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Abstract

A Gaussian process is a standard surrogate model
for an unknown objective function in Bayesian
optimization. In this paper, we propose a new
surrogate model, called the objective bound con-
ditional Gaussian process (OBCGP), to condition
a Gaussian process on a bound on the optimal
function value. The bound is obtained and up-
dated as the best observed value during the se-
quential optimization procedure. Unlike the stan-
dard Gaussian process, the OBCGP explicitly in-
corporates the existence of a point that improves
the best known bound. We treat the location of
such a point as a model parameter and estimate it
jointly with other parameters by maximizing the
likelihood using variational inference. Within the
standard Bayesian optimization framework, the
OBCGP can be combined with various acquisi-
tion functions to select the next query point. In
particular, we derive cumulative regret bounds for
the OBCGP combined with the upper confidence
bound acquisition algorithm. Furthermore, the
OBCGP can inherently incorporate a new type of
prior knowledge, i.e., the bounds on the optimum,
if it is available. The incorporation of this type
of prior knowledge into a surrogate model has
not been studied previously. We demonstrate the
effectiveness of the OBCGP through its applica-
tion to Bayesian optimization tasks, such as the
sequential design of experiments and hyperparam-
eter optimization in neural networks.

1. Introduction
Bayesian optimization (BO) (Snoek et al., 2012) is a widely
used technique for maximizing or minimizing black-box
objective functions. It is typically used to find the global
optimum of a nonconvex function, whose derivative infor-
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mation is unavailable. BO is particularly useful when the
objective function is expensive to evaluate. In this case,
grid or random search (e.g., simulated annealing and tabu
search) (Bertsimas et al., 1993; Glover and Laguna, 2013)
can be highly inefficient. BO has been applied to various
problems, including experimental design and hyperparam-
eter tuning. BO incorporates a prior distribution over the
objective function and updates the prior with sequentially
acquired data to form a posterior distribution that better ap-
proximates the objective function. The posterior distribution
is subsequently used to construct an acquisition function.
By maximizing the acquisition function, we can determine
the next query point and evaluate the objective function.
Then, the posterior distribution is updated again according
to the augmented data with the new point. BO iterates these
steps. It commonly uses a Gaussian process (GP) for the
prior over the objective function. GPs provide a flexible and
analytically tractable family of prior distributions, working
as a surrogate model that captures the behavior of the un-
known objective function. The acquisition function used to
determine the next query point quantifies the utility of candi-
date points and balances the trade-off between exploitation
(local search) and exploration (global search). Various ac-
quisition functions have been proposed to maximize the
probability of gaining information during the sequential
procedure, including the expected improvement (EI) (Jones
et al., 1998), probability of improvement (Brochu et al.,
2010), upper confidence bound (UCB) (Srinivas et al., 2009),
entropy search (Hennig and Schuler, 2012), predictive en-
tropy search (Hernández-Lobato et al., 2014), output-space
predictive entropy search (Hoffman and Ghahramani, 2015),
and max-value entropy search (Wang and Jegelka, 2017).

In this paper, we propose a new surrogate model, called the
objective bound conditional Gaussian process (OBCGP),
to explicitly condition a GP on a bound on the optimum.
The bound is initially obtained as the best observed function
value from the initial experiment using a space-filling de-
sign, and then it is updated as the current best function value
during the sequential optimization procedure. The OBCGP
is developed based on the idea that explicit incorporation
of the knowledge of the existence of a better point than the
current best point helps to infer the objective function more
accurately. The location of such a point, which improves
the best known bound, is included as a model parameter in
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the OBCGP. More specifically, we introduce a candidate op-
timum location, xM , which improves the best known bound,
and the corresponding function value, f(xM ). For exam-
ple, if we assume a maximization problem, xM satisfies
f(xM ) > lp, where lp is the best known lower bound. Here,
xM and f(xM ) are not yet observed but treated as a model
parameter and a latent variable, respectively, by employ-
ing a conditional GP, given xM and f(xM ). We estimate
the unknown parameters of the OBCGP, including xM , by
maximizing the likelihood using variational inference (Blei
et al., 2017).

The OBCGP can be combined with various acquisition func-
tions to select the next query point. In particular, we derive
the cumulative regret bounds for the OBCGP combined with
the UCB acquisition algorithm. Moreover, the OBCGP can
inherently incorporate a new type of prior knowledge, i.e.,
the bounds on the optimal function values, if it is available.
The incorporation of this type of prior knowledge into a
surrogate model has not been studied previously, although
other types of prior knowledge, such as smoothness, peri-
odicity, convexity, and monotonicity of objective functions,
have been incorporated in certain studies (Osborne et al.,
2009; Jauch and Peña, 2016). In practice, prior knowledge
of the bounds on the optimal function values is often avail-
able from past experiments, engineering knowledge, and
expert knowledge (Kim et al., 2017). Such prior knowledge
can provide useful information on the objective function.
Without the incorporation of this prior knowledge, the surro-
gate model obtained using only experimental data may not
conform to the prior knowledge.

2. Methodology
2.1. Review of a Gaussian Process

A stochastic process, f : Ω ⊆ Rd → R, is called a GP
if, for any finite subset of Ω, Xn = {x1, . . . , xn} ⊂ Ω,
f(x1), . . . , f(xn) have a multivariate Gaussian distribu-
tion. A GP is specified by a mean function, µ(x), and a
covariance or kernel function, k(x, x′), where x, x′ ∈ Ω:
f(x) ∼ GP (µ(x), k(x, x′)), where µ(x) defines the mean
of f(x), and k(x, x′) specifies the covariance between f(x)
and f(x′). In this paper, we assume a stationary kernel for
the GP, i.e., k(x, x′) = k(‖x − x′‖), and without loss of
generality, µ(x) = 0. In BO, the GP typically provides a
surrogate model for f(x) by computing the posterior distri-
bution over the objective function.

Suppose that we are given a collection of data points,
Dn = {(xi, f(xi))}ni=1. Let fn = (f(x1), . . . , f(xn))T .
Assuming a prior for f as a GP, we can write
the posterior distribution of f(x∗) as f(x∗)|Dn ∼
N(µGP (x∗;Dn), σ2

GP (x∗;Dn)), where µGP (x∗;Dn) =
kTK−1fn and σ2

GP (x∗;Dn) = k(x∗, x∗) − kTK−1k,

where k = (k(x1, x
∗), . . . , k(xn, x

∗))T is an n-
dimensional vector of covariances, andK is an n×nmatrix
having element k(xi, xj) in the ith row and jth column.

2.2. Objective Bound Conditional Gaussian Process

We propose a new surrogate model, the OBCGP, to incorpo-
rate a bound on the optimal function value. Suppose that we
consider a maximization problem. In this study, we assume
noiseless observations; the extension to the noisy case is
discussed in Section 7. As mentioned in Section 1, xM is a
candidate optimum location whose function value, f(xM ),
is greater than a lower bound, lp, which could be the maxi-
mum among the observed function values or a previously
known bound. As the iterations proceed, lp becomes tighter,
and the surrogate model is expected to incorporate a more
useful bound. Our introduced xM and f(xM ) are similar
to an inducing input and an inducing variable, respectively,
employed for efficient computation in sparse GPs (Titsias,
2009). Inducing variables, treated as latent variables, are
unobserved function values evaluated at auxiliary pseudo
inputs (inducing points), treated as model parameters. How-
ever, unlike in previous studies, we set f(xM ) to have a
specific support according to a bound of the optimal func-
tion value. Consequently, the function values at the inducing
points do not follow a Gaussian distribution. This is a differ-
ent point of the OBCGP from that of the standard GP. The
OBCGP is constructed by setting a conditional GP, given
xM and f(xM ). This setting emanates from a simple idea:
if we assign a function value (f(xM )) at a specific location
(xM ) to be in a tight range (according to a bound, rather than
to [−∞,∞] in the standard GP) and restrict the objective
function to interpolate the point (xM , f(xM )), the shape of
the objective function must be constrained accordingly.

More specifically, we incorporate xM and f(xM ) into the
OBCGP as a model parameter and a latent variable, respec-
tively, by using a conditional GP model of fn given xM and
f(xM ) as follows:

p(fn|xM , f(xM )) = N(fn|µn,Σn×n), (1)

where
µn = f(xM )k(xM , xM )−1kM (2)

and
Σn×n = K − kMk

−1(xM , xM )kTM , (3)

where kM = (k(x1, xM ), . . . , k(xn, xM ))T is an n-
dimensional vector.

For the OBCGP in Eq.(1), the inducing point, xM , is a
model parameter, not a latent variable, and it plays a role
in connecting fn and f(xM ). By estimating the model
parameters, including xM , we fit our surrogate model.

In Eq.(1), we assign a probability distribution to f(xM )
with an appropriate support according to the bound on the
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optimal function value. Depending on the bound type (up-
per or lower), we assign different probability distributions.
Let xopt and f(xopt) denote the true optimum location and
the corresponding optimal function value, respectively. Ad-
ditionally, let lp and up denote a lower bound and an upper
bound on the optimal function value, respectively.

CASE 1. INCORPORATING A LOWER BOUND:
f(xopt) ≥ lp

As described earlier, we define xM as a candidate optimum
location where the objective function has a value greater
than or equal to the lower bound, i.e., f(xM ) ≥ lp, where lp
is obtained as the largest observed value during the sequen-
tial optimization procedure or from prior knowledge. In
Eq.(2), we assign a probability distribution to f(xM ) with
support [lp,∞] as follows:

f(xM ) = lp + ZM , ZM ∼ exponential(λ), (4)

where the prior distribution for ZM is an exponential dis-
tribution with hyperparameter λ. Here, we assign an ex-
ponential distribution for computational tractability in in-
ference procedures. However, other distributions can also
be used if the support, [lp,∞], is satisfied. Note that the
lower bound, lp, can be updated during the sequential op-
timization process. If f(xbest) ≥ lp, where xbest is the
best location among the already evaluated locations (i.e.,
xbest = arg maxx∈Xn f(x), where Xn = {xi}ni=1 is the
set of evaluated locations), we replace the lower bound, lp,
with lp = f(xbest).

CASE 2. INCORPORATING AN UPPER BOUND:
f(xopt) ≤ up

Because we assume a maximization problem, an upper
bound, up, cannot be obtained from observations but is
assumed to be available from prior knowledge. Case 2
involves a situation where both the lower and the upper
bounds for the optimal objective value are available because
the optimal objective value should be in range [f(xbest), up]
as we collect data. Thus, Case 2 deals with the knowledge,
lp = f(xbest) ≤ f(xopt) ≤ up. In Eq.(2), we assign a
probability distribution to f(xM ) with support [lp, up] as
follows:

f(xM ) = lp + (up − lp)ZM , ZM ∼ beta(1, λ), (5)

where the prior distribution for ZM is a beta distribution
with hyperparameter λ. Here, we choose a beta distribution
with support [lp, up] for computational tractability in infer-
ence procedures. However, other distributions can be used
if the support, [lp, up], is satisfied.

3. Inference
For both Case 1 and Case 2 (with the OBCGP), the marginal
distribution, p(fn) =

∫
p(fn|ZM )p(ZM ) dZM , is not

tractable for computation, because the distribution of ZM
is not Gaussian. Thus, instead of optimizing the likeli-
hood directly, we apply variation inference by introducing
a variational distribution, q(ZM ), which approximates the
posterior distribution with variational parameters (Blei et al.,
2017).

3.1. Inference for Case 1

Let θ = {ψ, xM} denote a set of model parameters to
be estimated, where ψ denotes a set of kernel parameters.
To apply variational inference, we take a variational dis-
tribution as a gamma, qφ(ZM ) = gamma(α, β), where
φ = {α, β} is the set of variational parameters to be esti-
mated. A gamma distribution provides various shapes of a
density function depending on the parameters. Therefore,
it can approximate the posterior distribution over ZM flexi-
bly. Using this variational distribution, we can express the
variational lower bound on log pθ(fn) as follows:

log pθ(fn;Xn) ≥ L(θ, φ;Dn)

= Eqφ(ZM )[log pθ(fn|ZM )]−KL(qφ(ZM )||p(ZM )),

where KL(qφ(ZM )||p(ZM )) is the Kullback–Leibler (KL)
divergence, which can be computed analytically as

KL(qφ(ZM )||p(ZM ))

= (α− 1)γ(α)− log Γ(α) + log λ− log β +
β − λ
λ

,

where Γ(·) and γ(·) are the gamma and digamma functions,
respectively. The first term of L(θ, φ;Dn) can be computed
using a closed-form expression by utilizing Eqs.(1), (2), and
(3), as follows:

Eqφ(ZM )[log pθ(fn|ZM )]

∝ −1

2
log |Σn×n| −

1

2
fTn Σ−1

n×nfn

−
(l2p + 2lpE

q
1 + Eq2)

2

k(xM ,Xn)

k(xM , xM )
Σ−1
n×n

k(Xn, xM )

k(xM , xM )

+ (lp + Eq1)
k(xM ,Xn)

k(xM , xM )
Σ−1
n×nfn,

where Eq1 and Eq2 are the first and second moments of
qφ(ZM ), respectively. By maximizing L(θ, φ;Dn) with
respect to both θ and φ, we can estimate the parameters.
For both Case 1 and Case 2, we maximize L(θ, φ;Dn) us-
ing the adaptive moment estimation (Adam) (Kingma and
Ba, 2015), which is a popular updating method based on
stochastic gradient descent.
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The computation of the posterior distribution, p(f(x∗)|Dn),
for a new location, x∗, is analytically intractable. How-
ever, if we focus only on the posterior mean and vari-
ance of fn, we can approximate them analytically. For
p(f(x∗)|Dn, ZM ), we have the following:

f(x∗)|Dn, ZM ∼ N(µ̂(x∗;Dn, ZM ), σ̂2(x∗;Dn, ZM )),

where µ̂(x∗;Dn, ZM ) = A+τZM and σ̂2(x∗;Dn, ZM ) =

Σ11−Σ12Σ−1
22 Σ21, whereA = lp

k(x∗,xM )
k(xM ,xM )−Σ12Σ−1

22 (fn−

lp
k(Xn,xM )
k(xM ,xM ) ), τ =

k(x∗,xM )−Σ12Σ−1
22 k(Xn,xM )

k(xM ,xM ) and

Σ([x∗, Xn], [x∗, Xn]) =

(
Σ11 Σ12

Σ21 Σ22

)
. Then, we can eas-

ily compute the posterior mean and variance of f(x∗), given
Dn, as follows:

µ̃(x∗;Dn) = E[f(x∗)|Dn] = E[E[f(x∗)|Dn, ZM ]|Dn]

≈ A+ τE(ZM |Dn) = A+ τEq1 ,

σ̃2(x∗;Dn) = V [f(x∗)|Dn]

= E[f(x∗)2|Dn]− (E[f(x∗)|Dn])2

≈ σ̂2(x∗;Dn, ZM )) + τ2(Eq2 − (Eq1)2).

3.2. Inference for Case 2

In Case 2, we consider beta(α, β) as a variational distribu-
tion over ZM . A beta distribution provides various shapes of
a density function depending on the parameters. Therefore,
it can approximate p(ZM |Dn) flexibly. Similar to Case
1, we can approximate the posterior mean and variance of
f(x∗), given Dn, as follows:

µ̃(x∗;Dn) = E[f(x∗)|Dn] ≈ A+ τEq1 ,

σ̃2(x∗;Dn) = V ar[f(x∗)|Dn]

≈ σ̂2(x∗;Dn, ZM )) + τ2(Eq2 − (Eq1)2),

where A = lp
k(x∗,xM )
k(xM ,xM ) − Σ12Σ−1

22 (fn − lp
k(Xn,xM )
k(xM ,xM ) )

and τ = (up − lp)
k(x∗,xM )−Σ12Σ−1

22 k(Xn,xM )
k(xM ,xM ) , and

σ̂2(x∗;Dn, ZM ) is defined as in Case 1.

4. Acquisition Functions for the OBCGP
As discussed in Section 3, we can obtain the approximated
posterior mean and variance of the OBCGP at unobserved
points. Based on these, we can approximate the posterior
distribution of the OBCGP as a Gaussian distribution using
moment matching (Hoffman and Ghahramani, 2015). More
specifically, p(f(x∗)|Dn) ≈ N(µ̃(x∗;Dn), σ̃2(x∗;Dn)),
where µ̃(x∗;Dn) and σ̃2(x∗;Dn) are the posterior mean
and variance of f(x∗), respectively, which were derived in
Sections 3.1 and 3.2. Applying this approximation, we can
readily use popular acquisition functions with the OBCGP.
For example, the EI and UCB are formulated in terms of

the GP posterior mean and variance, which reflect exploita-
tion and exploration, respectively. Therefore, if we use the
Gaussian approximation for the OBCGP posterior based on
moment matching, the acquisition functions can be easily
evaluated by simply replacing the GP posterior moments
with the OBCGP posterior moments.

Alternatively, we can evaluate the acquisition functions us-
ing Monte Carlo samples from the OBCGP posterior with-
out the normal approximation. Let us consider an exam-
ple of the EI, which is defined as EI(x) = E[(f(x) −
fbest)

+|Dn], where a+ = max(a, 0). Note that, given Dn

and f(xM ), f(x) follows a normal distribution according
to the definition of the OBCGP in Eq.(1).Thus, if we rewrite
EI(x) = E[E[(f(x)−fbest)+|Dn, f(xM )]|Dn], the inner
expectation term can be computed in the same way as for the
GP. The outer expectation term denotes the expectation over
f(xM ), given Dn, which can be approximated using Monte
Carlo samples from the OBCGP posterior. In summary, the
EI for the OBCGP can be approximated using the posterior
samples as follows:

EI(x) =
1

N

N∑
i=1

E[(f(x)− fbest)+|Dn, f
i(xM )],

where f i(xM ) are the samples from p(f(xM )|Dn). For
sampling, we use the estimated posterior distribution with
variational inference. For example, in Case 1, f i(xM ) =
lp + ZiM , where ZiM is a sample from qφ(ZM ).

Evaluating the acquisition functions according to the
moment-matching normal approximation is computation-
ally more efficient than the Monte Carlo sampling method
without the normal approximation. Moreover, we found
that the difference in the BO performance of the two ap-
proaches was negligible in our experiments. In Section 6,
we report the results of BO with the OBCGP based on the
moment-matching approximation. The results based on the
sampling method are also provided in the Supplementary
Materials, along with more details regarding the inference
for the OBCGP and the derivation of the closed-form ex-
pression of the EI with the OBCGP.

5. Regret Bounds
After estimating the objective function using the OBCGP,
we select the next query point using an acquisition function.
Various acquisition functions can be used with the OBCGP.
In particular, we analyze the case of the OBCGP combined
with the UCB (OBCGP-UCB). Using the OBCGP-UCB,
we choose the next query point (the ith query point) as

xi = argmaxx∈Ωµ̃i−1(x) + β
1/2
i σ̂i−1(x), (6)

where µ̃i−1(x) = µ̃(x;Di−1), σ̂i−1(x) =√
σ̂2(x;Di−1, ZM ), and βi are the appropriate con-
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stants. We derive the cumulative regret bounds of
the OBCGP-UCB in Theorem 1 in the same manner
as in Srinivas et al. (2009). The cumulative regret
(Rn) is defined as the sum of instantaneous regrets:
Rn =

∑n
i=1 |f(xopt)− f(xi)|.

Theorem 1. Suppose |Ω| < ∞. Let δ ∈ (0, 1) and β̃i =

2 log( |Ω|i
2π2

6δ ). With the assumption that max(P (ZM <
E[ZM |Di−1]|Di−1), P (ZM > E[ZM |Di−1]|Di−1)) =
γi ≤ γ ∈ [0, 1) for ∀i ≥ 1 and βi in Eq.(6) set as
βi = β̃i − 2 log(1 − γi), the following holds with prob-
ability ≥ 1− δ:

Rn ≤
√

(β̃n − 2 log(1− γ))C1nηn,

where C1 = 8k0
log(1+k−2

0 )
and ηn = max

A⊂Ω;|A|=n
1
2 log |I +

K(A,A)
k30
|, where k0 = k(x, x) > 0 is a constant for ∀x ∈ Ω

for a stationary kernel k.

The proof for Theorem 1 is provided in the Supplemen-
tary Materials. According to Srinivas et al. (2009), ηn is
the maximum mutual information that can be gained about
the objective function f from revealing n noisy observa-
tions with a noise variance of k3

0 . Therefore, Theorem 1
shows that the cumulative regret is bounded in terms of
the maximum information gain. For the squared exponen-
tial kernel, ηn = O((log n)d+1). For the Matérn kernel,
ηn = O(nd(d+1)/(2ν+d(d+1)) log n), where ν > 1 is a
smoothness parameter of the kernel (Srinivas et al., 2009).
Integrating these results of ηn with Theorem 1, we can show
that the average regret, Rn/n, for the squared exponential

kernel and the Matérn kernel is Rn/n = O(

√
(logn)d+2

√
n

)

and Rn/n = O( logn
nν/(2ν+d(d+1)) ), respectively. From these

results, we conclude that lim
n→∞

Rn/n = 0. Because the sim-

ple regret, |f(xopt)− f(xbest)|, is smaller than the average
regret, the simple regret of the OBCGP-UCB also converges
to 0 with high probability. In general, the assumption of
γi ≤ γ ∈ [0, 1) for ∀i ≥ 1 in Theorem 1 can be easily
satisfied by setting γ = max

i≤n
γi because we have γi = 0

for i > n with sufficiently large n owing to the consistency
of the posterior distributions (Doob, 1961). Although the
OBCGP-UCB has the same rate of convergence as the GP-
UCB, the finite sample performance of the OBCGP-UCB
was found to be superior in our experiments in Section 6.

Similar to Srinivas et al. (2009), we can generalize the re-
sults in Theorem 1 to any compact and convex Ω ⊂ Rd

under mild assumptions on the kernel function k. These
results are provided in the Supplementary Materials, along
with the proof.

6. Empirical Studies
6.1. Behavior of the OBCGP

The behavior of the OBCGP may be understood by looking
at how xM is estimated. Let fq(xM ) denote the random
variable following the posterior distribution of f(xM ), i.e.,
p(f(xM )|Dn). For example, for Case 1, fq(xM ) = lp +
ZM , ZM ∼ q(ZM ). Given all other parameters being fixed,
the estimate of xM , x̂M , is determined as follows:

x̂M = argmax
x

E[logN(fq(xM )|µGP (x;Dn), σ
2
GP (x;Dn))],

(7)
where µGP (x;Dn) and σ2

GP (x;Dn) are the GP posterior
mean and variance at x, respectively (see Section 2.1), and
N(·|·, ·) represents the normal probability density function.
The details of the derivation of Eq.(7) are provided in the
Supplementary Materials. In Eq.(7), x̂M is closely related
to the GP posterior mean and variance. This indicates that,
although xM is a parameter of the OBCGP, we may under-
stand its behavior using the GP posterior results. Eq.(7)
implies that x̂M is chosen such that the following two
preferences are balanced: (1) µGP (x̂M ;Dn) is close to
E[fq(xM )] and (2) σ2

GP (x̂M ;Dn) well covers the gap be-
tween µGP (x̂M ;Dn) and E[fq(xM )]. This argument helps
to understand the possible candidates for x̂M . For exam-
ple, suppose we apply the OBCGP without any prior bound
knowledge. Then, we set lp = f(xbest), and fq(xM ) is in
the range of [f(xbest),∞] (thus, E[fq(xM )] > f(xbest)).
Then, we can consider the locations near xbest (denoted as
xnearbest ) as the candidates of x̂M because µGP (xnearbest ;Dn)
would be closer to f(xbest), and thus, E[fq(xM )], than the
other locations are. However, a gap should exist between
µGP (xnearbest ;Dn) and E[fq(xM )]. If σ2

GP (xnearbest ;Dn) is
too small to cover the gap, then xnearbest may not be chosen
for x̂M . Instead, other locations with a larger posterior
variance can be selected for x̂M .

We confirm this argument by comparing the behaviors of
the OBCGP and the GP on some BO examples. Figure 1
shows a comparison between the estimated posterior mean
function and the next query point using the standard GP
in (a), the OBCGP without any prior bound knowledge in
(b), the OBCGP with a given lower bound in (c), and the
OBCGP with a given upper bound in (d). The EI was used
for the acquisition function. In each figure in the upper panel
of Figure 1, the five black circles represent the observations,
solid line represents the true function, black dashed line
denotes the estimated posterior mean function, red dashed
lines indicate the 95 % confidence intervals, cross mark
represents the next query point, and horizontal dotted line
denotes the bound as the current best value (in (b)) or from
prior knowledge (in (c) and (d)). The lower panel in Figure
1 shows a plot of the EI for each potential next point to
sample, where the blue and black vertical lines represent the
location of x̂M and the next query point determined using
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(a) GP-EI
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(b) OBCGP-EI without a known
bound
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(c) OBCGP-EI with LB
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(d) OBCGP-EI with UB

Figure 1. Upper panel: comparison between the GP and the OBCGP; solid line: true function; circles: observations; black dashed line:
posterior mean function; red dashed lines: 95 % confidence intervals; horizontal dotted line: the best observed function value in (b), a
known lower bound (LB) in (c), and an upper bound (UB) in (d); cross marks: the next query point. Lower panel: the EI for each potential
next point; blue vertical line: x̂M ; black vertical line: the next query point determined using the EI.

the EI, respectively.

We can see that the estimated posterior mean functions that
incorporate the bound information (either the current best
value or a known bound) using the OBCGP significantly
differ from those using the pure GP, although they are based
on the same observations. As shown in Figures 1(a) and
1(b), even without any prior bound knowledge, the predicted
function using the OBCGP is considerably different from
that using the GP. In Figure 1(a), the posterior variances
near xbest are very small; therefore, in Figure 1(b), the
OBCGP determines x̂M (blue vertical line) far from xbest.
In Figure 1(b), we can see that x̂M is located to be near
the true maximum, and at this point, the posterior mean
of f(x̂M ) (i.e., E[fq(xM )]) is slightly larger than f(xbest)
(the horizontal dotted line). In Figures 1(c) and 1(d), x̂M
is also determined to be near the true maximum; however,
E[fq(xM )] is slightly larger than the lower bound in Figure
1(c) or smaller than the upper bound but larger than f(xbest)
in Figure 1(d), for each bound type. These results show
that the OBCGP is an effective tool that can incorporate
the bound information into a surrogate model. We found
the predicted function using the OBCGP to be significantly
different from that using the GP. This difference in the ob-
jective functions using the GP and the OBCGP produced
different results in selecting the next query point, although
the same acquisition function was used. In the case of the
EI with the GP (Figure 1(a)), a point near xbest was chosen
as the next query point. In contrast, the next query point
selected by the EI with OBCGP (Figures 1(b)-1(d)) was
the one located far away from xbest. The next query point
determined using the OBCGP was located close to x̂M .

To illustrate another scenario, Figure 2 shows the results
of similar experiments as those in Figure 1 but with a dif-
ferent set of observations. In this case, as shown in Figure
2(a), the GP posterior mean near xbest is considerably large
compared the previous scenario. Therefore, the gap be-
tween µGP (xnearbest ;Dn) and E[fq(xM )] may be covered
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Figure 2. Similar experiments as those in Figure 1 but with a dif-
ferent set of observations.

by σ2
GP (xnearbest ;Dn). This may lead to the OBCGP with

lp = f(xbest) determining x̂M to be near xbest as shown in
Figure 2(b).

6.2. Applications to Simulated Functions

We evaluated the performance of BO with the OBCGP and
compared it with that of BO with the GP. We used five test
functions, namely, the Branin, six-hump camel, Hartman
6, Goldstein price, and Rosenbrock functions (Jamil and
Yang, 2013). The Hartman 6 function is six-dimensional,
whereas the other functions are two-dimensional. Further-
more, to consider a high-dimensional case, we embed-
ded the Branin function in a 20-dimensional space (de-
noted as “Branin-20D”) by adding 18 surplus dimensions
that do not affect the function value at all. All functions
deal with minimization problems (i.e., our task is to find
xopt = arg minx∈X f(x)). Suppose that we have knowl-
edge of f(xopt) < up or f(xopt) > lp. By changing the
problem to xopt = arg maxx∈X −f(x) and replacing up
and lp with−up and−lp, respectively, we can formulate the
cases of f(xopt) < up and f(xopt) > lp as Case 1 and Case
2, respectively. For each test function, we first evaluated the
initial design points determined using Latin hypercube sam-
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pling, which is one of the most popular sampling methods
for an initial design (Kim et al., 2015). We used nine initial
points for the Hartman 6 function and five initial points for
all the other functions. The same initial points were used
for both the OBCGP and the GP for each test function.

For a fair comparison between the OBCGP and the GP, we
assumed that there was no prior knowledge of the bound on
the optimal function value. Therefore, for the OBCGP, we
set an initial upper bound on the optimal function value as
the minimum value of the initially evaluated points, i.e., the
best observed function value. We set hyperparameter λ to
0.1 (i.e., E[ZM ] = 0.1 in Eq.(4)). Then, we estimated the
function using the OBCGP or GP and selected the next query
point using the EI or UCB. Subsequently, we evaluated the
function at the new point. We repeated the estimation of the
function and the selection of the next query until we eval-
uated 50 more points. Then, we estimated the optimum as
f(xbest), based on all the evaluated points. Using different
sets of initial points, we repeated the optimization procedure
200 times. For each test function, we measured the average
and the first and third quartiles of the simple regret over
200 experiments with the number of function evaluations
and compared these quantities between the OBCGP and the
GP. Figure 3 presents the results. We can see that although
the OBCGP does not use any known bound on the optimal
function value, BO with the OBCGP outperforms the tradi-
tional BO, particularly for highly volatile functions such as
the Goldstein and Rosenbrock functions. Moreover, we can
see that BO with the OBCGP can find the optimum of high-
dimensional functions (i.e., Hartmann 6 and Branin-20D)
after a sufficient number of function evaluations, whereas
BO with the GP cannot.

The OBCGP can inherently incorporate a new type of prior
knowledge, i.e., the bounds on the optimal function values,
if it is available. To demonstrate this advantage, we con-
ducted further experiments by assuming that certain upper
or lower bounds for each test function were available from
expert knowledge or past experiments. Detailed analysis
and discussions are provided in the Supplementary Mate-
rials. The code for BO with the OBCGP is available at
https://github.com/twj-KAIST/OBCGP-BO.

6.3. Sensitivity Analysis

We performed a sensitivity analysis of λ in Eq.(4) to inves-
tigate the impact of λ on the BO results. Figure 4 shows a
comparison of the BO performance of the OBCGP with dif-
ferent λ values of 0.1 and 0.01 on the Branin and Hartmann
6 functions, together with the BO performance of the GP.
We considered the UCB and EI as the acquisition functions.
We can see that the OBCGP with different λ values showed
a slight difference in the speed to reach the optimum, but
equally found the true optimum very well after sufficient
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Figure 3. Comparison between the performances of BO with the
OBCGP and BO with the GP: simple regret (SR) vs. the number
of function evaluations.

iterations. In particular, compared with the GP under the
same acquisition function, the OBCGP was substantially
better at finding the optimum regardless of λ values. Ad-
ditional results of the sensitivity analysis on the other test
functions are provided in the Supplementary Materials.

6.4. Hyperparameter Optimization in Neural Networks

BO is one of the most widely used frameworks for tun-
ing hyperparameters in neural networks. We applied the
OBCGP to optimize the hyperparamters in a multilayer per-
ceptron (MLP) (LeCun et al., 2015) to classify a popular
MNIST dataset (LeCun and Cortes, 2010). Two acquisition
functions of the UCB and EI were considered. We trained
60,000 images and tested 10,000 images using the MLP
with two hidden layers of 100 and 50 hidden units, each
stacked with a sigmoid activation function. To avoid over-
fitting, we considered `1 regularization of the weights in
the MLP (Phaisangittisagul, 2016). Moreover, we consid-
ered adding noise to the input data to train the MLP more
robustly (Zhang et al., 2017; Vincent et al., 2010). The reg-
ularization coefficient and the variance of the injected noise,
together with the learning rate, were hyperparameters that
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Figure 4. Sensitivity analysis of λ for OBCGP (Case 1).

were optimized using the OBCGP. The three hyperparam-
eters were searched over the same region from 0.0001 to
0.1. We calculated the validation loss with the cross-entropy
loss function, which is a black-box function over the hyper-
parameters and expensive to evaluate. By minimizing the
validation loss using BO with the OBCGP, we optimized
the hyperparameters.

We conducted two sets of experiments using BO with the
OBCGP: with and without the incorporation of the prior
knowledge of a bound on the optimal function value. The
experiments with the incorporated prior knowledge showed
the unique advantage of our proposed OBCGP in serving
as a framework to incorporate a new type of information,
i.e., the bounds on the optimal function value, into a sur-
rogate model. To assume a plausible prior bound, not a
cherry-picking bound, we assumed that another MLP clas-
sifier with only one hyperparameter, namely, the learning
rate, was already implemented, with the learning rate be-
ing determined via the GP-EI. We used the validation loss
of this MLP with the optimized learning rate as our prior
knowledge of an upper bound for optimal validation loss.
This setting of an upper bound was based on the idea that the
MLP with two more hyperparameters would perform more
effectively because more hyperparameters, if they are tuned
optimally, would refine the network for better performance.
We also performed experiments without the incorporation
of the the prior knowledge of the bound on the optimal
function value for a fair comparison of the BO performance
between the OBCGP and the GP.

We first evaluated five initial points determined using Latin
hypercube sampling. We set an initial upper bound on the
optimal function value as the minimum value of the five
evaluated points. We performed BO with the OBCGP until

we evaluated 20 additional points, updating the bound dur-
ing the experiments. We recorded the minimum validation
loss based on the evaluated points for each iteration. Using
different sets of initial points, we repeated this procedure
100 times and evaluated the average of the minimum vali-
dation loss at each iteration based on the results of the 100
experiments. Similarly, to consider the prior knowledge, we
evaluated the average of the minimum validation loss at each
iteration on the basis of the results of the 100 experiments
for the MLP with one hyperparameter optimized using the
GP-EI and used the minimum validation loss at the final
iteration as an upper bound on the minimum validation loss
for the MLP with three hyperparameters.

Figures 5(a) and 5(b) show the results of the MLP with the
three hyperparameters optimized using the OBCGP-UCB
and OBCGP-EI, respectively, where the red lines represent
the OBCGP with the incorporation of the prior knowledge
and the blue lines represent the OBCGP without the incor-
poration of the prior knowledge, along with the results of
the GP in the green line. With or without the incorporation
of the prior knowledge, the OBCGP-UCB and OBCGP-EI
reached the minimum validation loss more rapidly than the
GP-UCB and GP-EI. Moreover, the value of the minimum
validation loss at the final iteration was significantly smaller
using the OBCGP than that using the GP. Furthermore, with
the incorporation of the prior knowledge, the OBCGP-UCB
and OBCGP-EI reached the minimum validation loss even
more rapidly.
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Figure 5. Minimum validation loss of the MLP.

7. Conclusion
In this paper, we proposed the OBCGP, a new surrogate
model for BO. The OBCGP incorporates important informa-
tion: the existence of a point that is better than the current
best point. This information is particularly useful when the
standard GP suffers from a small number of evaluated points.
By incorporating this information into the GP, we can esti-
mate the objective function more accurately and search for
optimal points more efficiently. The OBCGP can be used
with various acquisition functions to select the next query
point. In particular, we derived the cumulative regret bound
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of the OBCGP-UCB and showed that the average regret
with the commonly used kernel functions converges to 0.
Through the experimental results, we demonstrated that the
OBCGP with popular acquisition functions is more effective
for optimizing black-box functions than the standard GP.
Furthermore, the OBCGP can inherently incorporate a new
type of prior knowledge, i.e., the bounds on the optimal
function values, if it is available. The incorporation of this
type of prior knowledge into a surrogate model has not been
studied previously. Through the experimental results, we
also confirmed that the OBCGP can effectively incorporate
this type of prior knowledge. In this study, we assumed
noiseless observations. A simple method to consider noisy
observations, y(x) = f(x) + ε, ε ∼ N(0, σ2

ε ), is to replace
f(xbest) with y(xbest)−zα/2σε, where α is the significance
level, for the maximization problem. More sophisticated
approaches can be studied in future work.
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