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Abstract

We consider the bilinear bandit problem where
the learner chooses a pair of arms, each from two
different action spaces of dimension d1 and d2,
respectively. The learner then receives a reward
whose expectation is a bilinear function of the
two chosen arms with an unknown matrix param-
eter Θ∗ ∈ Rd1×d2 with rank r. Despite abundant
applications such as drug discovery, the optimal
regret rate is unknown for this problem, though
it was conjectured to be Õ(

√
d1d2(d1 + d2)rT )

by Jun et al. (2019) where Õ ignores polylogarith-
mic factors in T . In this paper, we make progress
towards closing the gap between the upper and
lower bound on the optimal regret. First, we reject
the conjecture above by proposing algorithms that
achieve the regret Õ(

√
d1d2(d1 + d2)T ) using

the fact that the action space dimensionO(d1+d2)
is significantly lower than the matrix parameter di-
mensionO(d1d2). Second, we additionally devise
an algorithm with better empirical performance
than previous algorithms.

1. Introduction
Recently, researchers have shown much attention in the ap-
plication of the bandit algorithms to the matching problem.
Imagine a newly starting marriage agency company. Since
they have less knowledge about how each factor of the cus-
tomer (e.g., wealth, height, education) makes synergy with
the opponent customer, they will want to try several match-
ings to learn the importance of each feature. However, they
will also not want to lose their ratings by poor matchings
caused by excessive exploration, so someday they should
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arrange couples based on their experiences to get better rat-
ings and rewards. Balancing exploration and exploitation is
the core framework of the bandit approach, and researchers
start to involve in this approach to construct a better rec-
ommendation system for the matching problem. Few good
examples are protein-drug pair approach (Luo et al., 2017),
dating market (Das & Kamenica, 2005), duel matching sys-
tem (Sui et al., 2018), and a cloth recommendation system.

However, research on this two-sided bandit problem has
not been done well for even the simplest form, the bilinear
model. While researchers have shown interest for a long
time in pure exploration perspectives such as the matrix
sensing and the matrix completion problem (Chi et al., 2019;
Keshavan et al., 2009), there have been only few studies on
the bilinear bandit problem.

We consider the stochastic bilinear bandit problem. Let
X ⊂ Rd1 and Z ⊂ Rd2 be the left and right action space,
respectively. For each round t, the agent chooses a pair of
actions xt ∈ X and zt ∈ Z and then receives a reward rt as
a noisy bilinear function:

rt = x>t Θ∗zt + ηt

where ηt ∈ R is a σ sub-Gaussian noise. The objective is to
maximize the cumulative rewards.

The lack of research on the bilinear bandit problem was
partly due to the belief that the bilinear model can be suffi-
ciently explained by the linear bandit model. The bilinear
term x>t Θ∗zt in the reward with action spaces of dimension
d1 and d2 can be re-written as 〈vec(xtz>t ), vec(Θ∗)〉 in the
sense of d1 × d2 dimensional linear bandit problem. More-
over, in the linear bandit field, several algorithms such as
LinUCB (Abbasi-Yadkori et al., 2011) have proven their
effectiveness. Naturally, specific studies aimed only for bi-
linear bandits are limited, and most of the existing studies
have been mainly conducted only in the setting of broader
structures (Johnson et al., 2016; Zimmert & Seldin, 2018),
or with more powerful or peculiar structures (Katariya et al.,
2017; Trinh et al., 2020; Kveton et al., 2017)

However, such naive linear bandit approaches for bilinear
bandits cannot fully utilize the characteristics of the hidden
parameter or action spaces, which leads to the limited re-
gret analysis. Jun et al. (2019) proves that when the hidden
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Table 1. Summary of bilinear bandit results where d =
max(d1, d2) and r = rank(Θ∗).

RESULTS REGRET UPPER BOUND

LINUCB (2011) Õ(
√
d21d

2
2T )

JUN (2019) Õ(
√
d1d2drT )

LU(2021) Õ(
√
d1d2drT )

ε-FALB (OURS) Õ(
√
d1d2dT )

parameter space has a low-rank structure, there exists an
algorithm with a better regret than the naive linear bandit
algorithm applications. After this, researchers have studied
the structure of hidden parameters, cf., Lu et al. (2021); Hao
et al. (2020); Kotlowski & Neu (2019). In contrast, existing
researches have not shown much interest in the geometry of
the action space. Most of the papers have only summarized
how to apply the hidden parameter structure and ignored the
fact that the action space has a much lower dimension than
the hidden parameter space. This paper achieves a better
regret result by focusing on the action space.

Our contributions can be summarized as follows.

• We construct a new algorithm ε-FALB (Finite Armed
Linear Bandit) with an improved regret upper bound
of Õ(

√
d3T ) for the bilinear bandit problem, where

d = max(d1, d2). The key idea is to leverage the
low-rank nature of the action space rather than the
hidden parameter space. This rejects the conjectured
lower bound of Ω(

√
d3rT ) by Jun et al. (2019) where

r = rank(Θ∗). However, this algorithm requires dis-
cretization of the arm sets, which leads to impractical
time and space complexity of O(T d/2).

• Towards practical solutions, we construct a novel bi-
linear bandit algorithm called rO-UCB (rank-r Oracle
UCB) that enjoys a tractable time complexity. We show
that rO-UCB exhibit an excellent numerical perfor-
mance and significantly outperforms baseline methods
including ESTR (Jun et al., 2019), thanks to the lack
of forced exploration that ESTR must perform. The de-
sign of rO-UCB is based on our novel adaptive design
of confidence bound for low-rank matrices that can be
used beyond rank-one measurements, which can be of
independent interest.

We remark that both algorithms can be applied to the chang-
ing arm set environment whereas ESTR works only for the
fixed arm set due to its forced exploration phase, which
widens the applicability of bilinear bandits such as person-
alized recommendations based on contextual information.

The paper is structured as follows. Section 2 introduces
related works. In Section 3, we define the problem settings
and notations. Section 4 provides the main contribution of
our paper. Section 5 describes the practical algorithms that

overcomes the intractability of our main algorithm. We state
new conjecture on the regret lower bound in Section 6, and
discuss the future research directions in Section 7.

2. Related works
Bilinear bandit is a field that has received much attention
recently. Mainly, the rank-1 bilinear bandit problem is rela-
tively easy to analyze and has useful applications, so there
are several instance-dependent regret analyses for the rank-1
bilinear bandit problem. However, it is not easy to generalize
those studies to rank-r bilinear bandit since they depend pro-
foundly on the properties of the rank-1 matrix. For example,
Katariya et al. (2017) and Trinh et al. (2020) have dealt with
Bernoulli rank-1 bandit, all entries are positive, and only
canonical vectors are allowed for each side of actions. In
these cases, they exploited the property that the maximum
reward comes from multiplicating the maximum entry of
vector u and v. This tendency is difficult to transfer to the
rank-r case. Similarly, there is also a paper that analyzes the
rank-r case (Kveton et al., 2017). However, the objective of
the paper is finding the maximum entry of the hidden ma-
trix which is again only about the action set with canonical
vectors on both sides. Plus, they assumed strong hott topic
matrix assumption on the hidden matrix.

Jun et al. (2019) have introduced the bilinear low rank ban-
dit problem. They propose an algorithm ESTR (Explore
Subspace Then Refine) that performs subspace exploration
first to make a low-rank approximation of the hidden pa-
rameter, then performs the algorithm called LowOFUL,
which is a subspace-regularized version of the algorithm
OFUL (Abbasi-Yadkori et al., 2011) that exploits the learned
information about the low-rank subspaces. ESTR shows
Õ(
√
d3rT ) regret upper bound, which is meaningful since

it is the first algorithm better than the naive OFUL algo-
rithm regret O(d1d2

√
T ). As a follow-up study on this, Lu

et al. (2021) studied the extension of the bilinear bandit
problem. This paper uses the fact that one can also interpret
bilinear term x>Θz as 〈vec(xz>), vec(Θ)〉, and proves that
the ESTR could achieve almost the same regret bound for
generalized action set. They also suggested a lower bound
O(rd

√
T ) for the extended model, but as will be described

later, our paper shows a regret upper bound algorithm that is
lower than the lower bound presented here, indicating that
the setting here is too broad that this lower bound cannot
wholly explain the properties of the bilinear bandit. Both Jun
et al. (2019) and Lu et al. (2021) presented the conjecture
that the upper bound suggested in the Jun et al. (2019) paper
will be tight; however, we refute this argument in Section 4
by designing an algorithm with a lower regret bound.

Kotlowski & Neu (2019) has devised an algorithm that per-
formsO(

√
rd2T ) regret upper bound for a specific adversar-

ial symmetric bilinear bandit called bandit PCA. However,
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this study differs from the general bilinear bandit study
since their action set is smaller and specific. We will dis-
cuss in Section 5 and Section 6 about this algorithm and its
extension in details.

There are numerous bandit papers that consider structural as-
sumptions that bilinear bandits are subproblems. Low-rank
tensor bandit (Hao et al., 2020) extends the hidden param-
eter from a matrix to a tensor. Structured bandits (Johnson
et al., 2016; Yu et al., 2020) propose unified frameworks
for bandits with structure including bilinear bandits. Lastly,
factored bandit paper (Zimmert & Seldin, 2018) deals with
the bandit problem, whose action set is a Cartesian product
of atomic actions. While these studies allow more general
structures, they do not exploit the rank-1 structure of the
action space for the bilinear bandit case.

Finally, the linear bandit is indispensable to the bilinear
bandit discussion (Abbasi-Yadkori et al., 2011; Dani et al.,
2008; Lattimore & Szepesvári, 2020). As we mentioned in
the introduction, the bilinear bandit can be reinterpreted in
the form of the linear bandit as follows:
rt = x>t Θ∗zt + ηt = 〈vec(xtz>t ), vec(Θ∗)〉+ ηt (1)

where ηt is a sub-Gaussian noise. Consequently, any linear
bandit algorithms can be applied to bilinear bandit problems.
However, these algorithms do not exploit the rank structure
of the action nor the unknown parameter, leading to loose re-
gret bounds. For example, applying OFUL (Abbasi-Yadkori
et al., 2011) gives O(d1d2

√
T ). To exploit the geometry of

the action set of our problem, we get inspiration from finite
armed linear bandits (Auer, 2002; Chu et al., 2011). There
were a few linear bandit studies when the action set is a
subspace or its perturbation (Lale et al., 2019; Hamidi et al.,
2019), but the action set of the bilinear bandit interpreted as
(1) are generally not the subspace of Rd1d2 .

3. Problem definition
In this section we formally define the problem and notations.
Let X ⊂ Rd1 and Z ⊂ Rd2 be the left and right action
space, respectively. Without loss of generality, we assume
that all these actions have l2 norm bounded by 1.

Let d = max(d1, d2) for convenience, and Θ∗ ∈ Rd1×d2 be
the hidden parameter matrix. Let λi(Θ) be the i-th largest
singular value of Θ. Without loss of generality we assume
that λ1(Θ∗) ≤ 1 to bound the expected reward. We define
r = rank(Θ∗), which is not necessarily known to the agent.

For each round t, the agent chooses a pair of actions xt ∈ X
and zt ∈ Z then receives a reward rt as a noisy bilinear
function:

rt = x>t Θ∗zt + ηt

where ηt ∈ R is a σ sub-Gaussian noise conditioning on
(xs, zs)s≤t and (rs)s<t. The goal of this bandit problem is

to maximize the cumulative rewards, or equivalently, mini-
mize the following pseudo-regret:

RT =

T∑
t=1

(x>∗ Θ∗z∗ − x>t Θ∗zt)

where (x∗, z∗) is defined as arg maxx∈X ,z∈Z x
>Θ∗z, opti-

mal action pair in hindsight.

Notations Let Bd be the unit ball centered at the ori-
gin in Rd. For a positive definite matrix P ∈ Rd×d, the
weighted 2-norm of vector x ∈ Rd is ‖x‖P =

√
x>Px.

For any sequence of d-dimensional vector {at}, we denote
as:t = [as|as+1| · · · |at] ∈ Rd×(t−s+1) as the horizontally
concatenated matrix of this subsequence of vectors. Id rep-
resents the d× d identity matrix.

4. Main algorithm

Algorithm 1 ε-FALB

Input: β, Alg : finite armed linear bandit algorithm, ε :
distance for the covering sets, T : number of pulls
Construct ε-covering set Xε and Zε
Initialize A = {vec(xz>) : x ∈ Xε, z ∈ Zε}.
Perform Alg with action set A, time horizon T , and con-
fidence bound constant β

In this section, we describe a new approach ε-FALB(finite
armed linear bandit) that guarantees Õ(

√
d3T ) regret for

general action spaces, even applicable to the changing action
spaces. Here, we focus on using the geometry of the action
space without any knowledge of the rank r. Our framework
first constructs ε-covering sets Xε and Zε. Then we run a
finite armed linear bandit algorithm as described in Algo-
rithm 1. Such a discretization of action spaces is folklore in
the community; e.g., Beygelzimer et al. (2011, Theorem 5).

To our best knowledge, the best regret for the bilinear bandit
setting was Õ(

√
d3rT ) by Jun et al. (2019). The correspond-

ing lower bound is not tight yet, but the authors claimed that
the regret lower bound might be Õ(

√
d3rT ) as well from a

signal to noise ratio analysis. However, the reason why rank
r should be in the regret term was not entirely clear.

To achieve the improved regret bound by applying the finite
armed linear bandit algorithm in bilinear setting, it is key
to control the number of discretized points of action spaces.
The ε-covering produces a discretization of the cardinality
of exp(Õ(d)) and it is enough to obtain the desired regret
upper bound.

In Section 4.1, we review the linear bandit algorithms to con-
vey why we choose finite armed linear bandit algorithms for
our algorithm. Section 4.2 describes how we exploited the
action space geometry through ε-covering set construction.
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Section 4.3 tells the necessary modification for the finite
armed linear bandit, and Section 4.4 is for the main regret
analysis. Section 4.5 is about the extension of our algorithm
to the matrix action space case.

4.1. Reason for choosing finite armed linear bandit
algorithms

Only for this subsection, let us assume a simple linear bandit
model defined as follows. At every round, the agent selects
action xt from action set A ⊂ Rd, and receives a noisy
reward rt = x>t θ∗+ηt. Here, θ∗ ∈ Rd is a hidden parameter
that the agent does not know, and ηt is σ sub-Gaussian noise.
In this problem, Vt =

∑t
s=1 xtx

>
t and V̄t = Vt + λId

for some positive regularizing constant λ > 0, and θ̂t =
V̄ −1
t x1:tr

>
1:t is the Regularized Least Square estimator.

For each fixed action, the upper confidence bound of the
expected reward is well known.

Theorem 4.1. (Valko et al. (2014, Lemma 7), Chu et al.
(2011, Lemma 1)) For each fixed x ∈ Rd, the following
inequality holds with probability 1− δ:

〈x, θ̂t − θ∗〉 ≤ ‖x‖V̄ −1
t
O

(√
log

1

δ

)
+
√
λ‖θ∗‖ (2)

The inequality above is one of the most trusted inequalities
that can give a confidence bound for each point x, which is
derived using Chernoff bound. The main difference between
finite armed bandits and linear bandit with a broad action set
depends on whether or not Eq. (2) can be applied directly to
each action.

In the linear bandit with a broad action set, it is hard to
expect all actions to satisfy Eq. (2) simultaneously by the
union bound argument because there are too many actions.
Instead, most of existing approaches utilize the fact that
θ∗ and θ̂ are close in terms of l2 distance, and Cauchy’s
inequality: 〈x, θ̂ − θ∗〉 ≤ ‖x‖V̄ −1

t
‖θ̂ − θ∗‖V̄t . However,

Cauchy’s inequality is generally not tight, which leads to
the additional dimension dependency of the regret bound.
We deferred the detailed discussion in the Appendix A.

On the other hand, in the finite armed linear bandit case,
Eq. (2) is used to construct a high probability confidence
bound. Since the number of action is finite, a simple union
bound argument can decide the appropriate failure rate δ to
satisfy the equation Eq. (2) for all actions as follows:

Theorem 4.2. (Auer, 2002; Valko et al., 2014) For a fixed
set A with |A| = K, The following inequality holds with
probability 1− δ: For all x ∈ A

〈x, θ̂t − θ∗〉 ≤ ‖x‖V̄ −1
t
O

(√
log

K

δ

)
+
√
λ‖θ∗‖ (3)

Finite armed linear bandit algorithms do not suffer the ad-

ditional dimension dependency that the general action set
case has to take. Instead, the finite armed case regrets have
additional

√
logK terms because of the union bound argu-

ment. In the next section,
√

logK will reflect the dimension
of the action set.

4.2. Extension to the general action set case

For any given set S, the growth rate of ε-covering number,
N(S, ε) is hinged on the dimension of S (see Hausdorff
dimension). Since X ⊂ Bd1 and Z ⊂ Bd2 one can easily
expect K ≈ O(d log 1

ε ), and this is what we want to talk in
this subsection. Formal proof of the bound for N(X , ε) and
N(Z, ε) comes from the following lemma (adapted from
Lattimore & Szepesvári (2020, Problem 20.3)).
Lemma 4.3. For a bounded set S ⊂ Rd, its covering num-
ber N(S, ε) satisfies the following inequality:

N(S, ε) ≤
vol(S ′ + ε

2Bd)
vol( ε2Bd)

(4)

Here, S ′ is an arbitrary measurable set that contains S, and
S ′ + ε

2Bd is a sumset between S ′ and ε
2Bd.

We deferred the detailed proof in Appendix D. Now since
X ⊂ Bd1 and Z ⊂ Bd2 , we can conclude that N(X , ε) ≤
( 3
ε )d1 and N(Z, ε) ≤ ( 3

ε )d2 (see Lattimore & Szepesvári
(2020, Lemma 20.1) for the covering number of the Sd−1).

When we apply this lemma to the linearized action spaces
(set of xz>) of the bilinear bandit problem, the cardinality of
the discretized space can not be sharpened to a lower value
than O(ε−d1d2) whereas it is possible to get a cardinality of
order O(ε−d1−d2) if we apply the covering to the left and
right action spaces separately.

4.3. Modification of the finite arm algorithm

The only remaining part is which algorithm we will use
for the input of Algorithm 1. When it comes to the finite
armed linear bandit algorithm, the SupLinRel based algo-
rithms are usually the best known (Auer, 2002; Chu et al.,
2011; Valko et al., 2013). However, these algorithms re-
quire some modifications for the bilinear bandit setting to
optimize the regret. In particular, they use an assumption
about the l2-norm boundedness of the hidden parameter to
compute the regret. We need some modifications to apply
them to our current bilinear bandit problem. In the bilinear
bandit setting, only the singular value limits the maximum
reward, and rank of Θ∗ is a factor that increases Frobenius
norm from ‖Θ∗‖2F =

∑r
i=1 λi(Θ

∗)2 ≤ rλ1(Θ∗)2. Thus
from Eq. 3 with replacing ‖θ∗‖ to ‖Θ∗‖F , without proper
regularization on λ the confidence bound width has an order
of
√
r no matter what logK is. When logK � r it is a

severe loss of the regret upper bound since the regret upper
bound of the UCB-type linear bandit algorithm is usually
proportional to the confidence bound.
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Algorithm 2 SupLinUCB(adapted from Chu et al. (2011))

Input: β, S = dlnT e, Φst ← ∅ for all s ∈ [S]
Initialize A1 = A, s = 1.
for t = 1 to T do

repeat
Calculate r̂st,a and wst,a using BaseLinUCB with Φst
for all a ∈ As
if wst,a ≤ 1√

T
for all a ∈ As then

Choose at = arg maxa∈At(r̂
s
t,a + wst,a)

Φs
′

t+1 ← Φs
′

t for all s′ ∈ [S]
else if wst,a ≤ 2−s for all a ∈ As then
As+1 = {a ∈ As : r̂st,a + wst,a ≥
maxa′∈As(r̂

s
t,a′ + wst,a′)− 2 · 2−s}

s← s+ 1
else

Choose at ∈ As such that wst,at > 2−s

Φst+1 ← Φst ∪ {t}
Φs
′

t+1 ← Φs
′

t for all s′ ∈ [S]\{s}
end if

until at is found
end for

Algorithm 3 BaseLinUCB (Chu et al., 2011)

Input: β, Φst = {t1, t2, · · · tl}, V0 = 1
dId1d2

Xt,s = [at1 ; at2 ; · · · atl ]
Rt,s = [rt1 , rt2 , · · · , rtl ]>
Vt,s = V0 +

∑
τ∈Φst

aτa
>
τ

wst,a = β‖a‖V −1
t,s

r̂st,a = V −1
t,s Xt,sRt,s

Return r̂st,a and wst,a

Algorithm 2 is the modified SupLinUCB for the bilinear
setting. Note that unlike Chu et al. (2011), we add 1

dId
instead of Id for the regularized gram matrix Vt, since we
have to control the scale of

√
λ‖θ∗‖ term in Eq. (2) by

setting λ = 1
d .

Considering that the proof in Chu et al. (2011) strongly
depends on the fact that λmin(Vt) ≥ 1 and the boundedness
of the reward, we need several modifications for the regret
upper bound proof. The detailed proof is in the Appendix B.
After that, the following regret upper bound holds:

Theorem 4.4. If we run Algorithm 2 with βt =

2σ
√

14 log 2KT log T
δ + 1 the regret is bounded by

RT ≤ Õ

(√
d1d2T log

K

δ

)
with probability 1− δ.

The main advantage of SupLinUCB is that the algorithm
can be applied to the changing arm sets since it is basically
for the contextual linear bandit problem.

Algorithm 4 Phase Elimination (Valko et al., 2014)

Input: T : the number of pulls, A : finite action set, β,
{tj = 2j−1} : parameters of elimination and phase
Initialize A1 = A.
for j = 1 to J do
Vtj ← 1

dId1d2
for t = tj to tj+1 − 1 do
at ← arg maxa∈Aj ‖a‖V −1

t

Vt+1 ← Vt + ata
>
t

end for
Θ̂j = V −1

t atj :tr
>
tj :t

p← maxa∈Aj a
>Θ̂− ‖a‖V −1

t
β

Aj+1 ← {a ∈ Aj : a>Θ̂ + ‖a‖V −1
t
β ≥ p}

end for

On the other hand, if we want to consider about Spec-
tral Eliminator (Valko et al., 2014) and Phased elimination
with G-optimal exploration (Lattimore & Szepesvári, 2020;
Soare et al., 2014), they are directly applicable with some
tuning on the initial matrix V0. Instead, we cannot apply
these algorithms for the changing arm sets. Algorithm 4 is a
Spectral Eliminator with initial matrix V0 = 1

dId1d2 . Again,
the regularizing constant is 1

d to control the scale of the last
‖θ∗‖ term in Eq. (2). Without any modification of the proof,
the following regret bound holds:

Theorem 4.5. (Valko et al., 2014) If we run Algo-
rithm 4 with failure probability δ, bounding constant β =

2σ
√

14 log 2K log2 T
δ +1, then with probability at least 1−δ

the following regret bound holds.

RT ≤
4

log 2

(
2σ

√
14 log

2K log2 T

δ
+ 1

)
×
√
d1d2T log(1 + (d1 + d2)T )

In short, both algorithm shows the regret upper bound of
Õ(
√
d1d2T logK) with probability at least 1− δ.

4.4. Regret analysis

Theorem 4.6. Algorithm 1 with input ε = 1√
T

, Alg as
Algorithm 2 or Algorithm 4, and β for suitable constant for
Alg in Theorem 4.4 and Theorem 4.5 satisfies the following
regret upper bound with probability 1− δ:

RT ≤ Õ(

√
d1d2(d1 + d2)T log

1

δ
) (5)

Proof. Let K = |A|, xε = arg minx∈Xε ‖x∗ − x‖, and
zε = arg minz∈Zε ‖z∗ − z‖. We can separate the regret of
the Algorithm 1 to the following three terms:
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RT =

T∑
t=1

x>∗ Θ∗z∗ −
T∑
t=1

x>t Θ∗zt

=

T∑
t=1

x>∗ Θ∗z∗ −
T∑
t=1

x>ε Θ∗zε

+

T∑
t=1

x>ε Θ∗zε −
T∑
t=1

max
x,z∈E

x>Θ∗z

+

T∑
t=1

max
x,z∈E

x>Θ∗z −
T∑
t=1

x>t Θ∗zt

= R1 +R2 +R3

Here, R1 =
∑T
t=1 x

>
∗ Θ∗z∗ −

∑T
t=1 x

>
ε Θ∗zε repre-

sents the reward difference between the optimal action
and its closest ε-covering set element xε, zε. R2 =∑T
t=1 x

>
ε Θ∗zε −

∑T
t=1 maxx∈Xε,z∈Zε x

>Θ∗z is the dif-
ference between the action closest to the optimal action
and the optimal action among ε-covering set elements.
R3 =

∑T
t=1 maxx,z∈E x

>Θ∗z −
∑T
t=1 x

>
t Θ∗zt is the re-

gret of the finite armed linear bandit algorithm. Now those
three regret terms are calculated as follows:

• By definition, R2 ≤ 0

• R3 can be bounded by O(
√
d1d2T log K

δ ) by Theo-
rem 4.4 or Theorem 4.5.

• Lastly, since ‖x∗z>∗ − xεz>ε ‖F ≤ ‖(x∗ − xε)z>∗ ‖F +
‖xε(z>∗ − z>ε )‖F ≤ 2ε by the ε-cover construction, R1

is bounded as follows:

T∑
t=1

x>∗ Θ∗z∗ −
T∑
t=1

x>ε Θ∗zε

=

T∑
t=1

〈vec(Θ∗), vec(x∗z>∗ − xεz>ε )〉

≤
T∑
t=1

‖Θ∗‖F · ‖x∗z>∗ − xεz>ε ‖F ≤ 2εT‖Θ∗‖F

Overall, the regret bound is
RT ≤ R1 +R2 +R3

≤ 2εT
√
rλ1(Θ∗) + 0 + Õ(

√
d1d2T ln(

K

δ
))

Substituting ε = 1√
T

and using the fact K = N(A, ε) =

O(( 1
ε )d1+d2) from Section 4.2 concludes the theorem.

Remark 1 Note that from the proof the final regret

bound is Õ(
√
d1d2T ln K

δ ), and the regret of Eq. 5 is from

logK = Õ(d). The bound can be even lower when the scale
of N(X , ε) (or N(Z, ε)) is much smaller than d1 (or d2, re-
spectively), thanks to the modifications and initialization of

V0 discussed in 4.3. One of the cases is when X and Z are
finite action spaces.

Remark 2 One might wonder which ε shows the best em-
pirical performance of ε-FALB in practice. We can get the
same order of regret upper bound when ε ∈ [ 1√

T
, d√

T
], and

this range is also the best choice for empirical perspectives.
Appendix E.1 includes the experiment about the ε-value
selection.

4.5. Extension to the action set of matrices

In the previous section, we used the fact that the action
space of the bilinear bandit has much smaller dimensions
than d1 × d2 – from the perspective of (1), the action space
is a set of some rank-1 matrices. Then, one natural question
is whether we can extend the previous result to the action
space consists of matrices with rank ≤ ρ for some constant
ρ. Specifically, for the linear bandit problem

yt = 〈vec(At), vec(Θ∗)〉+ ηt

with the action space A ⊂ {Θ ∈ Rd1×d2 : λmax(Θ) ≤
1, rank(Θ) ≤ ρ}, we can expect to achieve a better regret-
bound compared to the naive d1d2 dimensional linear bandit,
and we show that it holds partially as we will see in the
following corollary. We can prove the corollary in a similar
way to the proof of Theorem 4.6.

Corollary 4.7. Let Od′,ρ = {M ∈ Rd′×ρ : MM> = Id′},
Dρ = {Diag(θ) : θ ∈ [−1, 1]ρ}. Suppose there are three
sets X ⊂ Od1,ρ,Z ⊂ Od2,ρ,D ⊂ Dρ such that the action
set can be represented as the product of three sets, namely
A = {vec(UΣV >) : U ∈ X , V ∈ Z,Σ ∈ Dρ}. If we run
Algorithm 1 with action set Aε(ε-covering set of A) and
other hyperparameters described as Theorem 4.6, then the
regret is bounded as below with probability 1− δ

RT ≤ Õ(

√
d1d2ρ(d1 + d2)T log(

T

δ
)

We left the details in the Appendix D. Note that all rank
ρ matrix can be decomposed as Θ = UΣV > by singular
value decomposition, the Corollary 4.7 covers wide range
of rank-ρ action sets.

5. Practical algorithms
Although the Algorithm 1 shows better regret bound than
the previous studies, it is not tractable to apply Algorithm 1
in practice since the cardinality of Xε and Zε grows in the
order of O(( 1

ε )d) = O(T d/2) in general, which is spatially
intractable. This spatial drawback leads a serious computa-
tional time disadvantage - see Appendix E.2 for details.

In addition, finite armed linear bandit algorithms are well
known to be inefficient in practice compare to the linear
bandit algorithms with general action space (Valko et al.,
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2014; Chu et al., 2011).

Instead, we devise two practical algorithms that one shows
superior empirical performance, and the other shows prov-
able computational complexity.

Table 2. Summary of our additional algorithms. Here Forced exp.
is about whether the algorithm requires first forced exploration
phase.

RESULTS
REGRET
BOUND

FORCED
EXP.

ACTION
SPACE

ε-FALB Õ(
√
d3T ) NO CHANGABLE

RO-UCB Õ(
√
d3rT ) NO CHANGABLE

B-PCA (2019)1 Õ(
√
d3T )2 NO Sd−1

ESTR (2019) Õ(
√
d3rT ) YES FIXED

5.1. Considering hidden parameter structure

We have verified that Algorithm 1 can guarantee regret
bound Õ(

√
d3T ) even for the worst-case by considering

the geometry of the action set, although we do not know
whether it is optimal or not. From the result, the rank of the
hidden parameter might not affect much on the worst-case
regret of the bilinear bandit.

However, it is undeniable that knowing the rank of the prob-
lem might help better approximation, evidenced by histori-
cal low-rank studies (Chi et al., 2019).

Suppose that there exists an oracle that solves the following
optimization problem, and the answer is Θ̂t

(Opt)


minΘ

∑t
s=1(x>s Θzs − rs)2

subject to rank(Θ) ≤ r,
‖Θ‖F ≤ C

In practice, the existing low-rank estimation algorithms usu-
ally depend on the gradient descent-based methods. They
need several conditions about action xs and zs to guarantee
to find the solution of (Opt), such as the restricted isometry
condition (Chi et al., 2019; Bhojanapalli et al., 2016) as
gradient descent methods usually require convexity condi-
tions on the landscape. Those conditions are usually hard
to achieve in the action history of the bandits. However,
assuming that the oracle for (Opt) exists, we can create a
concentration inequality like follows:
Theorem 5.1. For all t ∈ {1, · · · , T}, Θ̂t defined as above
satisfies the following inequality with probability at least

1Though the algorithm was designed by Kotlowski & Neu
(2019), we adapted this algorithm to the stochastic environment
and calculated the regret upper bound result.

2This bound is about the expected regret upper bound. It is
another challenging problem to calculate the high probability regret
bound for the bandit PCA algorithm.

1− δ:

‖vec(Θ̂−Θ∗)‖Wt
≤ O

(√
rd log

CT

δ

)
where Wt = Id1d2 +

∑t−1
s=1 vec(xsz

>
s )vec(xsz

>
s )>.

With this oracle, we can construct an algorithm, adapted
from linUCB, that has a regret of order Õ(

√
rd3T ). See

Appendix C for its proof.

Algorithm 5 rO-UCB (rank r Oracle UCB)

Input: β, W0 = Id1d2 , C =
√
r

for t = 1 to T do
Wt = W0 +

∑t−1
s=1 vec(xsz

>
s )vec(xsz

>
s )>

Θ̂t = Oracle(x1:t−1, z1:t−1, r1:t−1, r, C)
UCBt(x, z) = x>Θ̂tz + β‖vec(xz>)‖W−1

t

Choose (xt, zt) = arg max(x,z)∈X×Z UCBt(x, z)
and receive reward rt

end for

Figure 1. Simulation result for d = 8 and r = 1, and σ = 0.01.
We plot the average regret of the methods and the .95 confidence
intervals. Our method outperforms all the known general bilinear
bandit algorithms.

We present an experiment to compare the performance of
the existing bilinear algorithms and our rO-UCB algorithm.

In the experiment, we consider the four methods: ESTR-OS,
which is the proposed method of Jun et al. (2019); ESTR-
BM, the best heuristic method in Jun et al. (2019); OFUL,
naive OFUL extension as discussed in (1); and rO-UCB, our
proposed algorithm. We use the grid search method to adjust
the forced exploration time of ESTR and confidence bound
width of all algorithms. Instead of the true oracle, we used
one of the low rank approximation of Burer & Monteiro
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(2003) instead. The graph is about the best regret result for
each algorithm. Our rO-UCB outperforms every other algo-
rithms, and one can see several additional experiments in the
Appendix E.3 that in another environment with larger σ, our
rO-UCB outperforms other algorithms with stability while
ESTR algorithms fail because of the unsuccessful forced
exploration. We leave the hyper-parameters and additional
experiments in the Appendix E.3.

5.2. Stochastic bandit PCA analysis

Kotlowski & Neu (2019) is one of main inspirations of our
research. The bandit PCA of Kotlowski & Neu (2019) is
a specialized version of the adversarial bilinear problem,
which repeats the following steps for each round:

• Agent selects action xt ∈ Sd−1 through history.
• The environment choose a d by d symmetric matrix Lt

with a spectral norm of less than 1.
• Agent receives loss(or reward) lt = x>t Ltxt.

Indeed, this is a partial problem of the bilinear problem,
where the right and left actions are the same. Thus, we
analyze the regret of the stochastic bandit PCA problem to
check the regret lower bound of the bilinear bandit problem.
The problem changes as follows:

• The environment decides the d by d symmetric matrix
L with a spectral norm less than 1 at the start of the
game. That is, Lt = L for all t.

• Agent selects action xt ∈ Sd−1 through history.
• Agent receives loss(or reward) lt = x>t Lxt + ηt.

As a result, we have the following theorem.

Theorem 5.2. The expected cumulative regret of FTRL with
Sparse sampling algorithm (Kotlowski & Neu, 2019) on
stochastic bandit PCA problem is bounded as follows:

E[RT ] ≤ Õ
(√

d3T
)

We defer the details to the Appendix F. The main advantage
of this stochastic bandit PCA is that it requires only Õ(dT )
computational complexity (Kotlowski & Neu, 2019).

6. Discussion on the lower bound
One of the shortcomings in our study is the gap between
the known regret lower bound (Ω(d

√
T ), Jun et al. (2019))

and the regret upper bound of our algorithm. Motivations
mentioned in Section 4 also lead us to suspect that Ω(

√
d3T )

might be the minimax lower bound for the bilinear bandit
problem, while a parallel work of Lattimore & Hao (2021)
has proposed the existence of the algorithm with a better
regret upper bound. In this section, we will briefly discuss
about those evidences.

Signal to Noise Ratio Jun et al. (2019) provide the signal
to noise ratio(SNR) as the evidence of the

√
d3 term in the

upper bound. Please refer to Section 6 of Jun et al. (2019)
for the details.

Stochastic Bandit PCA As mentioned in the additional
algorithm section, while studying Bandit PCA, stochastic
bandit PCA was able to obtain only the regret of order
Õ(
√
d3T ), unlike adversarial bandit PCA regret Õ(

√
rd2T ).

The reason for this difference was intriguing because the
noise factor completely obscures the parameter’s properties,
similar to the relationship between the adversarial linear
bandit and the stochastic linear bandit.

In Appendix F, we bound the regret of the online mirror
descent algorithm by the following inequality.

RT ≤
d log T

η
+ η ×

∑
t

Bt

The main difference between stochastic and adversarial ban-
dit PCA problem comes from the calculation of Bt:

• Adversarial : Bt ≤ · · · ≤ d‖Lt‖2F ≤ dr
• Stochastic : Bt ≤ · · · ≤ d‖L‖2F + d2σ2 ≤ dr + d2σ2

Here, this new term d2σ2 is created by the sum of noises
and has a larger dimensional dependency than the term
created by the original loss matrix. Therefore, no matter
what property does the hidden matrix L possesses, all of
which are obscured by the noise term.

A similar phenomenon happens in the linear bandit problem.
Apparently, contradictory result between the upper bound
for adversarial bandits on the unit ball and the lower bound
for stochastic bandits for the unit ball is one of the famous
phenomenons in the linear bandit field (Bubeck et al., 2012;
Lattimore & Szepesvári, 2020). From the close relationship
between the linear bandit and the bilinear bandit, and from
the SNR ratio analysis, we can expect that our Algorithm 1
might be asymptotically optimal.

Bandit Phase Retrieval On the other hand, Lattimore &
Hao (2021) suggests the possibility of Õ(d

√
T ) bilinear

bandit algorithm by analyzing the bandit phase retrieval
problem, which is a sub-problem to our bilinear bandit prob-
lem. The work of Lattimore & Hao (2021) is a tight result of
the known regret lower bound (Ω(d

√
T ), (Jun et al., 2019)),

and similar strategies may lead to the bilinear bandit algo-
rithm with the regret upper bound Õ(d

√
T ). Note that for

the case where the left and right arm sets are both the unit
balls and the parameter Θ∗ is symmetric, one can apply
their algorithm to solve the bilinear problem with regret
Õ(d
√
T ). Whether or not the same is true for the more

generic bilinear problems and whether or not rank(Θ∗) af-
fects the regret upper bound are important open problems
for bilinear bandits.
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Proving or refuting these lower bound conjectures will be
a meaningful research subject in the future. Although Jun
et al. (2019) verified a lower bound of Ω(d

√
T ) through

the singleton action set case, it was hard to be generalized
to the action spaces with multiple actions since the lower
bound calculation of the bilinear bandit requires computing
the cross-terms of the paired action. Interested readers can
check our lower bound analysis in the Appendix G, which
is about the lower bound of the nontrivial action spaces.

7. Conclusion
In this paper, we have proposed new algorithms that en-
joy either improved regret bound or much better numerical
performance over prior art. Specifically, by focusing on
the action set dimension, ε-FALB achieves an improved
regret bound that disproves a conjectured optimal regret rate
from Jun et al. (2019). Furthermore, our algorithm rO-UCB
achieves significantly better numerical results over existing
algorithms by leveraging our novel concentration inequality,
which allows us to avoid forced exploration.

Our new results tell us that we are yet far from understanding
the optimal regret rate for bandits with matrix parameters,
which opens up numerous future directions. First, studying
the optimal regret of bilinear bandits with the landmark arm
sets like the unit ball or finite set remains to be a challenging
open problem. Second, it seems that UCB-type algorithms
with the adaptive design confidence inequalities are not
amenable to exploiting the action set’s true dimension, as
far as known proof techniques are concerned. While fixed
design confidence bounds lead to tighter theoretical bounds
for finite arm sets such as SupLinRel-type algorithms, the
community has seen that algorithms based on the adaptive
design confidence bounds such as OFUL are simple yet
enjoy better empirical performance. It would be interesting
to develop novel algorithmic frameworks that can exploit the
true dimension of the action set, which can lead to practical
algorithms with tighter regret guarantees.
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