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A. FFHQ Experiments
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Figure 5. Super-resolution reconstructions on faces 69000-69004 from the FFHQ dataset. The top row shows original images, the second
row shows what the algorithms observe: blurry measurements after downsampling by 32× in each dimension. The third row shows
reconstructions by PULSE, and the last row shows reconstructions by Posterior Sampling via Langevin dynamics, the algorithm we are
advocating for.
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Figure 6. Super-resolution reconstructions on faces 69005-69009 from the FFHQ dataset. The top row shows original images, the second
row shows what the algorithms observe: blurry measurements after downsampling by 32× in each dimension. The third row shows
reconstructions by PULSE, and the last row shows reconstructions by Posterior Sampling via Langevin dynamics, the algorithm we are
advocating for.
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Figure 7. Super-resolution reconstructions on faces 69010-69014 from the FFHQ dataset. The top row shows original images, the second
row shows what the algorithms observe: blurry measurements after downsampling by 32× in each dimension. The third row shows
reconstructions by PULSE, and the last row shows reconstructions by Posterior Sampling via Langevin dynamics, the algorithm we are
advocating for.
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Figure 8. Super-resolution reconstructions on faces 69015-69020 from the FFHQ dataset. The top row shows original images, the second
row shows what the algorithms observe: blurry measurements after downsampling by 32× in each dimension. The third row shows
reconstructions by PULSE, and the last row shows reconstructions by Posterior Sampling via Langevin dynamics, the algorithm we are
advocating for.
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m
PULSE Ours

Cats Dogs Cats Dogs
1× 1 319 183 245 261
2× 2 282 234 239 239
4× 4 225 246 223 229
8× 8 160 179 119 146

(a) Number of errors. Test set has 500 cats and 500 dogs 8x84x42x21x1
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(b) Fraction of all errors on cats for 50% cat generator.

Figure 9. We use a StyleGAN2 model trained on 50% cats and report errors when reconstructing images from low-resolution measurements.
The test set consists of 500 cats and 500 dogs from the AFHQ validation set to mimick the generator’s training distribution (note that
these correspond to all cats and dogs in the AFHQ validation set). Figure (b) shows the proportion of all errors that are on cats, along with
95% confidence intervals from a binomial test. An algorithm that satisfies SPE would have this probability=0.5 (green line). In this case
where the generator is balanced, Posterior Sampling via Langevin dynamics appears to achieve SPE, PR, and RDP. PULSE also appears
to satisfy SPE, PR, and RDP, except when the resolution of measurements is 1× 1.

B. AFHQ Experiments
B.1. 50% cat generator

For this experiment, we draw x∗ from the validation set of the AFHQ dataset which contains 500 images of cats + 500
images of dogs. We use a generator trained on 50% cats and 50% dogs, and use it to study whether posterior sampling and
PULSE satisfy RDP, SPE, and PR in practice. These results are in Figure 9.

B.2. x∗ drawn from generator

In Figure 10, we show results when 200 images drawn from the 20% cat generator are reconstructed.

In Figure 11, we show results when 200 images drawn from the 80% cat generator are reconstructed.

B.3. Varying training bias

We train StyleGAN2 models with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% cats, and report the fraction of errors
on cats when tested on the AFHQ validation set. The results are in Figure 12.
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m
PULSE Ours

Cats Dogs Cats Dogs
1× 1 56 17 44 30
2× 2 48 10 45 24
4× 4 54 8 33 23
8× 8 48 4 11 14

(a) Number of errors on 20% cat generator, for each resolution.
Sampled test set has 60 cats and 140 dogs. PULSE makes errors
on almost all the cats and relatively few dogs, while Posterior
Sampling is relatively balanced.
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(b) Binomial hypothesis test for Symmetric Pairwise Error (SPE)

Figure 10. We sample 200 images from a StyleGAN2 model trained on 20% cats, and report errors when reconstructing them from
low-resolution measurements. Figure (b) shows the proportion of all errors that are on cats, along with 95% confidence intervals from a
binomial test. An algorithm that satisfies SPE would have this probability=0.5 (green line). PULSE is clearly biased towards the majority,
while Posterior Sampling via Langevin dynamics appears to satisfy SPE (except when m = 2× 2, but one failure is unsurprising as we
are performing sequential hypothesis tests.)

m
PULSE Ours

Cats Dogs Cats Dogs
1× 1 0 47 37 37
2× 2 0 47 30 29
4× 4 0 47 21 23
8× 8 1 47 4 8

(a) Number of errors on 80% cat generator, for each resolution.
Sampled test set has 153 cats and 47 dogs. PULSE makes errors
on almost all the cats and relatively few dogs, while posterior
sampling is relatively balanced.
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(b) Binomial hypothesis test for Symmetric Pairwise Error (SPE)

Figure 11. We sample 200 images from a StyleGAN2 model trained on 80% cats, and report errors when reconstructing them from
low-resolution measurements. Figure (b) shows the proportion of all errors that are on cats, along with 95% confidence intervals from a
binomial test. An algorithm that satisfies SPE would have this probability=0.5 (green line). PULSE is clearly biased towards the majority,
while posterior sampling via Langevin dynamics appears to satisfy SPE.
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Figure 12. We train StyleGAN2 generators of varying bias and test SPE. The ground truth images are from the validation set, the observed
measurements have resolution 4× 4. Shaded areas denote 95% confidence intervals. We see that Posterior Sampling satisfies SPE. Note
that the single failure in the 10% cat generator is not surprising as we are running sequential hypothesis tests on non-independent data.
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C. Proofs
Theorem 2.4. Let A and B be disjoint groups (e.g., Asian and White people), and let A1, A2 ⊂ A be disjoint groups
that cannot be perfectly distinguished from measurements only (e.g., South Asians and East Asians). Then Representation
Demographic Parity cannot be satisfied {{A,B}, {A1, A2, B}}-obliviously.

Proof. Let A = A1 ∪A2. We write pa = Pr(x∗ ∈ a), qab = Pr(x̂ ∈ b|x∗ ∈ a). Using Representation Demographic Parity,
with respect first to {A,B}, then to {A1, A2, B}, we have:

qAA = qBB

qA1A1
= qA2A2

= qBB

Since A = A1 ∪A2:

qAA =
pA1

(qA1A1
+ qA1A2

) + pA2
(qA2A1

+ qA2A2
)

pA1 + pA2

Writing 0 <
pA1

pA1
+pA2

= α < 1, and replacing qAA, qA1A1 and qA2A2 by qBB , we have:

qAA = α(qA1A1
+ qA1A2

) + (1− α)(qA2A1
+ qA2A2

)

qBB = α(qBB + qA1A2
) + (1− α)(qBB + qA2A2

)

0 = αqA1A2
+ (1− α)qA2A2

.

Therefore, an algorithm can satisfy Representation Demographic Parity {{A1 ∪A2, B}, {A1, A2, B}}-obliviously if and
only if there exists no confusion between A1 and A2, i.e. qA1A2 = 0 = qA2A1 .

Theorem 2.5 (Representation Demographic Parity cannot be satisfied obliviously). The only way for an algorithm to satisfy
Representation Demographic Parity obliviously is to achieve perfect reconstruction.

Proof. Suppose there exists x such that Pr(x) > 0, and x1 6= x such that Pr(x̂ = x1) > 0. Let us split the space into
two groups A and B, such that both x and x1 belong in A. We now further split A into A1 and A2, such that x1 belongs
in A1, and x belongs in A2. A1 and A2 now are not perfectly distinguishable, so using the claim above, Representation
Demographic Parity is not satisfiable {{A1 ∪A2, B}, {A1, A2, B}}-obliviously, so it cannot be satisfiable obliviously.

Proposition 2.8. Whenever there exists a majority class that the measurements cannot 100% distinguish from the non-
majority classes, PR and RDP are not simultaneously achievable.

Proof. Suppose towards a contradiction that both PR and RDP hold, and the distribution is such that

Pr(x∗ ∈ c1) >
1

2
>
∑
i 6=1

Pr(x∗ ∈ ci).

Since PR holds, Pr(x̂ ∈ c1) = Pr(x∗ ∈ c1). However, since RDP holds and the algorithm does not reconstruct each class
perfectly we have α = Pr(x̂ ∈ ci | x∗ ∈ ci) < 1 for all the i. We now observe the following contradiction.

Pr(x̂ ∈ c1) ≤
∑
i

Pr(x̂ ∈ c1 | x∗ ∈ ci) Pr(x∗ ∈ ci)

≤ (1− α)
∑
i 6=1

Pr(x∗ ∈ ci) + αPr(x∗ ∈ c1)

< (1− α) Pr(x∗ ∈ c1) + αPr(x∗ ∈ c1)
= Pr(x∗ ∈ c1).

Theorem 3.1. Posterior Sampling is the only algorithm that achieves oblivious Conditional Proportional Representation.
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Proof. Let A denote a reconstruction algorithm. Given measurements y, let Q(U |y) denote the probability that the
reconstruction from algorithm A lies in the measurable set U .

If A satisfies CPR, then for all measurable U ⊂ Rn, and all y ∈ Rm, we have

Q(U |y) = P (U |y).

By the definition of the total variation distance, we have

TV (Q(·|y), P (·|y)) = sup
U∈B(Rn)

Q(U |y)− P (U |y).

Since we have Q(U |y) = P (U |y) for all measurable U ∈ B(Rn) and almost all measurements y ∈ Rm, we have
TV (Q(·|y), P (·|y)) = 0 for almost all y ∈ Rm.

This shows that the output distribution of A must exactly match the posterior distribution P (·|y), and hence posterior
sampling is the only algorithm that can satisfy obliviousness and CPR.

Theorem 3.3. In the setting of Definition 2.1, Conditional Proportional Representation implies Symmetric Pairwise Error.

Proof. We want to show that if Pr(x̂ ∈ ci|y) = Pr(x∗ ∈ ci|y),∀ci ∈ C, for almost all y ∈ Rm, then we have
Pr(x̂ ∈ ci, x∗ ∈ cj) = Pr(x̂ ∈ cj , x∗ ∈ ci),∀ci, cj ∈ C.

Consider the term Pr(x̂ ∈ ci, x∗ ∈ cj). We can write this as an average over y, to get:

Pr(x̂ ∈ ci, x∗ ∈ cj) = E
y
Pr(x̂ ∈ ci, x∗ ∈ cj |y).

Note that x̂&x∗ are conditionally independent given y. This is because x̂ is purely a function of y. This gives

Pr(x̂ ∈ ci, x∗ ∈ cj) = E
y
[Pr(x̂ ∈ ci|y) Pr(x∗ ∈ cj |y)].

If we have CPR with respect to ci and cj , then we can rewrite the above equation as

Pr(x̂ ∈ ci, x∗ ∈ cj) = E
y
[Pr(x∗ ∈ ci|y) Pr(x̂ ∈ cj |y)].

Using the conditional independence of x∗, x̂ given y, we now have

Pr(x̂ ∈ ci, x∗ ∈ cj) = E
y
Pr(x∗ ∈ ci, x̂ ∈ cj |y),

= Pr(x̂ ∈ cj , x∗ ∈ ci).

This completes the proof.

Corollary 3.4. Posterior Sampling achieves symmetric pairwise error for any pair of sets U, V ⊂ Rn.

Proof. The proof follows directly from Theorem 3.1 and Theorem 3.3

Theorem 3.5. Let C = {c1, . . . , ck} be a partition. There exists a choice of weights λi > 0 with
∑
λi = 1 such that

Posterior Sampling with respect to the reweighted distribution

pλ(x) =
∑
i

λip(x | x ∈ ci)

satisfies RDP with respect to C.

In the special case of 2 classes, the reweighting is very simple: λ1 = λ2 = 1
2 .
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Proof. We will prove this theorem by contradiction. Before we start, observe that if we scale the mass of ci by λi ≥ 0, we
have,

αi := Pr(x̂ ∈ Ci | x∗ ∈ Ci)

= E
y|x∗∈Ci

[
λi Pr(x

∗ ∈ Ci | y)∑
j λj Pr(x

∗ ∈ Cj | y)

]

WLOG, assume
∑
i λi = 1, this can be done by rescaling the λi’s by their sum. RDP is achieved if all the αi are equal. Let

the smallest αi when all the λi’s are equal be ε. Consider the set T := {~λ |
∑
i λi = 1,∀i αi ≥ ε}.

Towards a contradiction, suppose no assignment of ~λ ∈ T achieves f(~λ) := maxi αi

minj αj
= 1. Let r := minλ1,...,λk

f(~λ) > 1,

and let ~λ∗ be a point which achieves this. ~λ∗ exists since f(~λ) is continuous over T , which is compact.

We will show that there exists ~λ′ ∈ T such that f(λ′) < r, which contradicts our hypothesis. Let S := {i ∈ [k] | αi ≤√
rmini αi} and,

λ′i =

{
r1/4λ∗i , if i ∈ S
λ∗i , otherwise

Let α′i be Pr(x̂ ∈ Ci | x∗ ∈ Ci) where the probability is with respect to the modified distribution. For i ∈ S,

α′i = E
y|x∗∈Ci

[
λ′i Pr(x

∗ ∈ Ci | y)∑
j λ
′
j Pr(x

∗ ∈ Cj | y)

]

= r1/4 E
y|x∗∈Ci

[
λi Pr(x

∗ ∈ Ci | y)∑
j λ
′
j Pr(x

∗ ∈ Cj | y)

]

≤ r1/4 E
y|x∗∈Ci

[
λi Pr(x

∗ ∈ Ci | y)∑
j λj Pr(x

∗ ∈ Cj | y)

]

Where the last line follows from the fact that λ′i ≥ λi for all i, since r > 1, which means the denominator only increases. A
similar calculation shows that if i /∈ S, then each αi is multiplied by a factor between r−1/4 and 1.

We notice that, by definition of S, all the j such that αj = mini αi are in S, and all the k such that αk = maxi αi are not in
S. This ensures that maxi α

′
i < maxi αi and mini α

′
i > mini αi ≥ ε. Which, in turn, contradicts the hypothesis that r was

the smallest achievable ratio with the original constraints, since we can always renormalize λ′i without affecting the αi.

maxi α
′
i

mini α′i
<

maxi αi
min{r−1/4

√
rmini αi,mini αi}

≤ r.

Theorem 3.7. Let C = {c1, · · · , ck} form a disjoint partition of Rn. An algorithm minimizes Representation Cross-Entropy
on C iff the algorithm satisfies CPR on C.

Proof. The proof follows from Lemma C.1. Note that H(U |Y ) is a function of x∗&y and hence has no dependence on the
reconstruction algorithm. By the non-negativity of KL divergence, the representation cross-entropy is minimized when
Q(Ui|y) = P (Ui|y) for each i ∈ [N ], almost surely over y.

Lemma C.1. Let U : Rn → {c1, c2, · · · , ck} be a function that encodes which group contains an image, and assume that
the groups c1, · · · , ck ⊂ Rn are disjoint and form a partition of Rn.
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For a reconstruction algorithm A, let Q(ci|Y ) denote the probability that the reconstruction lies in the set ci given
measurements y. Let P (ci|y) denote the probability that x∗ lies in Ui conditioned on y.

Then we have

RCE(A) = HP (U |y) + E
y
[KL (P (U |y)‖Q(U |y))] ,

where

HP (U |y) := −E
y

∑
i∈[k]

P (ci|y) logP (ci|y)

 ,
KL(P (U |y)‖Q(U |y)) :=

∑
i∈[k]

P (ci|y) log
(
P (ci|y)
Q(ci|y)

)
.

Remark: There is a slight abuse of notation in the lemma. Since U is a function of x∗, when treating x∗ as a random
variable, we also treat U as a random variable.

Proof. By the definition of RCE and the tower property of expectations, we have

−RCE(A) = E
x∗,y

log Pr [x̂ ∈ U(x∗)|y] = E
y

E
x∗|y

[log (Pr [x̂ ∈ U(x∗)|y])] ,

=E
y

E
x∗|y

∑
i∈[N ]

1 {x∗ ∈ Ui} log (Pr [x̂ ∈ U(x∗)|y])

 ,
=E

y
E
x∗|y

∑
i∈[N ]

1 {x∗ ∈ Ui} log (Pr [x̂ ∈ Ui|y])

 ,
=E

y
E
x∗|y

∑
i∈[N ]

1 {x∗ ∈ Ui} log (Q(Ui|y))

 ,
=E

y

∑
i∈[N ]

P (Ui|y) log (Q(Ui|y))

 .(∗)
where the second line follows because the Uis form a partition, the third line follows since x̂ ∈ U(x∗) is equivalent to
x̂ ∈ Ui if we know that x∗ ∈ Ui, the fourth line follows from the definition of Q(Ui|y) and the last line follows from
linearity of expectation.

Now we can multiply and divide P (Ui|y) within the log term above. This gives

(∗) =E
y

∑
i∈[N ]

P (Ui|y) log
(
Q(Ui|y)P (Ui|y)

P (Ui|y)

) ,
=E

y

∑
i∈[N ]

P (Ui|y) log (P (Ui|y))


+E

y

∑
i∈[N ]

P (Ui|y) log
(
Q(Ui|y)
P (Ui|y)

) ,
=−H (U |y)− E

y
[KL (P (U |y)‖Q(U |y))] .

This concludes the proof.
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D. Langevin Dynamics
D.1. StyleGAN2

We want to sample from the distribution p(x|y) induced by a StyleGAN2. Note that sampling from the marginal dis-
tribution p(x) of a StyleGAN2 is achieved by sampling a latent variable z ∈ R512, and 18 noise variables ni ∈ Rdi of
varying sizes, and setting x = G(z, n1, · · · , n18). Hence, we can sample from p(x|y) by sampling ẑ, n̂1, · · · , n̂18, from
p(z, n1, · · · , n18|y), and setting x̂ = G(ẑ, n̂1, · · · , n̂18).

The prior of the latent and noise variables is a standard Gaussian distribution. Since we know the prior distribution of these
variables, if we know the distribution of the meaurement process, we can write out the posterior distribution.

For the measurement process we consider, we have y = Ax∗, where A is a blurring matrix of appropriate dimension. Note
that in the absence of noise, posterior sampling must sample solutions that exactly satisfy the measurements. However, this is
difficult to enforce in practice, and hence we assume that there is some small amount of Gaussian noise in the measurements.
In this case, the posterior distribution becomes:

p(z, n1, · · · , n18|y) ∝ p(y|z, n1, · · · , n18)p(z, n1, · · · , n18), (1)

⇔ log p(z, n1, · · · , n18|y) = −
‖y −AG(z, n1, · · · , n18)‖2

2σ2/m
− ‖z‖2/2−

1∑
i=1

8‖ni‖2/2 + c(y), (2)

where c(y) is an additive constant which depends only on y.

Now, Langevin dynamics tells us that if we run gradient ascent on the above log-likelihood, and add noise at each step,
then we will sample from the conditional distribution asymptotically. Please note that we sample z and all noise variables
n1, · · · , n18.

In our experiments, we do 1500 gradient steps. In practice, we replace the σ in the equation above with σt, where t is the
iteration number. When the measurements have resolution 8× 8 or 4× 4, we find that σ1 = 1.0, σ1500 = 0.1 works best.
When the resolution of the measurements is 2× 2 or 1× 1, we find that σ1 = 1.0, σ1500 = 0.01 works best. We change
the value of σt after every 3 gradient steps, such that σ1, σ4, σ7, · · · , σ1497 form a geometrically decreasing sequence. The
learning rate γ1500 is also tuned to be a decreasing geometric sequence, such that γt = 5 · 10−6. Please see (Song & Ermon,
2019a) for the equations specifying the learning rate tuning, and the logic behind it.

We also find that adding a small amount of noise corresponding to σ1500 in the measurements helps Langevin mix better.

We note that our approach is different from prior work (Karras et al., 2020b; Menon et al., 2020a), which optimizes a
function of our variable z, and a subset of the noise variables.

NCSNv2 The NCSNv2 model (Song & Ermon, 2020) has been designed such that sampling from the marginal distribution
requires Langevin dynamics. This model is given by a function s(x;σ), which outputs ∇ log pσ(x), where pσ(x) is
the distribution obtained by convolving the distribution p(x) with Gaussian noise of variance σ2. That is, pσ(x) =
(p ∗ N (0, σ2))(x).

It is easy to adapt the NCSNv2 model to sample from posterior distributions, see (Song & Ermon, 2020) for inpainting
examples. In our super-resolution experiments, one can compute the gradient of p(y|x), to get the following update rule for
Langevin dynamics:

xt+1 ← xt + γt(s(xt;σt)−AT (Axt − y)/σ2
t ) +

√
2γtξt, (3)

where A is the blurring matrix, and ξt ∼ N (0, In) is i.i.d. Gaussian noise sampled at each step. We use the default values of
noise and learning rate specified in https://github.com/ermongroup/ncsnv2/blob/master/configs/
ffhq.yml. That is, σ1 = 348, σ6933 = 0.01, and γ6933 = 9 · 10−7. Note that the value of σ, γ changes every 3 iterations,
and both γt and σt decay geometrically. See (Song & Ermon, 2020) for specific details on how these are tuned.

E. Code
All code and generative models, along with hyperparameters and README are available at https://github.com/
ajiljalal/code-cs-fairness.
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