locally stable points under mixtures with
non-strategic agents, for any microfoundations model that
satisfies aggregate smoothness.

Conceptually, our investigations in this section have been
inspired by Perdomo et al. (2020) that demonstrated that reg-
ularity assumptions on the aggregate response can guarantee
the existence of stable points for smooth, strongly convex
loss functions. However, our results differ since we instead
focus on the 0-1 loss function.

3.3. Constraint on manipulation expenditure

While aggregate smoothness focused on the population-level
properties of the induced distribution, a model for micro-
foundations must also be descriptive of realistic agent-level
responses in order to yield useful qualitative insights about
metrics such as social burden or accuracy on subgroups. A
minimal assumption is that an agent never expends more on
manipulation than the utility of a positive outcome.

Property 3 (Expenditure constraint). Given a function class
© and a cost function ¢, a mapping M € M is expenditure-
constrained if c(x,R:(x,0)) < y for every 6 € © and t €
Image(M).

This constraint is implicitly encoded in standard microfoun-
dations and many of its variants. We have previously en-
countered the expenditure constraint in Section 2.2, where
we showed that if ¢ is a valid cost function, then this prop-
erty, together with a basic monotonicity requirement on
feature manipulations, defines a set of microfoundations
models among which the standard model achieves maximal
social burden at optimality. In Section 4 we will focus on
one model within this set which results in a strictly lower
social burden than the standard model.

Remark (Reducing the complexity of estimating the distri-
bution map). An additional advantage of Property 3 is that
it constrains each agent’s range of manipulations. This can
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significantly reduce the complexity of estimating the distri-
bution map for a decision-maker who wants to compute a
strategy robust classifier offline. While Zhang et al. (2021)
directly specify the set of feature changes that an agent may
make, we find that the expenditure constraint alone can
reduce the complexity of estimating the distribution map.
Namely, the expenditure constraint narrows down the set
of agents who can cross the decision boundary, and so the
decision-maker only needs to learn a small portion of the
distribution map. We defer the formal result to Appendix E.

4. Microfoundations from imperfect agents

Using the properties established in the previous section as
a guide, we propose an alternate model for microfounda-
tions that naturally allows agents to undershoot or overshoot
the decision boundary, while complying with aggregate
smoothness and expenditure monotonicity. Furthermore,
we show that this model, called noisy response, leads to
strictly smaller social burden than the standard model while
retaining analytical tractablility.

4.1. Noisy response

Noisy response captures the idea of an imperfect agent who
does not perfectly best-respond to the classifier weights.
This imperfection can arise from many different sources—
including interpretability issues, imperfect control over ma-
nipulations, or opaque access to the classifier. Inspired by
smoothed analysis (Spielman and Teng, 2009), we do not
directly specify the source of imperfection but instead cap-
ture imperfection in an agnostic manner, by adding small
random perturbations to the classifier weights targeted by
the agents. Since smoothed analysis has been successful in
explaining convergence properties of algorithms in practical
(instead of worst case) situations, we similarly hope to better
capture empirically observed strategic phenomena.

We define the relevant set of types Tyoisy € 7 so that each
type t € Thoisy s associated with noise 17; € R™. An agent
of type t perceives O as O + 1, and responds to the classifier
fo as follows:

Ry(x,0) := argmax [y - fou, (x) - c(x,x)], 4

x'eX’

where c denotes a valid cost function, > 0 denotes the
utility of a positive outcome, and X’ C R is a compact,
convex set containing X .7 For each (x,v) € XxY, we model
the distribution over noise across all agents with feature,
label pair (x,y) as a multivariate Gaussian. To formalize
this, we define a randomized mapping M, : X xY — T
as follows. For each (x, ), the random variable M, (x,p)

7We assume that c is defined on all of X’ x X’, and c(x,x’) > y
for all x € X and all x’ that are on the boundary of X’.

is defined so that if t ~ M;(x, ), then 1, is distributed as
N (0,52I). This model results in the perceived values of 6
across all agents with a given feature, label pair following
a Gaussian distribution centered at 6. The noise level o
reflects the degree of imperfection in the population.®

Conceptually, our model of noisy response bears resem-
blance to models of incomplete information (Harsanyi,
1968) that are standard in game theory (but that have not
been traditionally considered in the strategic classification
literature). However, a crucial difference is that we advo-
cate for modeling agents actions as imperfect even if the
classifier is fully transparent, because we believe that imper-
fection can also arise from other sources. This is supported
by the empirical study from Example 3 where agents act
imperfectly even when the classifier weights are revealed.

4.2. Aggregate-level properties of noisy response

Intuitively, the noise in the manipulation target of noisy
response smooths out the discontinuities of standard mi-
crofoundations, eliminating the point mass at the decision
boundary and region of zero density below the boundary.
We show this explicitly in a 1-dimensional setting.

Proposition 7. Let X C R, and let ©® C R be a model class
of threshold functions. For any o € (0, 00), the mapping M,
satisfies aggregate smoothness.

Remark. Proposition 7 implies that noisy response inher-
its the robust existence of stable points from Theorem 5.
Furthermore, Figure 1(b) illustrates that noisy response miti-
gates the oscillations of repeated retraining that we observed
for standard microfoundations.

To visualize the aggregate-level properties of noisy response
and compare them to standard microfoundations we depict
the respective density functions for a 1-dimensional Gaus-
sian base distribution in Figure 2(a). The distribution D(6)
can be bimodal, since agents closer to the threshold O are
more likely to change their features. The shape of the re-
sponse distribution also changes with ¢ as illustrated in
Figure 2(b). As 0 — 0, the aggregate response of a popu-
lation of noisy response agents approaches that of standard
microfoundations, so noisy response can approximate the ag-
gregate response of standard microfoundations to arbitrary
accuracy. Finally, the distribution map of noisy response
changes continuously with 0, as visualized in Figure 2(c).

In fact, the distribution map induced by noisy response
is Lipschitz in total-variation distance for any valid cost
function. For smooth and strongly convex loss functions,
this implies convergence of repeated retraining (Perdomo
et al., 2020; Mendler-Diinner et al., 2020).

8While we focus on Gaussian noise in the perception function
throughout this work, the outlined benefits of noisy response also
apply to other parameterized noise distributions.
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AD(6) AD(6)

v

6-A 6 6-A

(a) D(O) of NR vs. SM

(b) D(0) of NR for different o
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Figure 2. Probability density of the aggregate response D(6) in a ld-setting, where the base distribution Dy is a Gaussian with
x ~ N(0,0.5). We illustrate (a) D(0) for a population of agents that follow noisy response (NR) compared to standard microfoundations
(SM), (b) how D(0) of NR changes for different 6, (c) variations in D(6) of NR for different values of o.

4.3. Trade-off between imperfection and social burden

Apart from satisfying desirable aggregate-level properties,
noisy response also satisfies the expenditure monotonicity
requirement in Property 1. By Corollary 4, this implies
an upper bound on the induced social burden at optimality
for Setup 1. In the following we present a stronger result
and show that in certain cases the social burden of noisy
response is strictly lower.

Corollary 8. Consider Setup 1. Let Mgy be the mapping
associated with standard microfoundations, let o € (0, 0),
and let the cost function be of the form c(x1,x,) = |x; — x5|.
Suppose that [Ogy,0¢; + 1] € © N X, where Oy is defined
so that u(6sy) = 0.5. Then, it holds that:

Burden(BPO(MU)) < Burden(QPO(MSM)).

In fact, the social burden for fuzzy perception can be well
below the social burden of standard microfoundations. To
demonstrate this, we visualize the social burden across a
variety of different parameters of o and p in Figure 3. The
dashed lines indicate the reference values for standard mi-
crofoundations (SM) and for a population of non-strategic
agents (NS). We observe that the social burden decreases
with the fraction p of non-strategic agents in the population.
Furthermore, if every agent follows noisy response (p = 0),
the social burden is decreasing in o. Thus, as the degree
of imperfection in agents responses increases, the negative
externalities of noisy response are increasingly smaller com-
pared to those of the standard microfoundations.

Remark (Additional property of noisy response). Since
noisy response defines a parameterized model, the complex
task of learning agent behavior is reduced to a parameter
estimation problem for ¢. This noise parameter can often be
estimated via individual experiments, i.e., gathering infor-
mation about individuals without deploying a classifier. (We
refer to (Bjorkegren et al., 2020) for a related field experi-
ment.) Estimating o enables the decision-maker to estimate
the distribution map, and thus estimate performative optima.

Burden-SMf--------mmmmm oo oo oo

Burden-NSt-----=---ocmomom oo oo
0.1 0.2 0.3 0.4 0.6
Noise parameter o

Figure 3. Social burden of optimal points in a 1d-setting for dif-
ferent values of o and p (fraction of non-strategic agents). The
population is sampled from a Gaussian mixture as in Figure 1.

5. Discussion

Traditional approaches for decision making in strategic en-
vironments are either individual-level like strategic classifi-
cation, or population-level like performative prediction. In
this work, we combine these two perspectives. We take ad-
vantage of microfoundations to endow the distribution map
with structure, but we also keep in mind the aggregate-level
properties they imply. Taking this holistic view enabled us
to identify degeneracies with standard microfoundations in
the context of binary classification. Furthermore, it inspired
noisy response as a promising alternative microfoundations.
While we have focused on strategic classification in this
work, we believe that synthesizing the individual-level and
aggregate-level perspectives can lead to interesting insights
for the intersection of economics and learning more broadly.
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