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Abstract
Decision analysis deals with modeling and enhan-
cing decision processes. A principal challenge in
improving behavior is in obtaining a transparent
description of existing behavior in the first place.
In this paper, we develop an expressive, unifying
perspective on inverse decision modeling: a frame-
work for learning parameterized representations
of sequential decision behavior. First, we formal-
ize the forward problem (as a normative standard),
subsuming common classes of control behavior.
Second, we use this to formalize the inverse prob-
lem (as a descriptive model), generalizing existing
work on imitation/reward learning—while open-
ing up a much broader class of research problems
in behavior representation. Finally, we instantiate
this approach with an example (inverse bounded
rational control), illustrating how this structure
enables learning (interpretable) representations of
(bounded) rationality—while naturally capturing
intuitive notions of suboptimal actions, biased be-
liefs, and imperfect knowledge of environments.

1. Introduction
Modeling and enhancing decision-making behavior is a fun-
damental concern in computational and behavioral science,
with real-world applications to healthcare [1], economics [2],
and cognition [3]. A principal challenge in improving deci-
sion processes is in obtaining a transparent understanding of
existing behavior to begin with. In this pursuit, a key com-
plication is that agents are often boundedly rational due to
biological, psychological, and computational factors [4–8],
the precise mechanics of which are seldom known. As such,
how can we intelligibly characterize imperfect behavior?
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Consider the “lifecycle” of decision analysis [9] in the real
world. First, normative analysis deals with modeling ratio-
nal decision-making. It asks the question: What constitutes
ideal behavior? To this end, a prevailing approach is given
by von Neumann-Morgenstern’s expected utility theory, and
the study of optimal control is its incarnation in sequential
decision-making [10]. But judgment rendered by real-world
agents is often imperfect, so prescriptive analysis deals with
improving existing decision behavior. It asks the question:
How can we move closer toward the ideal? To this end, the
study of decision engineering seeks to design “human-in-the-
loop” techniques that nudge or assist decision-makers, such
as medical guidelines and best practices [11]. Importantly,
however, this first requires a quantitative account of current
practices and the imperfections that necessitate correcting.

To take this crucial first step, we must therefore start with
descriptive analysis—that is, with understanding observed
decision-making from demonstration. We ask the question:
What does existing behavior look like—relative to the ideal?
Most existing work on imitation learning (i.e. to replicate ex-
pert actions) [12] and apprenticeship learning (i.e. to match
expert returns) [13] offers limited help, as our objective is in-
stead in understanding (i.e. to interpret imperfect behavior).
In particular, beyond the utility-driven nature of rationality
for agent behaviors, we wish to quantify intuitive notions of
boundedness—such as the apparent flexibility of decisions,
tolerance for surprise, or optimism in beliefs. At the same
time, we wish that such representations be interpretable—
that is, that they be projections of observed behaviors onto
parameterized spaces that are meaningful and parsimonious.

Contributions In this paper, our mission is to explicitly
relax normative assumptions of optimality when modeling
decision behavior from observations.3 First, we develop an
expressive, unifying perspective on inverse decision model-
ing: a general framework for learning parameterized repre-
sentations of sequential decision-making behavior. Specifi-
cally, we begin by formalizing the forward problem F (as

3Our terminology is borrowed from economics: By “descriptive”
models, we refer to those that capture observable decision-making
behavior as-is (e.g. an imitator policy in behavioral cloning), and
by “normative” models, we refer to those that specify optimal de-
cision-making behavior (e.g. with respect to some utility function).
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Table 1. Inverse Decision Modeling. Comparison of primary class-
es of imitation/reward learning (IL/IRL) versus our prototypical
example (i.e. inverse bounded rational control) as instantiations of
inverse decision modeling. Constraints on agent behavior include:
†environment dynamics (extrinsic), and ‡bounded rationality (in-
trinsic). Legend: deterministic (Det.), stochastic (Stoc.), subjective
dynamics (Subj.), behavioral cloning (BC), distribution matching
(DM), risk-sensitive (RS), partially-observable (PO), maximum
entropy (ME). All terms/notation are developed over Sections 3–4.
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⌧env !env � ⌧,! ⇡ ⇢,� ↵ � ⌘

BC-IL 3 3 7 7 3 7 7 7 7 [14–21]
Subj. BC-IL 3 3 7 3 3 7 7 7 7 [22]

Det. DM-IL 3 7 7 7 7 7 7 7 7 [23, 24]
Stoc. DM-IL 3 7 7 7 3 7 7 7 7 [25–39]

Det. IRL 3 7 3 7 7 7 7 7 7 [40–46]
Stoc. IRL 3 7 3 7 3 7 7 7 7 [47–66]
Subj. IRL 3 7 3 3 3 7 7 7 7 [67]
RS-IRL 3 7 3 3 7 3 7 7 7 [68, 69]

Det. PO-IRL 3 3 3 7 7 7 7 7 7 [70–73]
Stoc. PO-IRL 3 3 3 7 3 7 7 7 7 [74–76]
Subj. PO-IRL 3 3 3 3 3 7 7 7 7 [77–80]

ME-IRL 3 7 3 7 3 7 3 7 7 [81–92]
Subj. ME-IRL 3 7 3 3 3 7 3 7 7 [93, 94]

Inverse Bounded
Rational Control 3 3 3 3 3 3 3 3 3 Section 4

a normative standard), showing that this subsumes com-
mon classes of control behavior in literature. Second, we
use this to formalize the inverse problem G (as a descrip-
tive model), showing that it generalizes existing work on
imitation and reward learning. Importantly, this opens up
a much broader variety of research problems in behavior
representation learning—beyond simply learning optimal
utility functions. Finally, we instantiate this approach with
an example that we term inverse bounded rational control, il-
lustrating how this structure enables learning (interpretable)
representations of (bounded) rationality—capturing familiar
notions of decision complexity, subjectivity, and uncertainty.

2. Related Work
As specific forms of descriptive modeling, imitation learn-
ing and apprenticeship learning are popular paradigms for
learning policies that mimic the behavior of a demonstrator.
Imitation learning focuses on replicating an expert’s actions.
Classically, “behavioral cloning” methods directly seek to
learn a mapping from input states to output actions [14–16],
using assistance from interactive experts or auxiliary regu-
larization to improve generalization [17–21]. More recently,
“distribution-matching” methods have been proposed for
learning an imitator policy whose induced state-action occu-
pancy measure is close to that of the demonstrator [23–39].
Apprenticeship learning focuses on matching the cumulative
returns of the expert—on the basis of some ground-truth re-

ward function not known to the imitator policy. This is most
popularly approached by inverse reinforcement learning
(IRL), which seeks to infer the reward function for which
the demonstrated behavior appears most optimal, and using
which an apprentice policy may itself be optimized via rein-
forcement learning. This includes maximum-margin meth-
ods based on feature expectations [13, 40–45], maximum
likelihood soft policy matching [51, 52], maximum entropy
policies [50,89–92], and Bayesian maximum a posteriori in-
ference [59–63], as well as methods that leverage preference
models and additional annotations for assistance [95–99].
We defer to surveys of [12,100] for more detailed overviews
of imitation learning and inverse reinforcement learning.

Inverse decision modeling subsumes most of the standard
approaches to imitation and apprenticeship learning as spe-
cific instantiations, as we shall see (cf. Table 1). Yet—with
very few exceptions [78–80]—the vast majority of these
works are limited to cases where demonstrators are assumed
to be ideal or close to ideal. Inference is therefore limited
to that of a single utility function; after all, its primary pur-
pose is less for introspection than simply as a mathematical
intermediary for mimicking the demonstrator’s exhibited
behavior. To the contrary, we seek to inspect and understand
the demonstrator’s behavior, rather than simply producing a
faithful copy of it. In this sense, the novelty of our work is
two-fold. First, we shall formally define “inverse decision
models” much more generally as projections in the space
of behaviors. These projections depend on our conscious
choices for forward and inverse planners, and the explicit
structure we choose for their parameterizations allows ask-
ing new classes of targeted research questions based on
normative factors (which we impose) and descriptive fac-
tors (which we learn). Second, we shall model an agent’s
behavior as induced by both a recognition policy (commit-
ting observations to internal states) and a decision policy
(emitting actions from internal states). Importantly, not only
may an agent’s mapping from internal states into actions
be suboptimal (viz. the latter), but that their mapping from
observations into beliefs may also be subjective (viz. the for-
mer). This greatly generalizes the idea of “boundedness” in
sequential decision-making—that is, instead of commonly-
assumed forms of noisy optimality, we arrive at precise
notions of subjective dynamics and biased belief-updates.
Appendix A gives a more detailed treatment of related work.

3. Inverse Decision Modeling
First, we describe our formalism for planners (Section 3.1)
and inverse planners (Section 3.2)—together constituting
our framework for inverse decision modeling (Section 3.3).
Next, we instantiate this with a prototypical example to spot-
light the wider class of research questions that this unified
perspective opens up (Section 4). Table 1 summarizes re-
lated work subsumed, and contextualizes our later example.



Inverse Decision Modeling

Table 2. Planners. Formulation of primary classes of planner algorithms in terms of our (forward) formalism, incl. the boundedly rational
planner in our example (Section 4). Legend: controlled Markov process (CMP); Markov decision process (MDP); input-output hidden
Markov model (IOHMM); partially-observable (PO); Dirac delta (�); any mapping into policies (f ); decision-rule parameterization (�).

Planner (F ) Setting ( ) Parameter (✓) Optimization (⇡⇤, ⇢⇤) Examples

Decision-Rule CMP Policy S,U , T � argmax⇡�(⇡ � fdecision(�)) [14]
Model-Free MDP Learner S,U , T �, � argmax⇡E⇡,⌧env [

P
t �

t�(st, ut)] (any RL agent)
Max. Entropy MDP Learner S,U , T �, �,↵ argmax⇡E⇡,⌧env [

P
t �

t�(st, ut)+↵H(⇡(·|st))] [101–104]
Model-Based MDP Planner S,U , T �, �, ⌧ argmax⇡E⇡,⌧ [

P
t �

t�(st, ut)] (any MDP solver)
Differentiable MDP Planner S,U , T �, �, ⌧ argmax⇡�(⇡ � neural-network( , �, �, ⌧)) [105, 106]
KL-Regularized MDP Planner S,U , T �, �, ⌧,↵, ⇡̃ argmax⇡E⇡,⌧ [

P
t �

t(�(st, ut)�↵DKL(⇡(·|st)k⇡̃))] [107–111]
Decision-Rule IOHMM Policy S,X ,Z,U , T ,O �, ⌧,! argmax⇡�(⇡ � fdecision(�), ⇢� frecognition(⌧,!)) [22]
Model-Free POMDP Learner S,X ,Z,U , T ,O �, � argmax⇡,⇢2{⇢ is black-box}E⇡,⌧env,⇢[

P
t �

t�(st, ut)] [112–117]
Model-Based POMDP Planner S,X ,Z,U , T ,O �, �, ⌧,! argmax⇡,⇢2{⇢ is unbiased}E⇡,⌧,⇢[

P
t �

t�(st, ut)] [118–121]
Belief-Aware �-POMDP Planner S,X ,Z,U , T ,O �Z , �, ⌧,! argmax⇡,⇢2{⇢ is unbiased}E⇡,⌧,⇢[

P
t �

t�Z(st, zt, ut)] [122, 123]

Bounded Rational Control S,X ,Z,U , T ,O �, �,↵,�,
⌘, ⇡̃, �̃, %̃

argmax⇡,⇢2{⇢ is possibly-biased}E⇡,⇢[
P

t �
t�(st, ut)]

� ↵I⇡,⇢[⇡; ⇡̃]� �I⇡,⇢[�; �̃]� ⌘I⇡,⇢[%; %̃]
Theorems 4–5

General Formulation S,X ,Z,U , T ,O (any) argmax⇡,⇢F (⇡, ⇢; ✓) Section 3.1

3.1. Forward Problem

Consider the standard setup for sequential decision-making,
where an agent interacts with a (potentially partially-obser-
vable) environment. First, let  .

=(S, X , Z, U , T , O) give
the problem setting, where S denotes the space of (external)
environment states, X of environment observables, Z of
(internal) agent states, U of agent actions, T .

=�(S)S⇥U of
environment transitions, and O .

=�(X )U⇥S of environment
emissions. Second, denote with ✓ the planning parameter:
the parameterization of (subjective) factors that a planning
algorithm uses to produce behavior, e.g. utility functions
�2RS⇥U, discount factors �2 [0, 1), or any other biases that
an agent might be subject to, such as imperfect knowledge
⌧,! of true environment dynamics ⌧env,!env2T ⇥O. Note
that access to the true dynamics is only (indirectly) possible
via such knowledge, or by sampling online/from batch data.
Now, a planner is a mapping producing observable behavior:

Definition 1 (Behavior) Denote the space of (observation-
action) trajectories with H .

= [1
t=0(X ⇥ U)t ⇥ X . Then a

behavior �manifests as a distribution over trajectories (indu-
ced by an agent’s policies interacting with the environment):

�
.
= �(H) (1)

Consider behaviors induced by an agent operating under a
recognition policy ⇢2�(Z)Z⇥U⇥X (i.e. committing obser-
vation-action trajectories to internal states), together with
a decision policy ⇡ 2 �(U)Z (i.e. emitting actions from
internal states). We shall denote behaviors induced by ⇡, ⇢:

�⇡,⇢

�
(x0, u0, ...)

� .
= P u⇠⇡(·|z)

s0
⇠⌧env(·|s,u)

x0
⇠!env(·|u,s0)

z0
⇠⇢(·|z,u,x0)

�
h = (x0, u0, ...)

�
(2)

(Note: Our notation may not be immediately familiar as
we seek to unify terminology across multiple fields. For
reference, a summary of notation is provided in Appendix E).

Definition 2 (Planner) Given problem setting  and plan-
ning parameter ✓, a planner is a mapping into behaviors:

F :  ⇥⇥! � (3)

where  indicates the space of settings, and ⇥ the space of
parameters. Often, behaviors of the form �⇡,⇢ can be natu-
rally expressed in terms of the solution to an optimization:

F ( , ✓)
.
= �⇡⇤,⇢⇤ : ⇡⇤, ⇢⇤ .

= argmax⇡,⇢F (⇡, ⇢; ✓) (4)

of some real-valued function F (e.g. this includes all cases
where a utility function � is an element of ✓). So, we shall
write �⇤ .

= �⇡⇤,⇢⇤ to indicate the behavior produced by F .

This definition is very general: It encapsulates a wide range
of standard algorithms in the literature (see Table 2), in-
cluding decision-rule policies and neural-network planners.
Importantly, however, observe that in most contexts, a global
optimizer for ⇢ is (trivially) either an identity function, or
perfect Bayesian inference (with the practical caveat, of
course, that in model-free contexts actually reaching such
an optimum may be difficult, such as with a deep recurrent
network). Therefore in addition to just ⇡, what Definition 2
makes explicit is the potential for ⇢ to be biased—that is, to
deviate from (perfect) Bayes updates; this will be one of the
important developments made in our subsequent example.

Note that by equating a planner with such a mapping, we are
implicitly assuming that the embedded optimization (Equa-
tion 4) is well-defined—that is, that there exists a single
global optimum. In general if the optimization is non-trivial,
this requires that the spaces of policies ⇡, ⇢ 2 P⇥R be
suitably restricted: This is satisfied by the usual (hard-/
soft-Q) Boltzmann-rationality for decision policies, and by
uniquely fixing the semantics of internal states as (subjec-
tive) beliefs, i.e. probability distributions over states, with
recognition policies being (possibly-biased) Bayes updates.
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Figure 1. Forward, Inverse, and Projection Mappings. In the for-
ward direction (i.e. generation): Given planning parameters ✓, a
planner F generates observable behavior � (Definition 2). In the
opposite direction (i.e. inference): Given observed behavior �, an
inverse planner G infers the planning parameters ✓ that produced
it—subject to normative specifications (Definition 3). Finally,
given observed behavior �, the composition of F and G gives its
projection onto the space of behaviors that are parameterizable by
✓ (Definition 4): This is the inverse decision model (Definition 5).

z
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A more practical question is whether this optimum is reach-
able. While this may seem more difficult (at least in the most
general case), for our interpretative purposes it is rarely a
problem, because (simple) human-understandable models
are what we desire to be working with in the first instance.
In healthcare, for example, diseases are often modeled in
terms of discrete states, and subjective beliefs over those
states are eminently transparent factors that medical practi-
tioners can readily comprehend and reason about [124,125].
This is prevalent in research and practice, e.g. two-to-four
states in progressive dementia [126–128], cancer screen-
ing [129, 130], cystic fibrosis [131], as well as pulmonary
disease [132]. Of course, this is not to say our exposition is
incompatible with model-free, online settings with complex
spaces and black-box approximators. But our focus here is
to establish an interpretative paradigm—for which simple
state-based models are most amenable to human reasoning.

3.2. Inverse Problem

Given any setting and appropriate planner, ✓ gives a com-
plete account of �⇤ = F ( , ✓): This deals with generation
—that is, of behavior from its parameterization. In the op-
posite, given observed behavior �demo produced by some
planner, we can ask what its ✓ appears to be: This now deals
with inference—that is, of parameterizations from behavior.

First, note that absent any restrictions, this endeavor imme-
diately falls prey to the celebrated “no free lunch” result:
It is in general impossible to infer anything of use from
�demo alone, if we posit nothing about ✓ (or F ) to begin
with [136, 137]. The only close attempt has recruited induc-
tive biases requiring multiple environments, and is not inter-
pretable due to the use of differentiable planners [105, 106].

On the other extreme, the vast literature on IRL has largely
restricted attention to perfectly optimal agents—that is, with
full visibility of states, certain knowledge of dynamics, and
perfect ability to optimize �. While this indeed fends off the
impossibility result, it is overly restrictive for understanding
behavior: Summarizing �demo using � alone is not informa-
tive as to specific types of biases we may be interested in.
How aggressive does this clinician seem? How flexible do
their actions appear? It is difficult to tease out such nuances
from just �—let alone comparing between agents [138,139].

We take a generalized approach to allow any middle ground
of choice. While some normative specifications are required
to fend off the impossibility result [106, 136], they need not
be so strong as to restrict us to perfect optimality. Formally:

Definition 3 (Inverse Planner) Let⇥ .
= ⇥norm⇥⇥desc de-

compose the parameter space into a normative component
(i.e. whose values ✓norm 2 ⇥norm we wish to clamp), and a
descriptive component (i.e. whose values ✓desc 2 ⇥desc we
wish to infer). Then an inverse planner is given as follows:

G : �⇥⇥norm ! ⇥desc (5)

Often, the descriptive parameter can be naturally expressed
as the solution to an optimization (of some real-valued G ):

G(�demo, ✓norm)
.
= argmin✓desc

G (�demo,�imit) (6)

where we denote by �imit
.
=F ( , (✓norm, ✓desc)) the imitation

behavior generated on the basis of ✓desc. So, we shall write
✓⇤

desc for the (minimizing) descriptive parameter output by G.

As with the forward case, this definition is broad: It encapsu-
lates a wide range of inverse optimization techniques in the
literature (see Table 3). Although not all techniques entail
learning imitating policies in the process, by far the most
dominant paradigms do (i.e. maximum margin, soft policy
matching, and distribution matching). Moreover, it is norma-
tively flexible in the sense of the middle ground we wanted:
✓norm can encode precisely the information we desire.4 This
opens up new possibilities for interpretative research. For
instance, contrary to IRL for imitation or apprenticeship,
we may often not wish to recover � at all. Suppose—as an
investigator—we believe that a certain � we defined is the
“ought-to-be” ideal. By allowing � to be encoded in ✓norm
(instead of ✓desc), we may now ask questions of the form:
How “consistently” does �demo appear to be in pursuing �?
Does it seem “optimistic” or “pessimistic” relative to neutral
beliefs about the world? All that is required is for appropri-
ate measures of such notions (and any others) to be repre-
sented in ✓desc. (Section 4 shall provide one such exemplar).

Note that parameter identifiability depends on the degrees
of freedom in the target ✓desc and the nature of the identifi-

4We can verify that ✓desc=� alone recovers the usual IRL paradigm.
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Table 3. Inverse Planners. Formulation of primary classes of identification strategies in terms of our (inverse) formalism. Legend: value
functions for � under ✓ (V �

✓ , Q�
✓ ); regularizer (⇣); shaped-reward error (��); p-norm (k · kp); preference relation (�); f -divergence (Df ).

Note that while our notation is general, virtually all original works here have ✓desc=� and assume full observability (whence S=X =Z).

Inverse Planner (G) Demonstrator (�demo) Helper Optimization (✓⇤desc) Examples

Minimum Perturbation Deterministic, Optimal Default ✓̃desc argmin✓desc
k✓desc� ✓̃desckp :�demo=F ( , ✓) [133]

Maximum Margin Deterministic, Optimal - argmin✓desc
Ez⇠⇢0 [V

�imit
✓ (z)� V �demo

✓ (z)] [40–45, 53, 70–73]
Regularized Max. Margin Stochastic, Optimal - argmin✓desc

Ez⇠⇢0 [V
�imit

soft,✓ (z)� V �demo
✓ (z)] + ⇣(✓) [25]

Multiple Experimentation Deterministic, Optimal Environments V argmin✓desc

R
maxV,u(Q

�demo
V,✓ (z, u)�V �demo

V,✓ (z))dx [134, 135]
Distance Minimization Individually-Scored Scores �̃(h) 2 R argmin✓desc

Eh⇠�demok�̃(h)�
P

s,u2h �(s, u)kp [95, 96]
Soft Policy Inversion Stoc., Batch-Ordered {�(1)

demo, ...,�
(K)
demo} argmin✓desc

P
k E

s,u,s0⇠�(k)
demo

k��(k)(s, u, s0)kp [97]
Preference Extrapolation Stoc., Pairwise-Ranked {(i, j)|hi � hj} argmin✓desc

E(hi�hj)⇠�demo log P�(hi � hj) [98, 99]
Soft Policy Matching Stochastic, Optimal - argmin✓desc

DKL(P�demo(u0:Tkx0:T )kP�imit(u0:Tkx0:T )) [47–52, 76, 89–94]
Distribution Matching Stochastic, Optimal - argmin✓desc

Df (�demok�imit) [23–39, 54, 81–88]

General Formulation (any) (any) argmin✓desc
G (�demo,�imit) Section 3.2

cation strategy G. From our generalized standpoint, we sim-
ply note that—beyond the usual restrictions (e.g. on scaling,
shifting, reward shaping) in conjunction with G—Bayesian
inference remains a valid option to address ambiguities, as
in [26] for distribution matching, [59–63, 74, 75] for soft
policy matching, and [140,141] for preference extrapolation.

3.3. Behavior Projection

Now we have the ingredients to formally define the business
of inverse decision modeling. Compacting notation, denote
F✓norm( · ) .

=F ( , (✓norm, · )), and G✓norm( · ) .
=G( · , ✓norm).

First, we require a projection operator that maps onto the sp-
ace of behaviors that are parameterizable by ✓ given F✓norm :

Definition 4 (Behavior Projection) Denote the image of
⇥desc under F✓norm by the following: �✓norm

.
= F✓norm [⇥desc] 

�. Then the projection map onto this subspace is given by:

proj�✓norm

.
= F✓norm �G✓norm (7)

Definition 5 (Inverse Decision Model) Given a specified
method of parameterization ⇥, normative standards ✓norm,
(and appropriate planner F and identification strategy G),
the resulting inverse decision model of �demo is given by:

�⇤

imit
.
= proj�✓norm

(�demo) (8)

In other words, the model �⇤

imit serves as a complete (genera-
tive) account of �demo as its behavior projection onto �✓norm .

Interpretability What dictates our choices? For pure imi-
tation (i.e. replicating expert actions), a black-box decision-
rule fitted by soft policy matching may do well. For appren-
ticeship (i.e. matching expert returns), a perfectly optimal
planner inversed by distribution matching may do well. But
for understanding, however, we wish to place appropriate
structure on ⇥ depending on the question of interest: Pre-
cisely, the mission here is to choose some (interpretable)
F✓norm , G✓norm such that �⇤

imit is amenable to human reasoning.

Note that these are not passive assumptions: We are not mak-
ing the (factual) claim that ✓ gives a scientific explanation of

the complex neurobiological processes in a clinician’s head.
Instead, these are active specifications: We are making the
(effective) claim that the learned ✓ is a parameterized “as-if”
interpretation of the observed behavior. For instance, while
there exist a multitude of commonly studied human biases
in psychology, it is difficult to measure their magnitudes—
much less compare them among agents. Section 4 shows an
example of how inverse decision modeling can tackle this.
(Figure 1 visualizes inverse decision modeling in a nutshell).

4. Bounded Rationality
We wish to understand observed behavior through the lens
of bounded rationality. Specifically, let us account for the
following facts: that (1) an agent’s knowledge of the environ-
ment is uncertain and possibly biased; that (2) the agent’s
capacity for information processing is limited, both for deci-
sions and recognition; and—as a result—that (3) the agent’s
(subjective) beliefs and (suboptimal) actions deviate from
those expected of a perfectly rational agent. We shall see,
this naturally allows quantifying such notions as flexibility
of decisions, tolerance for surprise, and optimism in beliefs.

First, Section 4.1 describes inference and control under envi-
ronment uncertainty (cf. 1). Then, 4.2 develops the forward
model (F ) for agents bounded by information constraints
(cf. 2–3). Finally, 4.3 learns parameterizations of such bo-
undedness from behavior by inverse decision modeling (G).

4.1. Inference and Control

Consider that an agent has uncertain knowledge of the envi-
ronment, captured by a prior over dynamics �̃2�(T ⇥O).
As a normative baseline, let this be given by some (unbiased)
posterior �̃ .

= p(⌧,!|E), where E refers to any manner of
experience (e.g. observed data about environment dynam-
ics) with which we may come to form such a neutral belief.

Now, an agent may deviate from �̃ depending on the situa-
tion, relying instead on ⌧,!⇠�(·|z, u)—where z, u allows
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the (biased) �2�(T ⇥O)Z⇥U to be context-dependent.
Consider recognition policies thereby parameterized by �:

⇢(z0|z, u, x0)
.
= E⌧,!⇠�(·|z,u)⇢⌧,!(z0|z, u, x0) (9)

where ⇢⌧,! denotes the policy for adapting z to x0 given (a
point value for) ⌧,!. For interpretability, we let ⇢⌧,! be the
usual Bayes belief-update. Importantly, however, ⇢ can now
effectively be biased (i.e. by �) even while ⇢⌧,! is Bayesian.

Forward Process The forward (“inference”) process yields
the occupancy measure. First, the stepwise conditional is:

p(z0|z) = E u⇠⇡(·|z)
⌧,!⇠�(·|z,u)
s0

⇠⌧(·|s,u)
x0

⇠!(·|u,s0)

⇢⌧,!(z0|z, u, x0) (10)

Define Markov operator M⇡,⇢2�(Z)�(Z) such that for any
distribution µ2�(Z) : (M⇡,⇢µ)(z0)

.
= Ez⇠µp(z0|z). Then

µ⇡,⇢(z)
.
= (1� �)

P
1

t=0 �
tp(zt = z|z0 ⇠ ⇢0) (11)

defines the occupancy measure µ⇡,⇢2�(Z) for any initial
(internal-state) distribution ⇢0, and discount rate � 2 [0, 1).

Lemma 1 (Forward Recursion) Define the forward oper-
ator F⇡,⇢ : �(Z)�(Z) such that for any given µ 2 �(Z):

(F⇡,⇢µ)(z)
.
= (1� �)⇢0(z) + �(M⇡,⇢µ)(z) (12)

Then the occupancy µ⇡,⇢ is the (unique) fixed point of F⇡,⇢.

Backward Process The backward (“control”) process yie-
lds the value function. We want that µ⇡,⇢ maximize utility:

maximizeµ⇡,⇢J⇡,⇢
.
= E z⇠µ⇡,⇢

s⇠p(·|z)
u⇠⇡(·|z)

�(s, u) (13)

Using V 2RZ to denote the multiplier, the Lagrangian is giv-
en by L⇡,⇢(µ, V )

.
= J⇡,⇢ � hV, µ� �M⇡,⇢µ� (1� �)⇢0i.

Lemma 2 (Backward Recursion) Define the backward o-
perator B⇡,⇢ : RZ ! RZ such that for any given V 2 RZ :

(B⇡,⇢V )(z)
.
= Es⇠p(·|z)

u⇠⇡(·|z)

[�(s, u) + E ⌧,!⇠�(·|z,u)
s0

⇠⌧(·|s,u)
x0

⇠!(·|u,s0)
z0

⇠⇢⌧,!(·|z,u,x0)

�V (z0)]

(14)

Then the (dual) optimal V is the (unique) fixed point of B⇡,⇢;
this is the value function considering knowledge uncertainty:

V �⇡,⇢(z)
.
=

P
1

t=0 �
tE st⇠p(·|zt)

ut⇠⇡(·|zt)
⌧,!⇠�(·|zt,ut)
st+1⇠⌧(·|st,ut)

xt+1⇠!(·|ut,st+1)
zt+1⇠⇢⌧,!(·|zt,ut,xt+1)

[�(st, ut)|z0 = z] (15)

so we can equivalently write targets J⇡,⇢=Ez⇠⇢0V
�⇡,⇢(z).

Likewise, we can also define the (state-action) value func-
tion Q�⇡,⇢2RZ⇥U —that is, Q�⇡,⇢(z,u)

.
=Es⇠p(·|z)[�(s,u)+

E⌧,!⇠�(·|z,u),...,z0⇠⇢⌧,!(·|z,u,x0)�V
�⇡,⇢(z0)] given an action.

4.2. Bounded Rational Control

For perfectly rational agents, the best decision policy given
any z simply maximizes V �⇡,⇢(z), thus it selects actions
according to argmaxuQ�⇡,⇢(z, u). And the best recognition
policy simply corresponds to their unbiased knowledge of
the world, thus it sets �(·|z, u) = �̃, 8z, u (in Equation 9).

Information Constraints But control is resource-intensive.
We formalize an agent’s boundedness in terms of capacities
for processing information. First, decision complexity cap-
tures the informational effort in determining actions ⇡(·|z),
relative to some prior ⇡̃ (e.g. baseline clinical guidelines):

I⇡,⇢[⇡; ⇡̃]
.
= Ez⇠µ⇡,⇢DKL(⇡(·|z)k⇡̃) (16)

Second, specification complexity captures the average regret
of their internal model �(·|z, u) deviating from their prior
(i.e. unbiased knowledge �̃) about environment dynamics:

I⇡,⇢[�; �̃]
.
= E z⇠µ⇡,⇢

u⇠⇡(·|z)
DKL(�(·|z, u)k�̃) (17)

Finally, recognition complexity captures the statistical sur-
prise in adapting to successive beliefs about the partially-ob-
servable states of the world (again, relative to some prior %̃):

I⇡,⇢[%; %̃]
.
= E z⇠µ⇡,⇢

u⇠⇡(·|z)
⌧,!⇠�(·|z,u)

DKL(%⌧,!(·|z, u)k%̃) (18)

where %⌧,!(·|z, u)
.
= Es⇠p(·|z),s0⇠⌧(·|s,u),x0⇠!(·|u,s0)⇢⌧,!(·

z,u,x0) gives the internal-state update. We shall see, these
measures generalize information-theoretic ideas in control.

Backward Process With capacity constraints, the maximi-
zation in Equation 13 now becomes subject to I⇡,⇢[⇡; ⇡̃] 
A, I⇡,⇢[�; �̃]  B, and I⇡,⇢[%; %̃]  C. So the Lagrangian
(now with the additional multipliers ↵,�, ⌘2R) is given by
L⇡,⇢(µ,↵,�, ⌘, V )

.
=J⇡,⇢�hV, µ��M⇡,⇢µ�(1��)⇢0i�

↵·(I⇡,⇢[⇡; ⇡̃]�A)� �·(I⇡,⇢[�; �̃]�B)� ⌘·(I⇡,⇢[%; %̃]�C).

Proposition 3 (Backward Recursion) Define the backwa-
rd operator B⇡,⇢ : RZ!RZ such that for any given func-
tion V 2RZ and for any given coefficient values ↵,�, ⌘2R:

(B⇡,⇢V )(z)
.
= Es⇠p(·|z)

u⇠⇡(·|z)

⇥
� ↵ log

⇡(u|z)
⇡̃(u) + �(s, u)+

E⌧,!⇠�(·|z,u)

⇥
� � log

�(⌧,!|z,u)
�̃(⌧,!) +

E s0
⇠⌧(·|s,u)

x0
⇠!(·|u,s0)

z0
⇠⇢⌧,!(·|z,u,x0)

⇥
� ⌘ log %⌧,!(z0

|z,u)
%̃(z0)

+�V (z0)
⇤⇤⇤

(19)

Then the (dual) optimal V is the (unique) fixed point of B⇡,⇢;
as before, this is the value function V �⇡,⇢—which now in-
cludes the complexity terms. Likewise, we can also define
the (state-action) Q�⇡,⇢ 2RZ⇥U as the 1/3-step-ahead expec-
tation, and the (state-action-model) K�⇡,⇢ 2RZ⇥U⇥T ⇥O as
the 2/3-steps-ahead expectation (which is new in this setup).

Policies and Values The (dis-)/utility-seeking decision pol-
icy (min-)/maximizes V�⇡,⇢(z), and a pessimistic/optimis-
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Table 4. Boundedly Rational Agents. Formulation of common decision agents as instantiations of our (boundedly rational) formalism. Note
that either ��1!0 or �̃=� is sufficient to guarantee 8z, u : �(·|z,u)= �̃.†Softmax added on top of deterministic, optimal Q-functions.

Boundedly Rational Agent
Flexibility Optimism Adaptivity (Action Prior) (Model Prior) (Belief Prior)

Observability Examples
↵�1 ��1 ⌘�1 ⇡̃ �̃ %̃

Uniformly Random Agent ! 0 ! 0 !±1 Uniform Dirac � - Full /Partial -
Deterministic, Optimal Agent ! 1 ! 0 !±1 - Dirac � - Full /Partial (any)
Boltzmann-Exploratory Agent† ! 1 ! 0 !±1 - Dirac � - Full /Partial [142–144]
Minimum-Information Agent = 1 ! 0 = 1 (any) Dirac � (any) Full [145–147]
Maximum Entropy Agent (0,1) ! 0 !±1 Uniform Dirac � - Full [101–104]
(Action) KL-Regularized Agent (0,1) ! 0 !±1 (any) Dirac � - Full [107–111]
KL-Penalized Robust Agent ! 1 (�1, 0) !±1 - (any) - Full [148–151]

General Formulation R\{0} R\{0} R\{0} (any) (any) (any) Full /Partial Section 4

tic recognition policy min-/maximizes Q�⇡,⇢(z, u) via �.5
These optimal policies depend on optimal value functions:

Theorem 4 (Boundedly Rational Values) Define the bac-
kward operator B⇤ : RZ ! RZ such that for any V 2 RZ :

(B⇤V )(z)
.
=↵ log Eu⇠⇡̃ exp( 1

↵Q(z, u))

Q(z, u)
.
= � log E⌧,!⇠�̃ exp( 1

�K(z,u,⌧,!))

+ Es⇠p(·|z)�(s, u)K(z,u,⌧,!)
.
=

E s⇠p(·|z)
s0

⇠⌧(·|s,u)
x0

⇠!(·|u,s0)
z0

⇠⇢⌧,!(·|z,u,x0)

⇥
�⌘ log %⌧,!(z0

|z,u)
%̃(z0)

+ �V (z0)
⇤

(20)

Then the boundedly rational value function V ⇤ for the (pri-
mal) optimal ⇡⇤, ⇢⇤ is the (unique) fixed point of B⇤

⇡,⇢. (Note
that both Q⇤ and K⇤ are immediately obtainable from this).

Theorem 5 (Boundedly Rational Policies) The bounded-
ly rational decision policy (i.e. primal optimal) is given by:

⇡⇤(u|z) =
⇡̃(u)

ZQ⇤ (z) exp
�

1
↵Q⇤(z, u)

�
(21)

and the boundedly rational recognition policy is given by:
⇢⇤(z0|z, u, x0) = E⌧,!⇠�⇤(·|z,u)⇢⌧,!(z0|z, u, x0) , where

�⇤(⌧,!|z, u)
.
=

�̃(⌧,!)
ZK⇤ (z,u) exp

�
1
�K⇤(z, u, ⌧,!)

�
(22)

where ZQ⇤(z) = Eu⇠⇡̃ exp( 1
↵Q⇤(z, u)) and ZK⇤(z, u) =

E⌧,!⇠�̃ exp( 1
�K⇤(z, u, ⌧,!)) give the partition functions.

Interpretation of Parameters This articulation of bound-
ed rationality reflects the fact that imperfect behavior results
from two sources of “boundedness”: Firstly, that (1) given
a mental model ⇢ for comprehending the world, an agent’s
information-processing capacities distort their decision-ma-
king ⇡ (cf. suboptimal actions); and secondly, that (2) the
agent’s mental model ⇢ itself is an imperfect characteriza-
tion of the world—because prior knowledge �̃ is uncertain,
and internal states can be biased by � (cf. subjective beliefs).

Concretely, the parameters in Theorems 4–5 admit intuitive
interpretations. First, ↵�1 captures flexibility of decision-
making, from a completely inflexible agent (↵�1!0) to an

5In general, flipping the direction of optimization for ⇡ or ⇢ corre-
sponds to the signs of ↵ or �, but does not change Theorems 4–5.

infinitely flexible, utility-seeking (↵�1!1) or disutility-
seeking (↵�1!�1) one. Second, ��1 captures optimism
in internal models, from a completely neutral agent (��1!
0) to an infinitely optimistic (��1!1) or pessimistic (��1

!�1) one. Lastly, ⌘�1 captures adaptivity of beliefs, from
a perfectly adaptive agent (⌘�1! ±1) to one with infinite
intolerance (⌘�1! 0+) or affinity (⌘�1! 0�) for surprise.
Table 4 underscores the generality of this parameterization.

4.3. Inverse Bounded Rational Control

We hark back to our framework of Section 3: In bounded
rational control (“BRC”), the planning parameter ✓BRC rep-
resents {�, �,↵,�, ⌘, ⇡̃, �̃, %̃}, and the space ⇥BRC is again
decomposable as ⇥BRC

norm⇥⇥BRC
desc. The forward problem is

encapsulated by Theorems 4–5 (which also yield a straight-
forward algorithm, i.e. iterate 4 until convergence, then plug
into 5). Therefore the forward planner is given as follows:

F✓BRC
norm

(✓BRC
desc)

.
= �⇡⇤,⇢⇤ : ⇡⇤, ⇢⇤  Theorems 4–5 (23)

In the opposite direction, the problem is of inverse bounded
rational control. Consider a minimal setting where we are
given access to logged data D .

= {hn ⇠ �demo}N
n=1 with no

additional annotations. While several options from Table 3
are available, for simplicity we select soft policy matching
for illustration. Thus the inverse planner is given as follows:

G✓BRC
norm

(�)
.
= argmin✓BRC

desc
Eh⇠� log P�imit(u0:T kx0:T ) (24)

where P�⇡,⇢(u0:T kx0:T ) is the causally-conditioned prob-
ability [152–155]

QT
t=0 P�⇡,⇢(ut|x1:t, u1:t�1)—with the

conditioning as induced by ⇡, ⇢. In the most general case
where ⇢⌧,! may be stochastic, G✓BRC

norm
would require an EM

approach; however, since we selected ⇢⌧,! to be the (deter-
ministic) Bayes update for interpretability, the likelihood is:

log P�⇡,⇢(u0:T kx0:T ) /
PT

t=0 log ⇡(ut|zt) (25)

where the zt terms are computed recursively by ⇢ (see Ap-
pendix C). Finally, here the inverse decision model of any
�demo is given by its projection �⇤

imit = F✓BRC
norm
�G✓BRC

norm
(�demo)

onto the space�✓BRC
norm

of behaviors thereby interpretably para-
meterized—i.e. by the structure we designed for ⇥BRC, and
by the normative standards ✓BRC

norm we may choose to specify.
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Very Flexible Agent: ↵=10�3
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Belief Trajectory (for consecutive x+ obs.):
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Optimistic Agent: �=1.25
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Belief Trajectory (for consecutive x+ obs.):

Adaptive Agent: ⌘=10�3
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Inflexible Agent: ↵=10
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Pessimistic Agent: �=�0.75
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Non-adaptive Agent: ⌘=75
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Belief Trajectory (for consecutive x+ obs.):

(a) Effect of Flexibility, for a neutral
(�=103), adaptive (⌘=10�3) agent

(b) Effect of Optimism, for a flexible
(↵=0.5), adaptive (⌘=10�3) agent

(c) Effect of Adaptivity, for a flexible
(↵=0.5), neutral (�=103) agent

Figure 2. Bounded Rational Control. Decision agents in DIAG: In each panel, the boundedly rational decision policy ⇡ is shown in terms
of action probabilities (y-axis) for different subjective beliefs (x-axis). To visualize the boundedly rational recognition policy ⇢, each panel
shows an example trajectory of beliefs (z0, z1, z2, z3) for the case where three consecutive positive outcomes are observed ( markers).

5. Illustrative Use Case
So far, we have argued for a systematic, unifying perspective
on inverse decision modeling (“IDM”) for behavior repre-
sentation learning, and presented inverse bounded rational
control (“IBRC”) as a concrete example of the formalism.
Three aspects of this approach deserve empirical illustration:

• InterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretability: IBRC gives a transparent parameteriza-
tion of behavior that can be successfully learned from data.

• ExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivity: IBRC more finely differentiates between im-
perfect behaviors, while standard reward learning cannot.

• ApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicability: IDM can be used in real-world settings, as
an investigative device for understanding human decisions.

Normative-Descriptive Questions Consider medical diag-
nosis, where there is often remarkable regional, institutional,
and subgroup-level variability in practice [156–158], render-
ing detection and quantification of biases crucial [159–161].
Now in modeling an agent’s behavior, reward learning asks:
(1) “What does this (perfectly rational) agent appear to be
optimizing?” And the answer takes the form of a function �.
However, while � alone is often sufficient as an intermediary
for imitation/apprenticeship, it is seldom what we actually
want as an end by itself —for introspective understanding.
Importantly, we often can articulate some version of what
our preferences � are. In medical diagnosis, for instance,
from the view of an investigator, the average relative health-
care cost/benefit of in-/correct diagnoses is certainly spe-
cifiable as a normative standard. So instead, we wish to ask:
(2) “Given that this (boundedly rational) agent should op-
timize this �, how suboptimally do they appear to behave?”
Clearly, such normative-descriptive questions are only poss-
ible with the generalized perspective of IDM (and IBRC):
Here, � is specified (in ✓norm), whereas one or more behavio-
ral parameters ↵,�, ⌘ are what we wish to recover (in ✓desc).

Decision Environments For our simulated setting (DIAG),
we consider a POMDP where patients are diseased (s+) or
healthy (s–), and vital-signs measurements taken at each step

are noisily indicative of being disease-positive (x+) or nega-
tive (x–). Actions consist of the decision to continue moni-
toring the patient (u=)—which yields evidence, but is also
costly; or stopping and declaring a final diagnosis—and if
so, a diseased (u+) or healthy (u–) call. Importantly, note that
since we simulate ⌧,!⇠�(·|z, u), DIAG is a strict general-
ization of the diagnostic environment from [22] with a point-
valued, subjective ⌧,! 6=⌧env,!env, and of the classic Tiger
Problem in POMDP literature where ⌧,!=⌧env,!env [162].

For our real-world setting, we consider 6-monthly clinical
data for 1,737 patients in the Alzheimer’s Disease Neuroim-
aging Initiative [163] study (ADNI). The state space con-
sists of normal function (snorm), mild cognitive impairment
(smild), and dementia (sdem). For the action space, we con-
sider ordering/not ordering an MRI—which yields evidence,
but is costly. Results are classified per hippocampal volume:
average (xMRI

avg ), high (xMRI
high), low (xMRI

low ), not ordered (xMRI
none);

separately, the cognitive dementia rating test result—which
is always measured—is classified as normal (xCDR

norm), ques-
tionable impairment (xCDR

ques), and suspected dementia (xCDR
susp ).

So the observation space consists of such 12 combinations.

In DIAG, our normative specification (for �) is that diagnos-
tic tests cost�1, correct diagnoses award 10, incorrect�36,
and �=0.95. Accuracies are 70% in both directions (!env),
and patients arrive in equal proportions (⌧env). But this is un-
known to the agent: We simulate �̃ by discretizing the space
of models such that probabilities vary in ±10% increments
from the (highest-likelihood) truth. In ADNI, the configu-
ration is similar—except each MRI costs �1, while 2.5 is
awarded once beliefs reach >90% certainty in any direction;
also, �̃ is centered at the IOHMM learned from the data. For
simplicity, for ⇡̃, %̃ we use uniform priors in both settings.

Computationally, inference is performed via MCMC in
log-parameter space (i.e. log↵, log �, log ⌘) using standard
methods, similar to e.g. Bayesian IRL [59,61,74]. In DIAG,
we use 1,000 generated trajectories as basis for learning.
Appendix B provides further details on experimental setup.
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Figure 3. Inverse Bounded Rational Control. (a) Posteriors of ↵ learned from extremely flexible (↵true=10�5), flexible (↵true=0.5), and
inflexible (↵true=10) behaviors (with �, ⌘ fixed as neutral and adaptive; similar plots can be obtained for those as well). (b) Joint posterior
of �, ⌘ for neutral but non-adaptive behavior (�true=103, ⌘true=75), and for (c) optimistic but adaptive behavior (�true=1.25, ⌘true=10�3).

5.1. Interpretability Figure 2 verifies (for DIAG) that dif-
ferent BRC behaviors accord with our intuitions. First, cet-
eris paribus, the flexibility (↵) dimension manifests in how
deterministically/stochastically optimal actions are selected
(cf. willingness to deviate from action prior ⇡̃): This is the
notion of behavioral consistency [164] in psychology. Sec-
ond, the optimism (�) dimension manifests in the illusion
that diagnostic tests are more/ less informative for subjective
beliefs (cf. willingness to deviate from knowledge prior �̃):
This is the phenomenon of over-/underreaction [165]. Third,
the adaptivity (⌘) dimension manifests in how much/little
evidence is required for declaring a final diagnosis: This
corresponds to base-rate neglect /confirmation bias [166].
Hence by learning the parameters ↵,�, ⌘ from data, IBRC
provides an eminently interpretable example of behavior re-
presentation learning—one that exercises the IDM perspec-
tive (much more than just reward learning). Taking a Baye-
sian approach to the likelihood (Equation 25), Figure 3(a)
verifies that—as expected—IBRC is capable of recovering
different parameter values from their generated behaviors.

5.2. Expressivity Consider (i.) an agent who is biased tow-
ards optimism, but otherwise flexible and adaptive (Figure
2(b), top), and (ii.) an agent who is non-adaptive, but other-
wise flexible and neutral (2(c), bottom). Now, to an external
observer, both types of boundedness lead to similar styles of
behavior: They both tend to declare final diagnoses earlier
than a neutral and adaptive agent would (2(c), top)—that is,
⇡(u+|z)⇡1 after only 2 (not 3) positive tests. Of course, the
former does so due to overreaction (evaluating the evidence
incorrectly), whereas the latter does so due to a lower thresh-
old for stopping (despite correctly evaluating the evidence).
As shown by Figures 3(b)–(c), IBRC does differentiate be-
tween these two different types of biased behaviors: This is
revealing, if not necessarily surprising. Crucially, however,
this distinction is not possible with conventional IRL. All
else equal, let us perform Bayesian IRL on the very same
behaviors—that is, to learn an effectively skewed � (while
implicitly setting ↵,�, ⌘ to their perfectly rational limits).
As it turns out, the recovered � for (i.) gives a cost-benefit
ratio (of incorrect/correct diagnoses) of �2.70±0.31, and
the recovered � for (ii.) gives a ratio of �2.60±0.29. Both

agents appear to penalize incorrect diagnoses much less than
the normative specification of �3.60, which is consistent
with them tending to commit to final diagnoses earlier than
they should. However, this fails to differentiate between the
two distinct underlying reasons for behaving in this manner.

5.3. Applicability Lastly, we highlight the potential utility
of IDM in real-world settings as an investigative device for
auditing and understanding human decision-making. Con-
sider diagnostic patterns for identifying dementia in ADNI,
for patients from different risk groups. For instance, we dis-
cover that while �=3.86 for all patients, clinicians appear
to be significantly less optimistic when diagnosing patients
with the ApoE4 genetic risk factor (�=601.74), for female
patients (�=920.70), and even more so for patients aged
>75 (�=2, 265.30). Note that such attitudes toward risk
factors align with prevailing medical knowledge [167–169].
Moreover, in addition to obtaining such agent-level interpre-
tations of biases (i.e. using the learned parameters), we can
also obtain trajectory-level interpretations of decisions (i.e.
using the evolution of beliefs). Appendix D gives examples
of ADNI patients using diagrams of trajectories in the be-
lief simplex, to contextualize actions the taken by clinical
decision-makers and identify potentially belated diagnoses.

6. Conclusion
In this paper, we motivated the importance of descriptive
models of behavior as the bridge between normative and
prescriptive decision analysis, and formalized a unifying
perspective on inverse decision modeling for behavior rep-
resentation learning. For future work, an important question
lies in exploring differently structured parameterizations
⇥ that are interpretable for different purposes. After all,
IBRC is only one prototype that exercises the IDM formal-
ism more fully. Another question is to what extent different
forms of the inverse problem is identifiable to begin with.
For instance, it is well-known that even with perfect knowl-
edge of a demonstrator’s policy, in single environments we
can only infer utility functions up to reward shaping. Thus
balancing complexity, interpretability, and identifiability of
decision models would be a challenging direction of work.
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