
Instance-Optimal Compressed Sensing via Posterior Sampling

A. Upper Bound Proofs
A.1. Proof of Lemma 3.1

Lemma 3.1. For c ∈ [0, 1], let H := (1 − c)H0 + cH1 be a mixture of two absolutely continuous distributions H0, H1

admitting densities h0, h1. Let y be a sample from the distribution H , such that y|z∗ ∼ Hz∗ where z∗ ∼ Bernoulli(c).

Define ĉy = ch1(y)
(1−c)h0(y)+ch1(y) , and let ẑ|y ∼ Bernoulli(ĉy) be the posterior sampling of z∗ given y. Then we have

Pr
z∗,y,ẑ

[z∗ = 0, ẑ = 1] ≤ 1− TV (H0, H1).

Proof. We have

Pr
z∗,y,ẑ

[z∗ = 0, ẑ = 1] = Pr[z∗ = 0] E
y∼h0,ẑ|y

[1{ẑ = 1}], (7)

= (1− c)
∫
h0(y) Pr[ẑ = 1|y]dy. (8)

By definition, we have

Pr[ẑ = 1|y] =
ch1(y)

(1− c)h0(y) + ch1(y)
.

Substituting, we have

Pr
z∗,y,ẑ

[z∗ = 0, ẑ = 1] =

∫
(1− c)h0(y)ch1(y)

(1− c)h0(y) + ch1(y)
dy

≤
∫

(1− c)h0(y) · ch1(y)

max{(1− c)h0(y), ch1(y)}
dy

=

∫
min{(1− c)h0(y), ch1(y)}dy

≤
∫

min{h0(y), h1(y)}dy

= (1− TV (H0, H1)).

A.2. Proof of Lemma 3.2

Lemma 3.2. Let y be generated from x∗ by a Gaussian measurement process with noise level σ. For a fixed x̃ ∈ Rn, and
parameters η > 0, c ≥ 4e2, let Pout be a distribution supported on the set

Sx̃,out := {x ∈ Rn : ‖x− x̃‖ ≥ c(η + σ)}.

Let Px̃ be a distribution which is supported within an η−radius ball centered at x̃.

For a fixed A, let Hx̃ denote the distribution of y when x∗ ∼ Px̃. Let Hout denote the corresponding distribution of y when
x∗ ∼ Pout. Then we have:

E
A

[TV (Hx̃, Hout)] ≥ 1− 4e−
m
2 log( c

4e2
).

Proof. In order to prove the lemma, it suffices to show that on the set

B := {y ∈ Rm : ‖y −Ax̃‖ ≤
√
c (η + σ)},
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we have

E
A

[Hout(B)] ≤ 2e−
m
2 log( c

4e2
), (9)

E
A

[Hx̃(B)] ≥ 1− 2e−
m
2 log( c

4e2
). (10)

Using the above bounds, we can conclude that

E
A

[TV (Hout, Hx̃)] ≥ E
A

[Hx̃(B)]− E
A

[Hout(B)] ≥ 1− 4e−
m
2 log( c

4e2
).

First we prove Equation (9).

Consider the joint distribution of y,A. We have

E
A

[Hout(B)] = E
A

[
E

x∼Pout

[
N
(
Ax,

σ2

m
Im

)
(B)

]]
, (11)

= E
x∼Pout

[
E
A

[
N (Ax, σ2/m)(B)

]]
, (12)

where the first line follows from the definition of Hout and the fact that x,A are independent. The last line follows by
switching the order of integrating A, x. Here N (Ax, σ2/m)(B) refers to the mass N (Ax, σ2/m) places on B.

Consider a fixed x ∈ Sx̃,out, that is, x lies in the support of Pout and satisfies ‖x− x̃‖ ≥ c(η + σ
√
m). We split the above

expectation into two conditions over the matrix A.

• Case 1: ‖Ax−Ax̃‖ ≤ 2
√
c (η + σ). Since A is i.i.d. Gaussian, A (x− x̃) is distributed asN

(
0, ‖x−x̃‖

2

m Im

)
. This gives

Pr
A

[
‖Ax−Ax̃‖ < 2

√
c (η + σ)

]
≤ Pr

A

[
‖Ax−Ax̃‖ ≤ 2√

c
‖x− x̃‖

]
,

≤ 2√
mπ

(
2e√
c

)m
,

=
2√
mπ

e−
m
2 log( c

4e2
),

≤ e−
m
2 log( c

4e2
) if m > 1.

This implies

E
x∼Pout

[
E
A

[
N (Ax, σ2/m)(B)1‖Ax−Ax̃‖<2

√
c(η+σ)

]]
≤ E
x∼Pout

[
E
A

[
1‖Ax−Ax̃‖<2

√
c(η+σ)

]]
,

= E
x∼Pout

[
Pr
A

[
‖Ax−Ax̃‖ ≤ 2

√
c (η + σ)

]]
,

≤ e−
m
2 log( c

4e2
).

• Case 2: ‖Ax−Ax̃‖ > 2
√
c (η + σ).

Recall the definition of B := {y ∈ Rm : ‖y −Ax̃‖ ≤
√
c (η + σ)}. For any y ∈ B, x in the support of Pout and for A

such that ‖Ax−Ax̃‖ > 2
√
c (η + σ), we have

‖y −Ax‖ ≥ ‖Ax−Ax̃‖ − ‖y −Ax̃‖ ≥ 2
√
c (η + σ)−

√
c (η + σ) =

√
c (η + σ) .

For each x in the support of Pout, define the set Bx := {y ∈ Rm : ‖y −Ax‖ ≥
√
c (η + σ)} . The above inequality gives

B ⊆ Bx for each x in the support of Pout. This gives

N (Ax, σ2)(B) ≤ N (Ax, σ2)(Bx) ≤ e−2(
√
c−1)

2
m ≤ e−mc2 .

where the last inequality follows by the definition of Bx and Gaussian concentration of N (Ax, σ2) on the set Bx, and
since 2 (

√
c− 1)

2
> c

2 if c ≥ 4.
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Substituting the inequalities from Case 1 and Case 2 in Eqn (12), we have

E
A

[Hout(B)] = E
x∼Pout

[
E
A

[
N (Ax, σ2/m)(B)

]]
,

≤ e−
m
2 log( c

4e2
) + e−

cm
2 ,

≤ 2e−
m
2 log( c

4e2
) if c ≥ 4e2.

This proves Eqn (9).

A similar proof can be used to show that

E
A

[Hx̃(Bc)] ≤ 2e−
m
2 log( c

4e2
).

This proves Eqn (10).

Putting the two above inequalities together, we have

E
A
TV (Hout, Hx̃) ≥ E

A
[Hx̃(B)]− E

A
[Hout(B)] ≥ 1− 4e−

m
2 log( c

4e2
).

This concludes the proof.

A.3. Proof of Lemma A.1

Lemma A.1. Let R,P be arbitrary distributions on Rn. Let p ≥ 1 and η, ρ, δ > 0, be parameters.

IfWp(R,P ) ≤ ρ and min{log Covη,δ(P ), log Covη,δ(R)} ≤ k, then there exist distributions R′, R′′, P ′, P ′′, and a finite
discrete distirbution Q with | supp(Q)| ≤ ek satisfying:

1. min {W∞(P ′, Q),W∞(R′, Q)} ≤ η,

2. W∞(R′, P ′) ≤ ρ
δ1/p

,

3. P = (1− 2δ)P ′ + (2δ)P ′′ and R = (1− 2δ)R′ + (2δ)R′′

Proof. Since the statement of the lemma is symmetric with respect to P and R, WLOG let log Covη,δ(P ) ≤ k. Then there
is an S ⊂ Rn such that |S| ≤ ek and

Pr
x∼P

[x ∈ ∪u∈SB(u, η)] = 1− cP ≥ 1− δ,

We define the function f : Rn → R+ as

f(x) =

{
1

|{u∈S|x∈B(u,η)}| if ∃u ∈ S s.t. x ∈ B(u, η),

0 otherwise.

By construction, f is a piecewise constant function that is inversely proportional to the number of η−radius balls centered
around points in S cover a point x.

For each u ∈ S, we define the measure Q′′ as

Q′′(u) :=

∫
B(u,η)

f dP.

Observe that ∑
u∈S

Q′′(u) =
∑
u∈S

∫
B(u,η)

fdP,
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=

∫
∪u∈SB(u,η)

dP = 1− cP

Notice that Q′′ is not a probability distribution, since it only has mass 1− cP . However we can create a distribution Q′ from
Q′′ by putting an additional cP mass on some arbitrary point in Rn (say, 0). By construction, there exists a coupling Π of P
and Q′ where the coupling distributes the mass at each point in Rn to points η close to it in S, such that

cP = Pr
(x1,x2)∼Π

[‖x1 − x2‖ ≥ η] ≤ δ. (13)

Additionally, since Wp(R,P ) ≤ ρ, there exists a coupling Γ such that.

cR = Pr
(x1,x2)∼Γ

[
‖x1 − x2‖ ≥

ρ

δ1/p

]
≤ E [‖x1 − x2‖p]

ρp

δ

≤ δ. (14)

where cP is defined by the first equality. We can hence define a couple between P,Q′, R whose distribution is given by the
following – for any borel measurable sets B1, B2, B3 we have Ω(B1, B2, B3) = P (B1)Π(B2 | B1)Γ(B3 | B1). To verify
that this is indeed a coupling of the kind we want, we observe that the marginals of Ω are P,Q and R respectively.

1. Ω(B1,Rn,Rn) = P (B1)Π(Rn | B1)Γ(Rn | B1) = P (B1).

2. Ω(Rn, B2,Rn) = P (Rn)Π(B2 | Rn)Γ(Rn | Rn) = 1 · Π(B2,Rn)
P (Rn) · 1 = Q′(B2).

3. Ω(Rn,Rn, B3) = P (Rn)Π(Rn | Rn)Γ(B3 | Rn) = R(B3).

To define P ′, Q,R′, we look at Ω conditioned on the event E := {(x, y, z) | ‖x − z‖ ≤ ρ/δ1/p and ‖x − y‖ ≤ η}. To
estimate the probability of E, we define E1 := {(x, y, z) | z ∈ Rn and ‖x − y‖ > η} and E2 := {(x, y, z) | ‖x − z‖ >
ρ/δ1/p and y ∈ Rn}. Then, E = E1 ∨ E2.

We now show that Ω(E1) ≤ δ. Let (E1)I denote E1 restricted to the coordinates in I .

Ω(E1) := P ((E1)1)Π((E1)1,2 | (E1)1)Γ((E1)1,3 | (E1)1) ≤ Π((E1)1,2) ≤ δ,

where the first inequality is because Γ((E1)1,3 | (E1)1) ≤ 1 and Π((E1)1,2 | (E1)1) = Π((E1)1,2)/P ((E1)1) and the
final inequaity follows from equation (13). The bound for E2 follows similarly. A union bound shows that Ω(E) ≥ 1− 2δ.
We can restrict the event E further to have mass 1− 2δ.

We look at the marginals of the conditional couple Ω(· | E) to get distributions P ′, Q,R′ as follows. We define P ′(·) :=
Ω(·,Rn,Rn | E), Q(·) := Ω(Rn, ·,Rn | E) and R′(·) := Ω(Rn,Rn, · | E). P ′′ and R′′ are defined similarly via
conditioning on E. Hence, P (·) = Ω(·,Rn,Rn) = Ω(E)Ω(·,Rn,Rn | E) + Ω(E)Ω(·,Rn,Rn | E) = (1 − 2δ)P ′(·) +
(2δ)P ′′(·). The statement for R follows similarly.

This finally gives distributions P ′, R′, Q, such that:

1. W∞(P ′, Q) ≤ η

2. W∞(R′, P ′) ≤ ρ/δ1/p

3. P = (1− 2δ)P ′ + (2δ)P ′′ and R = (1− 2δ)R′ + (2δ)R′′.

The first two statements follow because of the event we condition over.

Note that this restriction does not change the fact that supp(Q) < ek, and hence we have our result.
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A.4. Proof of Lemma 3.3

Lemma 3.3. Let R,P, denote arbitrary distributions over Rn such thatW∞(R,P ) ≤ ε.

Let x∗ ∼ R and z∗ ∼ P and let y and u be generated from x∗ and z∗ via a Gaussian measurement process with m
measurements and noise level σ. Let x̂ ∼ P (·|y,A) and ẑ ∼ P (·|u,A). For any d > 0, we have

Pr
x∗,A,ξ,x̂

[‖x∗ − x̂‖ ≥ d+ ε] ≤

e−Ω(m) + e(
4ε(ε+2σ)m

2σ2
) Pr
z∗,A,ξ,ẑ

[‖z∗ − ẑ‖ ≥ d] .

Proof. Let B1 denote the event

B1 = {‖x∗ − x̂‖ ≥ d+ ε} .

Similarly, let B2 denote the event

B2 = {‖z∗ − x̂‖ ≥ d} .

We have

Pr
x∗∼R,A,ξ,x̂∼P (·|A,y)

[B1] = E
x∗∼R

E
A

[
E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B1

]

]]
.

We can write the integral over R as an integral over the coupling Π between R,P . This gives

Pr
x∗,A,ξ,x̂∼P (·|A,y)

[B1] = E
x∗,z∗

E
A

[
E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B1

]

]]
.

Since x∗, z∗ are coupled and W∞(R,P ) ≤ ε, we have ‖x∗ − z∗‖ ≤ ε almost surely. This gives B1 ⊆ B2 if x∗, z∗ are
distributed according to Π. Hence,

Pr
x∗,A,ξ,x̂∼P (·|A,y)

[B1] ≤ E
x∗,z∗

E
A

[
E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B2

]

]]
.

We can split the above integral into two parts: one where the matrix A satsifies ‖Ax∗ −Az∗‖ ≤ 2ε, and another case where
‖Ax∗ −Az∗‖ > 2ε. This gives

Pr
x∗,A,ξ,x̂∼P (·|A,y)

[B1] ≤ E
x∗,z∗

E
A

[
1‖Ax∗−Az∗‖>2ε E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B2 ]

]]
(∗) (15)

+ E
x∗,z∗

E
A

[
1‖Ax∗−Az∗‖≤2ε E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B2

]

]]
.(∗∗) (16)

Consider the term(∗) in line (15). We have

E
x∗,z∗

E
A

[
1‖Ax∗−Az∗‖>2ε E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B2 ]

]]
≤ E
x∗,z∗

E
A

[
1‖Ax∗−Az∗‖>2ε

]
, (17)

≤ E
x∗,z∗

[
e−Ω(m)

]
≤ e−Ω(m), (18)

where the last inequality follows from the Johnson-Lindenstrauss lemma for a fixed x∗, z∗, and hence is true on average
over x∗, z∗ drawn independent of A.
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Now consider the term (∗∗) in line (16). Notice that since the noise in the measurements is Gaussian, we have

y|x∗, A ∼ N (Ax∗, σ2/m).

We break the integral over y in (∗∗) into two cases:

1. Case 1: ‖y − Ax∗‖ > 2σ. Since p(y|A, x∗) is distributed as N
(
Ax∗, σ

2

m Im

)
, by standard Gaussian concentration,

we have ∫
y:‖y−Ax∗‖>2σ

p(y|A, x∗)dy ≤ e−Ω(m).

2. Case 2: ‖y −Ax∗‖ ≤ 2σ. This gives

‖Ax∗ − y‖2 = ‖Ax∗ − y‖2 − ‖y −Az∗‖2 + ‖y −Az∗‖2,
= ‖Ax∗ − y‖2 − ‖y −Ax∗ +Ax∗ −Az∗‖2 + ‖y −Az∗‖2,
= −‖Ax∗ −Az∗‖2 − 2〈y −Ax∗, Ax∗ −Az∗〉+ ‖y −Az∗‖2.

Observe that in (∗∗), we have

‖Ax∗ −Az∗‖ ≤ 2ε⇒ ‖Ax∗ −Az∗‖2 ≤ 4ε2.

By the Cauchy-Schwartz inequality and the assumption that ‖y −Ax∗‖ ≤ 2σ, we have

2〈y −Ax∗, Ax∗ −Az∗〉 ≤ 8σε.

Substituting the above two inequalities, we have

‖Ax∗ − y‖2 ≥ −4ε2 − 8σε+ ‖y −Az∗‖2, (19)

⇒ exp

(
−‖Ax

∗ − y‖2

2σ2/m

)
≤ exp

(
4ε (ε+ 2σ)m

2σ2

)
exp

(
−‖Az

∗ − y‖2

2σ2/m

)
, (20)

(21)

Observe that the LHS has the density of measurements from x∗, while the RHS has the density of measurements from
z∗ with an exponential scaling. From the above inequality, we can replace the expectation over y|A, x∗ in (∗∗) with
u|A, z∗ with an exponential factor.

Similarly, since posterior sampling now uses u in place of y, we can replace x̂ in (∗∗) with ẑ.

Combining Case 1 and 2 gives

(∗∗) ≤ e−Ω(m) + e(
4ε(ε+2σ)m

2σ2
) E
x∗,z∗

E
A

[
E

u|A,z∗

[
E

ẑ∼P (·|u,A)
[1B2 ]

]]
,

= e−Ω(m) + e(
4ε(ε+2σ)m

2σ2
) E
z∗∼P

E
A

[
E

u|A,z∗

[
E

ẑ∼P (·|u,A)
[1B2

]

]]
.

From the above inequality and eqn. (18), we have

Pr
x∗∼R,ξ,A,x̂∼P (·|A,y)

[‖x∗ − x̂‖ ≥ d+ ε] ≤ e−Ω(m) + e(
4ε(ε+2σ)m

2σ2
) Pr
z∗∼P,ξ,A,ẑ∼P (·|u,A)

[‖z∗ − ẑ‖ ≥ d] .
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A.5. Proof of Theorem 3.4

Theorem 3.4. Let δ ∈ [0, 1/4), p ≥ 1, and ε, η > 0 be parameters. Let R,P be arbitrary distributions over Rn satisfying
Wp(R,P ) ≤ ε.

Let x∗ ∼ R and suppose y is generated by a Gaussian measurement process from x∗ with noise level σ & ε/δ1/p and
m ≥ O(min(log Covη,δ(R), log Covη,δ(P ))) measurements. Given y and the fixed matrix A, let x̂ output of posterior
sampling with respect to P .

Then there exists a universal constant c > 0 such that with probability at least 1− e−Ω(m) over A, ξ,

Pr
x∗∼R,x̂∼P (·|y)

[‖x∗ − x̂‖ ≥ cη + cσ] ≤ 2δ + 2e−Ω(m).

Proof. We know from Lemma A.1 that there exist R′, P ′, R′′, P ′′ and a finite distribution Q supported on the set S such
that

1. W∞(R′, P ′) ≤ ε
δ1/p

,

2. min{W∞(P ′, Q),W∞(R′, Q)} ≤ η,

3. R = (1− 2δ)R′ + 2δR′′ and P = (1− 2δ)P ′ + 2δP ′′,

4. |S| ≤ ek.

SupposeW∞(P ′, Q) ≤ η. If not, thenW∞(R′, Q) ≤ η, and by (1), we see thatW∞(P ′, Q) ≤ η + ε
δ1/p

, and we will use
this in the proof instead. This gives us

Pr
x∗∼R,x̂∼P (·|y)

[‖x∗ − x̂‖ ≥ (c+ 1)η + (c+ 1)σ] ≤ Pr
x∗∼R,x̂∼P (·|y)

[
‖x∗ − x̂‖ ≥ (c+ 1)η + cσ + (ε/δ1/p)

]
≤ 2δ + (1− 2δ) Pr

x∗∼R′,x̂∼P (·|y)

[
‖x∗ − x̂‖ ≥ (c+ 1)η + cσ + (ε/δ1/p)

]
,

(22)

where the first line follows since σ ≥ ε/δ
1
p , and the second line follows by decomposing R = (1− 2δ)R′ + 2δR′′.

We now bound the second term on the right hand side of the above equation. For this term, consider the joint distribution
over x∗, A, ξ, x̂. By Lemma 3.3, we can replace x∗ ∼ R′ with z∗ ∼ P ′, replace y = Ax∗ + ξ with u = Az∗ + ξ, and
replace x̂ ∼ P (·|A, y) with ẑ ∼ P (·|A, u) to get the following bound

Pr
x∗∼R′,A,ξ,x̂∼P (·|A,y)

[
‖x∗ − x̂‖ ≥ (c+ 1) η + cσ + (ε/δ1/p)

]
≤

e−Ω(m) + e

(
2(ε/δ1/p)((ε/δ1/p)+2σ)m

σ2

)
Pr

z∗∼P ′,A,ξ,ẑ∼P (·|u,A)
[‖z∗ − ẑ‖ ≥ (c+ 1)η + cσ] . (23)

We now bound the second term in the right hand side of the above inequality. Let Γ denote an optimalW∞−coupling
between P ′ and Q.

For each z̃ ∈ S, the conditional coupling can be defined as

Γ(·|z̃) =
Γ(·, z̃)
Q(z̃)

.

By theW∞ condition, each Γ(·|z̃) is supported on a ball of radius η around z̃.

Let E = {z∗, ẑ ∈ Rn : ‖z∗ − ẑ‖ ≥ (c+ 1) η + cσ} denote the event that z∗, ẑ are far apart. By the coupling, we can
express P ′ as

P ′ =
∑
z̃∈S

Q(z̃)Γ(·|z̃).
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This gives

Pr
z∗∼P ′,A,ξ,ẑ∼P (·|A,u)

[E] =
∑
z̃∗∈S

Q(z̃∗) E
z∗∼Γ(·|z̃∗),A,ξ,ẑ∼P (·|A,u)

[1E ] .

For each z̃∗ ∈ S, we now bound Q(z̃∗)Ez∗∼Γ(·|z̃∗),A,ξ,ẑ∼P (·|A,u) [1E ] .

For each z̃∗ ∈ S, we can write P as P = (1− 2δ)Qz̃∗Pz̃∗,0 + cz̃∗,1Pz̃∗,1 + cz̃∗,2Pz̃∗,2, where the components of the
mixture are defined in the following way. The first component Pz̃∗,0 is Γ(·|z̃∗), the second component is supported within a
c(η + σ) radius of z̃∗, and the third component is supported outside a c (η + σ) radius of z̃∗.

Formally, let Bz̃∗ denote the ball of radius c(η+σ) centered at z̃∗, and let Bcz̃∗ be its complement. The constants are defined
via the following Lebesque integrals, and the mixture components for any Borel measurable B are defined as

cz̃∗,1 :=

∫
Bz̃∗

dP − (1− 2δ)Qz̃∗

∫
Bz̃∗

dΓ(·|z̃∗),

cz̃∗,2 :=

∫
Bc
z̃∗

dP − (1− 2δ)Qz̃∗

∫
Bc
z̃∗

dΓ(·|z̃∗),

Pz̃∗,0(B) := Γ(B ∩Bz̃∗ |z̃∗) = Γ(B|z̃∗) since supp(Γ(·|z̃∗)) ⊂ Bz̃∗ ,

Pz̃∗,1(B) :=

{
1

cz̃∗,1
P (B ∩Bz̃∗)− 1−2δ

cz̃∗,1
Qz̃∗Γ(B ∩Bz̃∗ |z̃∗) if cz̃∗,1 > 0,

do not care otherwise.
,

Pz̃∗,2(B) :=

{
1

cz̃∗,2
P (B ∩Bcz̃∗)− 1−2δ

cz̃∗,2
Qz̃∗Γ(B ∩Bcz̃∗ |z̃∗) if cz̃∗,2 > 0,

do not care otherwise.
.

Notice that if z∗ is sampled from Γ(·|z̃∗), then by the W∞ condition, we have ‖z∗ − z̃∗‖ ≤ η. Furthermore, if ẑ is
(c+ 1) η + cσ far from z∗, an application of the triangle inequality implies that it must be distributed according to Pz̃∗,2.
That is,

Q(z̃∗) E
z∗∼Γ(·|z̃∗),A,ξ,ẑ∼P (·|A,u)

[1E ] ≤ E
A,ξ,z∗

Pr [z∗ ∼ Pz̃∗,0, ẑ ∼ Pz̃∗,2(·|u)]

≤ 1

1− 2δ
E
A

[1− TV (Hz̃∗,0, Hz̃∗,2)] ,

where Hz̃∗,0, Hz̃∗,2 are the push-forwards of Pz̃∗,0, Pz̃∗,2 for A fixed and the last inequality follows from Claim A.2.

Notice that if we sum over all z̃∗ ∈ S, then the LHS of the above inequality is an expectation over z∗ ∼ P ′. This gives:

Pr
z∗∼P ′,A,ξ,ẑ∼P (·|u,A)

[E] ≤ 1

1− 2δ

∑
z̃∗∈S

E
A

[1− TV (Hz̃∗,0, Hz̃∗,2)] .

Notice that Pz̃∗,0 is supported within an η−ball around z̃∗, and Pz̃∗,2 is supported outside a c(η + σ)−ball of z̃∗. By
Lemma 3.2 we have

E
A

[TV (Hz̃∗,0, Hz̃∗,2)] ≥1− 4e−
m
2 log( c

4e2
).

This implies

Pr
z∗∼P ′,A,ξ,ẑ∼P (·|u,A)

[‖z∗ − ẑ‖ ≥ (c+ 1)η + cσ] ≤ 1

1− 2δ

∑
z̃∗∈S

E
A

[(1− TV (Hz̃∗,0, Hz̃∗,2))] ,
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≤ 1

1− 2δ
4|S|e−

m
2 log( c

4e2
),

≤ 1

1− 2δ
4e−

m
4 log( c

4e2
),

where the last inequality is satisfied if m ≥ 4 log (|S|) .

Substituting in Eqn (23), if c > 4 exp

(
2 +

8(ε/δ1/p)((ε/δ1/p)+2σ)
σ2

)
, we have

Pr
x∗∼R′,A,ξ,x̂∼P (·|A,y)

[
‖x∗ − x̂‖ ≥ (c+ 1) η + cσ + (ε/δ1/p)

]
≤e−Ω(m) +

1

1− 2δ
e−Ω(m log c).

This implies that there exists a set SA,ξ over A, ξ satisfying PrA,ξ[SA,ξ] ≥ 1− e−Ω(m), such that for all A, ξ ∈ SA,ξ, we
have

Pr
x∗∼R′,x̂∼P (·|y)

[
‖x∗ − x̂‖ ≥ (c+ 1)η + cσ + (ε/δ1/p)

]
≤ 1

1− 2δ
e−Ω(m).

Substituting in Eqn (22), we have

Pr
x∗∼R,x̂∼P (·|y)

[
‖x∗ − x̂‖ ≥ (c+ 1)η + cσ + (ε/δ1/p)

]
≤ 2δ +

1

1− 2δ
e−Ω(m) ≤ 2δ + 2e−Ω(m).

Rescaling c gives us our result.

At the beginning of the proof, we had assumed thatW∞(P ′, Q) ≤ η. If insteadW∞(R′, Q) ≤ η, then we need to replace η
in the above bound by η + ε

δ1/p
. Rescaling c in the above bound gives us the Theorem statement.

Claim A.2. Consider the setting of the previous theorem. We have

E
A,ξ,z∗

Pr [z∗ ∼ Pz̃∗,0, ẑ ∼ Pz̃∗,2(·|u)] ≤ 1

1− δ2
E
A

[1− TV (Hz̃∗,0, Hz̃∗,2)] , (24)

Proof. For a fixed A, let h0, h2 denote the corresponding densities of the push forward of Pz̃∗,0, Pz̃∗,2. Then we have

E
A,ξ,z∗

Pr [z∗ ∼ Pz̃∗,0, ẑ ∼ Pz̃∗,2(·|u)] = E
A

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

(1− δ2)Qz̃∗,0hz̃∗,0(u) + cz̃∗,1hz̃∗,1(u) + cz̃∗,2hz̃∗,2(u)
du, (25)

≤ E
A

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

(1− δ2)Qz̃∗,0hz̃∗,0(u) + cz̃∗,2hz̃∗,2(u)
du, (26)

≤ E
A

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

(1− δ2)Qz̃∗,0hz̃∗,0(u) + (1− δ2)cz̃∗,2hz̃∗,2(u)
du, (27)

≤ E
A

1

1− δ2

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

Qz̃∗,0hz̃∗,0(u) + cz̃∗,2hz̃∗,2(u)
du, (28)

≤ E
A

1

1− δ2

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

max{Qz̃∗,0hz̃∗,0(u) , cz̃∗,2hz̃∗,2(u)}
du, (29)

= E
A

1

1− δ2

∫
min{Qz̃∗hz̃∗,0(u), cz̃∗,2hz̃∗,2(u)}du, (30)

≤ E
A

1

1− δ2

∫
min{hz̃∗,0(u), hz̃∗,2(u)}du, (31)

=
1

1− δ2
E
A

[1− TV (Hz̃∗,0, Hz̃∗,2)] . (32)
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B. Lower Bound Proofs
B.1. Proof of Lemma 4.2

Lemma 4.2. Consider the setting of Theorem (4.1). If A is a deterministic matrix, we have

I(y;x∗) ≤ m

2
log

(
1 +

mr2‖A‖2∞
σ2

)
.

If A is a Gaussian matrix, then I(y;x∗|A) ≤ m
2 log

(
1 + r2

σ2

)
.

Proof. First, we consider the case where A is a deterministic matrix.

We have y = Ax∗ + ξ. Let z = Ax∗, which gives y = z + ξ.

We have zi = aTi x
∗ where ai is the ith row of A, and yi = zi + ξi. Since x∗ is supported within the sphere of radius r, we

have E[z2
i ] = E[〈ai, x〉2] ≤ ‖ai‖2r2. Since the Gaussian noise ξ has variance σ2/m in each coordinate, every coordinate of

yi is a Gaussian channel with power constaint ‖ai‖2r2 and noise variance σ2/m. Using Shannon’s AWGN theorem (Cover
& Thomas, 2012; Polyanskiy & Wu, 2014; Shannon, 1948), the mutual information between yi, zi, is bounded by

I(yi; zi) ≤
1

2
log

(
1 +
‖ai‖2r2m

σ2

)
.

The chain rule of entropy and sub-addditivity of entropy implies,

I(y; z) = h(y)− h(y|z) = h(y)− h(y − z|z),

= h(y)− h(ξ|z) = h(y)−
∑

h(ξi|z, ξ1, · · · , ξi−1),

= h(y)−
∑

h(ξi),

≤
∑

h(yi)−
∑

h(ξi),

=
∑

h(yi)−
∑

h(yi|zi),

=
∑

I(yi; zi),

≤
m∑
i=1

1

2
log

(
1 +
‖ai‖2r2m

σ2

)
,

≤ m

2
log

(
1 +

mr2‖A‖2∞
σ2

)
.

Since x∗ → z → y is a Markov chain, we can conclude that

I(y;x∗) ≤ I(y; z) ≤ m

2
log

(
1 +

mr2‖A‖2∞
σ2

)
.

Now, if A is a Gaussian matrix with i.i.d. entries drawn from N (0, 1/m), then the power constraint is E[〈ai, x〉2] ≤ r2/m.
This gives us

I(y; z) ≤ m

2
log

(
1 +

r2

σ2

)
. (33)

Now since A is a random matrix, we cannot directly apply the Data Processing Inequality of x∗, y, z as before, and need to
prove that I(x∗; y|A) ≤ I(y; z).

Consider the mutual information I(x∗, A, z; y). By the chain rule of mutual information, we have

I(x∗, A, z; y) = I(A; y) + I(x∗; y|A) + I(z; y|x∗, A),
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x∗

A

z y x̂

Figure 6: DAG relating x∗, A, z, y, x̂. The conditional independencies we use are x∗ ⊥⊥ y|z,A and A ⊥⊥ y|z.

= I(A; y) + I(z; y|A) + I(x∗; y|z,A),

⇔ I(x∗; y|A) + I(z; y|x∗, A) = I(z; y|A) + I(x∗; y|z,A).

From Figure 6, note that x∗, y, are conditionally independent given z,A. This gives I(x∗; y|z,A) = 0.

This gives

I(x∗; y|A) + I(z; y|x∗, A) = I(z; y|A), (34)
⇒ I(x∗; y|A) ≤ I(z; y|A). (35)

We can bound I(z; y|A) in the following way.

I(A, z; y) = I(A; y) + I(z; y|A), (36)
= I(z; y) + I(A; y|z), (37)

⇔ I(A; y) + I(z; y|A) = I(z; y) + I(A; y|z), (38)
⇔ I(A; y) + I(z; y|A) = I(z; y), (39)

⇒ I(z; y|A) ≤ I(z; y), . (40)

where the second last line follows from I(A; y|z) = 0, and the last line follows from I(A; y) ≥ 0.

From Eqn (33), (35), (40), we have

I(x∗; y|A) ≤ m

2

(
1 +

mr2‖A‖2∞
σ2

)
.

B.2. Proof of Lemma 4.3

Lemma 4.3. Consider the setting of Theorem (4.1). If A is a deterministic matrix, we have I(x∗; x̂) ≤ I(y;x∗).

If A is a random matrix, then I(x∗; x̂) ≤ I(y;x∗|A).

Proof. When A is a deterministic matrix, the proof follows directly from the Data Processing Inequality (Cover & Thomas,
2012). Since x∗ → y → x̂ is a Markov chain, we get

I(x∗; x̂) ≤ I(y;x∗).

Now when A is a random matrix, we need to show I(x∗; x̂) ≤ I(y;x∗|A). Consider the mutual information I(x∗; y,A, x̂).
By the chain rule of mutual information, we can express it in two ways:

I(x∗; y,A, x̂) = I(x∗; y,A) + I(x∗; x̂|y,A), (41)
= I(x∗; x̂) + I(x∗; y,A|x̂). (42)

As x̂ is a function of y,A, we have I(x∗; x̂|y,A) = 0. Also, I(x∗; y,A|x̂) ≥ 0. Substituting in Eqn (41), (42), we have

I(x∗; x̂) ≤ I(x∗; y,A),
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= I(x∗;A) + I(x∗; y|A),

= I(x∗; y|A),

where the second line follows from the chain rule of mutual information, and the last line follows because x∗, A, are
independent.

B.3. Proof of Fano variant Lemma 4.4

We will build up Lemma 4.4 in sequence. Before showing it in its full generality, we will show when x, x̂, are discrete
random variables and x is uniform (Lemma B.1. We then lift the uniformity restriction on x (Lemma B.3) before extending
to continuous distributions (Lemma 4.4).

Lemma B.1. Let Q be the uniform distribution over an arbitrary discrete finite set S. Let (x, x̂) be jointly distributed,
where x ∼ Q and x̂ is distributed over an arbitrary countable set, satisfying

Pr [‖x− x̂‖ ≤ ε] ≥ 1− δ.

Then for all τ ∈ (0, 1), we have

τ(1− δ) log Cov2ε,δ+τ (Q) ≤ I(x; x̂) + 2.

Proof. Let E = 1{‖x− x̂‖ ≤ ε} be the indicator random variable for x and x̂ being close.

Via claim B.2, we get

H(x|E = 1) ≥ log |S| − 1

1− δ
. (43)

Recall,

I(x; x̂|E = 1) = H(x|E = 1)−H(x|x̂, E = 1)

By the Law of total probability, we have:

I(x; x̂|E = 1) =
∑
v

Pr[x̂ = v|E = 1] (H(x|E = 1)−H(x|x̂ = v,E = 1)) .

We would like to apply a version of Markov’s inequality to the above equation. However, the terms in the summation could
be negative. However, from (43) we have that H(x|E = 1)+ 1

1−δ ≥ log |S|. Furthermore, since x is supported on a discrete
set of cardinality |S|, we have H(x|x̂ = v,E = 1) ≤ log |S|. Adding and subtracting 1

1−δ , in the above equation, we have

I(x; x̂|E = 1) =
∑
v

Pr[x̂ = v|E = 1]

(
H(x|E = 1) +

1

1− δ
−H(x|x̂ = v,E = 1)− 1

1− δ

)
,

=
∑
v

Pr[x̂ = v|E = 1]

(
H(x|E = 1) +

1

1− δ
−H(x|x̂ = v,E = 1)

)
− 1

1− δ
,

⇔ I(x; x̂|E = 1) +
1

1− δ
=
∑
v

Pr[x̂ = v|E = 1]

(
H(x|E = 1) +

1

1− δ
−H(x|x̂ = v,E = 1)

)

Since the above summation has only non-negative terms that average to I(x; x̂|E = 1) + 1
1−δ , for all τ ∈ (0, 1), there exists

G1 ⊆ supp(x̂) with Pr[G1|E = 1] ≥ 1− τ, such that for all v ∈ G1, we have

H(x|E = 1) +
1

1− δ
−H(x|x̂ = v,E = 1) ≤

I(x; x̂|E = 1) + 1
1−δ

τ
.
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From (43), we have H(x|E = 1) + 1
1−δ ≥ log |S|. Hence for all v ∈ G1, we have

log |S| −H(x|x̂ = v,E = 1) ≤
I(x; x̂|E = 1) + 1

1−δ
τ

,

⇔ H(x|x̂ = v,E = 1) ≥ log |S| −
I(x; x̂) + 1

1−δ
τ

,

⇒ log|supp(x|x̂ = v,E = 1)| ≥ log |S| −

(
I(x; x̂) + 1

1−δ
τ

)
,

⇒ log|S ∩B(v, ε)| ≥ log |S| −

(
I(x; x̂) + 1

1−δ
τ

)
, (44)

where the last inequality follows as conditioned on E = 1, x must be supported on an ε-radius ball around x̂.

Now consider the set G2 = (S ×G1) ∧ E1. That is, G2 ⊆ supp(x, x̂), such that (u, v) ∈ G2 if and only if ‖u− v‖ ≤ ε
and u ∈ S, v ∈ G1. Since Pr[E1] ≥ 1− δ by the statement of the lemma, and Pr[G1|E1] ≥ 1− τ by construction, we have

Pr[G2] ≥ (1− δ)(1− τ) ≥ 1− δ − τ.

Now for all (u, v) ∈ G2, we have

‖u− v‖ ≤ ε,

log |S ∩B(v, ε)| ≥ log |S| −

(
I(x; x̂|E = 1) + 1

1−δ
τ

)
. (45)

Note that by the construction of G2, the set
⋃
v∈G2

B(v, ε) covers a 1− δ − τ fraction of S. As each ball B(v, ε) also has a
large intersection with S, by the pigeon-hole principle, any 2ε-packing of this 1− δ − τ fraction of S must have size at
most 2(I(x;x̂|E=1)+ 1

1−δ )/τ .

Hence, we can find a 2ε-cover of a 1− δ − τ fraction of S that has size at most 2(I(x;x̂|E=1)+ 1
1−δ )/τ .

This gives

log Cov2ε,δ+τ (Q) ≤
I(x; x̂|E = 1) + 1

1−δ
τ

. (46)

We are almost done, since we now only need to relate I(x; x̂|E = 1) to I(x; x̂).

By the chain rule of mutual information, we have

I(x; x̂, E) = I(x; x̂) + I(x;E|x̂) = I(x;E) + I(x; x̂|E),

⇒ I(x; x̂|E) ≤ I(x; x̂) + I(x;E|x̂),

≤ I(x; x̂) + 1,

⇔ I(x; x̂|E = 0) Pr[E = 0] + I(x; x̂|E = 1) Pr[E = 1] ≤ I(x; x̂) + 1,

⇒ I(x; x̂|E = 1) ≤ I(x; x̂) + 1

1− δ
.

Substituting in Eqn (46), we have

log Cov2ε,δ+τ (Q) ≤ I(x; x̂) + 2

τ(1− δ)
,

⇒ τ(1− δ) log Cov2ε,δ+τ (Q) ≤ I(x; x̂) + 2.
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Claim B.2. Let x ∼ Q, where Q is the uniform distribution over an arbitrary discrete finite set S. Let E be a binary
random variable such that Pr[E = 1] ≥ 1− δ.

Then we have

H(x|E = 1) ≥ log |S| − 1

1− δ
.

Proof. Let p = Pr[E = 1]. By the definition of conditional entropy, we have

H(x|E) = (1− p)H(x|E = 0) + pH(x|E = 1),

⇔ H(x|E = 1) =
1

p
(H(x|E)− (1− p)H(x|E = 0)),

=
1

p
(H(x)− I(x;E)− (1− p)H(x|E = 0)),

=
1

p
(log |S| − I(x;E)− (1− p)H(x|E = 0)),

≥ 1

p
(log |S| − I(x;E)− (1− p) log |S|),

= log |S| − I(x;E)

p
,

≥ log |S| − 1

1− δ
,

where the fourth line follows from H(x) = log |S| since x is uniform, the fifth line follows from H(x|E = 0) ≤ log |S|
since x is supported on a discrete set of size |S|, and the last line follows from p ≥ 1− δ and I(x;E) ≤ H(E) ≤ 1.

The previous lemma handled the uniform distribution on x. Now we show that a similar result applies if x’s distribution has
quantized probability values.

Lemma B.3. Let Q be a finite discrete distribution over N ∈ N points such that for each u in its support, Q(u) = jα,
where j ∈ N and α := 1

N2
is a discretization level for N2 ∈ N large enough.

Let (x, x̂) be jointly distributed, where x ∼ Q and x̂ is distributed over a countable set, satisfying

Pr [‖x− x̂‖ ≤ ε] ≥ 1− δ.

Then we have

τ(1− δ) log Cov2ε,τ+δ(Q) ≤ I(x; x̂) + 2δ.

Proof. For each x in the support of Q, we know that its probability is an integral multiple of 1
N2

. Hence we can define a
new random variable x′ = (x, j), x ∈ supp(Q), j ∈ [N2] and a distribution Q′ over x′ in the following way:

Q′((x, j)) =

{
α if jα ≤ Q(x),

0 otherwise .

By definition, Q′ is a uniform distribution, and its support is a discrete subset of Rn × N.

Define the following norm for x′. For x′1 = (x1, j1), x′2 = (x2, j2), define

‖(x1, j1)− (x2, j2)‖ := ‖x1 − x2‖.

In order to apply Lemma B.1 on Q′, it suffices to show that I(x; x̂) = I(x′; x̂).

By the chain rule of mutual information, we have

I(x′; x̂) = I((x, j); x̂)
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= I(x; x̂) + I(j; x̂|x).

Since x̂ is purely a function of x, we have I(j; x̂|x) = 0. This gives

I(x′; x̂) = I(x; x̂).

Similarly construct a version x̂′ = (x̂, 0) of x̂, whose second coordinate is identically zero. Hence for x′ = (x, j) ∼ Q′, we
have

‖x′ − x̂′‖ ≤ ε w.p. 1− δ,
I(x′; x̂′) = I(x; x̂)

Applying Lemma B.1 on Q′, we have

τ(1− δ) log Cov2ε,τ+δ(Q
′) ≤ I(x; x̂) + 2.

Since the support of the first coordinate of Q′ is the same as the support of Q, we have

τ(1− δ) log Cov2ε,τ+δ(Q) ≤ I(x; x̂) + 2.

We now prove Lemma 4.4, which allows (x, x̂) to follow an arbitrary distribution.

Lemma 4.4 (Fano variant). Let (x, x̂) be jointly distributed over Rn × Rn, where x ∼ R and x̂ satisfies

Pr[‖x− x̂‖ ≤ η] ≥ 1− δ.

Then for any τ ≤ 1− 3δ, δ < 1/3, we have

0.99τ(1− 2δ) log Cov3η,τ+3δ(R) ≤ I(x; x̂) + 1.98.

Proof. Let ε = η, which is the error in the statement of the lemma. Let γ > 0 be a small enough discretization level to be
specified later. For every x, x̂ ∈ Rn, let x̄, ̂̄x denoted the rounding of x, x̂ to the nearest multiple of γ in each coordinate.

Let R̄ be the discrete distribution induced by this discretization of x. We can create such a distribution by assigning the
probability of each cell in the grid to its corresponding coordinate-wise floor. This discretization of the support changes the
error between x, x̂ in the following way. If ‖x− x̂‖ ≤ ε with probability 1− δ, an application of the triangle inequality gives

‖x̄− ̂̄x‖ ≤ ε+ 2γ
√
n with probability ≥ 1− δ. (47)

We also need to take into account the effect discretizing x, x̂ has on their mutual information. Note that since x̄ is a function
of x alone, and ̂̄x is a function of x̂ alone, by the Data Processing Inequality, we have

I(x̄; ̂̄x) ≤ I(x; x̂). (48)

Note that R̄ is a distribution on a discrete but infinite set. However, for any β ∈ (0, 1], we can find a discrete and finite
distribution Q such that R̄ = (1− c1)Q+ c1D, with c1 ≤ β and D is some other probability distribution. This is feasible
because the probabilites of the infinite support of R̄ must sum to 1, and hence we can find a finite subset that sums to atleast
1 − β for any β ∈ (0, 1]. Note that in this process, we only change the marginal of x̄ without changing the conditional
distribution of ̂̄x|x̄. Let I(x̄; ̂̄x), IQ(x̄; ̂̄x), ID(x̄; ̂̄x) denote the mutual information between x̄, ̂̄x when the marginal of x̄ is
R̄,Q,D, respectively. From Theorem 2.7.4 in (Cover & Thomas, 2012), mutual information is a concave function of the
marginal distribution of x̄ for a fixed conditional distribution of ̂̄x|x̄. An application of Eqn (48) gives us,

I(x; x̂) ≥ I(x̄; ̂̄x) ≥ (1− c1)IQ(x̄; ̂̄x) + c1ID(x̄; ̂̄x), (49)
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≥ (1− c1)IQ(x̄; ̂̄x), (50)

≥ (1− β)IQ(x̄; ̂̄x). (51)

Now since the finite distribution Q has a TV distance of at most β to the countable distribution R, using Eqn (47), we have

‖x̄− ̂̄x‖ ≤ ε+ 2γ
√
n with probability ≥ 1− β − δ if x̄ ∼ Q. (52)

In order to apply Lemma B.3 on the distribution Q, we need its probability values to be multiples of some discretization
level α. Let α be a small enough quantization level for the probability values. We will specify the value of α later. We can
now express the distribution Q as a mixture of two distributions Q′, Q′′. The distribution Q′ is obtained by flooring the
probability values under Q and renormalizing to make them sum to 1. The distribution Q′′ is the mass not contained in
Q′, normalized to sum to 1. Since each element in the support of Q loses at most α mass, the total mass in Q′′ prior to
normalization is at most αNβ , where Nβ is the cardinaltiy of the support of Q. This gives

Q = (1− c2)Q′ + c2Q
′′, c2 ≤ αNβ .

From Eqn (52), we have ‖x̄− ̂̄x‖ ≤ ε+ 2γ
√
n with probability ≥ 1− β − δ when x̄ ∼ Q. Since Q′ has a TV distance of

at most αNβ to Q, if x̄ ∼ Q′, we have

‖x̄− ̂̄x‖ ≤ ε+ 2γ
√
n with probability ≥ 1− β − δ − αNβ if x̄ ∼ Q′. (53)

Let IQ(x̄; ̂̄x), IQ′(x̄; ̂̄x), IQ′′(x̄; ̂̄x) denote the mutual information between x̄, ̂̄x when the marginal of x̄ is Q,Q′, Q′′

respectively. Mutual information is a concave function of the marginal distribution of x̄ for a fixed conditional distribution
of ̂̄x|x̄. Hence using Eqn (51), we have

I(x; x̂)

1− β
≥ IQ(x̄; ̂̄x) ≥ (1− c2)IQ′(x̄; ̂̄x) + c2IQ′′(x̄; ̂̄x), (54)

≥ (1− c2)IQ′(x̄; ̂̄x), (55)

≥ (1− αNβ)IQ′(x̄; ̂̄x). (56)

Hence if x̄ ∼ Q′, we have I(x̄; ̂̄x) ≤ I(x;x̂)
(1−αNβ)(1−β) . Applying Lemma B.3 on the distribution Q′, for any τ > 0, we have

τ(1− β − δ − αNβ) log Cov2ε+4γ
√
n,τ+β+δ+αNβ

(Q′) ≤ I(x; x̂)

(1− αNβ)(1− β)
+ 2.

Now sinceQ′ has at least 1−αNβ of the mass underQ andQ has at least 1−δ of the mass under R̄, the mass τ+β+δ+αNβ
not covered under Q′ can be replaced with τ + β + 2δ + 2αNβ under R̄. This gives

τ(1− β − δ − αNβ) log Cov2ε+4γ
√
n,τ+β+2δ+2αNβ

(R̄) ≤ I(x; x̂)

(1− αNβ)(1− β)
+ 2.

Now since we can cover the whole distribution of R by extending each element in the support of R̄ by γ in each coordinate,
we can replace the radius 2ε+ 4γ

√
n for R̄ by 2ε+ 6γ

√
n for R. This gives

τ(1− β − δ − αNβ) log Cov2ε+6γ
√
n,τ+β+2δ+2αNβ

(R) ≤ I(x; x̂)

(1− αNβ)(1− β)
+ 2.

For γ = ε
6
√
n
, β = min

{
δ
3 , 1−

√
0.99

}
, αNβ = min

{
δ
3 , 1−

√
0.99

}
, we have

0.99τ(1− 2δ) log Cov3ε,τ+3δ(R) ≤ I(x; x̂) + 1.98.
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B.4. Proof of Theorem 4.1

Theorem 4.1. Let R be a distribution supported on a ball of radius r in Rn, and x∗ ∼ R. Let y = Ax∗ + ξ, where A is
any matrix, and ξ ∼ N (0, σ

2

m Im). Assuming δ < 0.1, if there exists a recovery scheme that uses y and A as inputs and
guarantees

‖x̂− x∗‖ ≤ O(η),

with probability ≥ 1− δ, then we have

m ≥ 0.15

log

(
1+

mr2‖A‖2∞
σ2

) (log Cov3η,4δ(R) + log 6δ −O(1)
)
.

If A is an i.i.d. Gaussian matrix where each element is drawn from N (0, 1/m), then the above bound can be improved to:

m ≥ 0.15

log
(

1 + r2

σ2

) (log Cov3η,4δ(R) + log 6δ −O(1)
)
.

Proof. Throughout the proof, we use the notation N(R, δ) to denote a minimal set of 3η-radius balls that cover at least
1− δ mass under the distribution R.

Let B be the ball in N(R, 10δ) with smallest marginal probability. If we set S ← N(R, 10δ) \B, then S contains smaller
than 1− 10δ of R.

Let R = (1− c)R′+ cR′′, where the components R′ and R′′ are probability distributions restricted to S and its complement
Sc respectively. By the construction of S, we have c > 10δ. Note that since R′′ contributes at least 10δ to R, any algorithm
that succeeds with probability ≥ 1− δ over R must succeed with probability ≥ 0.9 over R′′.

Now consider x ∼ R′′. By Lemma 4.3 and Lemma 4.2, we have

I(x; x̂) ≤ I(x; y|A),

≤ m

2
log

(
1 +

r2

σ2

)
.

Applying Lemma 4.4 on R′′ with parameters τ = δ = 0.1, for the failure probability, we can conclude that

0.99 · 0.1 · (1− 0.2) log |N(R′′, 0.4)| ≤ I(x; x̂) + 1.98 ≤ m

2
log

(
1 +

r2

σ2

)
+ 1.98,

⇔ m ≥ 0.1584 log |N(R′′, 0.4)| − 3.96

log
(
1 + r2

σ2

) . (57)

We now need to express the covering number of R′′ in terms of the covering number of R.

Note that as R′′ contains at least 10δ mass under R, N(R′′, 0.4) contains at least 6δ mass under R, . Similarly, since
N(R, 10δ) contains at least 1− 10δ mass under R, N(R′′, 0.4) ∪N(R, 10δ) will contain at least 4δ mass under R. Hence,
we get

|N(R′′, 0.4)|+ |N(R, 10δ)| ≥ |N(R, 4δ)| ⇔ |N(R′′, 0.4)| ≥ |N(R, 4δ)| − |N(R, 10δ)|. (58)

Now we need to relate N(R, 4δ) with N(R, 10δ). This can be accomplished via a simple counting argument. Assume
that the balls in N(R, 4δ) are ordered in decreasing order of their marginal probability, then the last 10δ

1−4δ -fraction of balls
in N(R, 4δ) must contain at most 10δ mass. This implies that the first 1−10δ

1−4δ -fraction of N(R, 4δ) must contain at least
1− 10δ mass. This gives:

1− 10δ

1− 4δ
N(R, 4δ) ≥ N(R, 10δ). (59)
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Combining Eqn (58), (59), we get

|N(R′′, 0.4)| ≥ |N(R, 4δ)| − 1− 10δ

1− 4δ
|N(R, 4δ)|,

=
6δ

1− 4δ
|N(R, 4δ)|,

≥ 6δ|N(R, 4δ)|,
⇔ log |N(R′′, 0.4)| ≥ log |N(R, 4δ)|+ log(6δ).

Substituting in Eqn (57), we get

m ≥ 0.1584 (log |N(R, 4δ)|+ log(6δ))− 3.96

log
(
1 + r2

σ2

) .

Since |N(R, 4δ)| = Cov3η,4δ(R) by definition, this completes the proof.

C. Experimental Setup
C.1. Datasets and Architecture

For the compressed sensing experiment in Fig 4a and the inpainting experiment in Figure 2 we used the 256×256 GLOW
model (Kingma & Dhariwal, 2018) from the official repository. The test set for Fig 4a consists of the first 10 images used
by (Asim et al., 2019) in their experiments.

For the compressed sensing experiment in Fig 1, 5a, 5b, we used the FFHQ NCSNv2 model (Song & Ermon, 2020) from
the official repository. The test set for Fig 5a consists of the images 69000-69017 from the FFHQ dataset (this corresponds
to the first 18 images in the last batch of FFHQ images).

In Fig 4a and Fig 5a, the measurements have noise satisfying
√
E ‖ξ‖2 = 16 and

√
E ‖ξ‖2 = 4 respectively.

C.2. Hyperparameter Selection

CelebA experiments For MAP, we used an Adam and Gradient Descent optimizer. Langevin dy-
namics only uses Gradient Descent. Each algorithm was run with learning rates varying over[
0.1, 0.01, 0.001, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6

]
. For MAP and Modified-MAP, we also performed

2 random restarts for the initialization z0.

The value of γ in Eqn (6) was varied over [0, 0.1, 0.01, 0.001] for Modified-MAP. MAP uses the theoretically defined value
of σ

2

m .

For Langevin dynamics, we vary the value of σi according to the schedule proposed by (Song & Ermon, 2019). We start
with σ1 = 16.0, and finish with σ10 = 4.0, such that σi decreases geometrically for i ∈ [10]. For each value of i, we do 200
steps of noisy gradient descent, with the learning rate schedule proposed by (Song & Ermon, 2019).

In order to select the optimal hyperparameters for each m, we chose the hyperparams that give maximum likelihood for
Langevin and MAP. For Modified-MAP, we selected the hyperparameters based on reconstruction error on a holdout set of 5
images.

FFHQ experiments The NCSNv2 model is designed for Langevin dynamics. It can be adapted to MAP by simply not
adding noise at each gradient step. We tune the initial and final values of σ used in (Song & Ermon, 2020), along with the
initial learning rate.

Unfortunately, it is computationally difficult to obtain the likelihood associated with each reconstruction, since the NCSNv2
model only provides ∇ log p(x). Although one could, in theory, do numerical integration to find p(x), we selected the
optimal hyperparameters for each m based on reconstruction error on a holdout set of 5 images.

For the Deep-Decoder, we used the over-parameterized network described in (Asim et al., 2019), and tuned the learning rate
over [0.4, 0.004, 0.0004], and selected the hyper-parameters that optimized the reconstruction error on a holdout set of 5
images.
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C.3. Computing Infrastructure

Experiments were run on an NVIDA Quadro P5000.


