
Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

A. CATE Interval
Lemma 2. The unbiased estimate of the expected potential outcome under hidden confounding, given in Equation (3) has
the following equivalent characterization:

E
[
Yt | X = x

]
= µ(x, t) +

∫
(y − µ(x, t))wt(y | x)f(y | x, t)dy∫

wt(y | x)f(y | x, t)dy
. (12)

Proof.

E
[
Yt | X = x

]
= µ(wt; x, t) (13a)

=

∫
ywt(y | x)ft(y | x)dy∫
wt(y | x)ft(y | x)dy

(13b)

=

∫
y

wt(y | x)ft(y | x)∫
wt(y′ | x)ft(y′ | x)dy′

dy (13c)

= µ(x, t) +

∫
y

wt(y | x)ft(y | x)∫
wt(y′ | x)ft(y′ | x)dy′

dy − µ(x, t) (13d)

= µ(x, t) +

∫
y

wt(y | x)ft(y | x)∫
wt(y′ | x)ft(y′ | x)dy′

dy − µ(x, t)

∫
wt(y | x)ft(y | x)∫
wt(y′ | x)ft(y′ | x)dy′

dy (13e)

= µ(x, t) +

∫
y

wt(y | x)ft(y | x)∫
wt(y′ | x)ft(y′ | x)dy′

dy −
∫
µ(x, t)

wt(y | x)ft(y | x)∫
wt(y′ | x)ft(y′ | x)dy′

dy (13f)

= µ(x, t) +

∫
(y − µ(x, t))

wt(y | x)ft(y | x)∫
wt(y′ | x)ft(y′ | x)dy′

dy (13g)

= µ(x, t) +

∫
(y − µ(x, t))wt(y | x)et(x)f(y | x, t)dy∫

wt(y | x)et(x)f(y | x, t)dy
(13h)

= µ(x, t) +

∫
(y − µ(x, t))wt(y | x)f(y | x, t)dy∫

wt(y | x)f(y | x, t)dy
. (13i)

Lemma 3. The bounds for the conditional expected potential outcomes µΓ(x, t) and µΓ(x, t) defined in equations (4) have
the following equivalent characterization:

µΓ(x, t) = inf
y∗∈Y

µ(x, t) +

∫ y∗

−∞ rt(y)f(y | x, t)dy

α′Γt (x) + P(Y ≤ y∗ | x, t)
,

µΓ(x, t) = sup
y∗∈Y

µ(x, t) +

∫∞
y∗

rt(y)f(y | x, t)dy

α′Γt (x) + P(Y > y∗ | x, t)
,

where rt(y) = (y − µ(x, t)) and α′Γt (x) = αt(x;Γ)
βt(x;Γ)−αt(x;Γ) .

Proof. We prove the result for µΓ(x, t) and the result for µΓ(x, t) can be proved analogously. From Kallus et al. (2019)
Lemma 1,

µ(x, t) = inf
wt(y|x)∈[αt(x;Γ),βt(x;Γ)]

∫
ywt(y | x)ft(y | x)dy∫
wt(y | x)ft(y | x)dy

= inf
u∈Uni

αt(x; Γ)
∫

yft(y | x)dy + (βt(x; Γ)− αt(x; Γ))
∫
u(y)yft(y | x)dy

αt(x; Γ)
∫
ft(y | x)dy + (βt(x; Γ)− αt(x; Γ))

∫
u(y)ft(y | x)dy

,

= µΓ(x, t)

(15)



Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

where Uni = {u : Y −→ [0, 1] | u(y) is non-increasing}. Therefore, from the equivalence in Equation (13),

µΓ(x, t) = inf
u∈Uni

µ(x, t) +
αt(x)

∫
(y − µ(x, t))f(y | x, t)dy + (βt(x)− αt(x))

∫
u(y)(y − µ(x, t))f(y | x, t)dy

αt(x)
∫
f(y | x, t)dy + (βt(x)− αt(x))

∫
u(y)f(y | x, t)dy

= inf
u∈Uni

µ(x, t) +
αt(x)(µ(x, t)− µ(x, t)) + (βt(x)− αt(x))

∫
u(y)(y − µ(x, t))f(y | x, t)dy

αt(x)
∫
f(y | x, t)dy + (βt(x)− αt(x))

∫
u(y)f(y | x, t)dy

= inf
u∈Uni

µ(x, t) +
(βt(x; Γ)− αt(x; Γ))

∫
u(y)(y − µ(x, t))f(y | x, t)dy

αt(x; Γ) + (βt(x; Γ)− αt(x; Γ))
∫
u(y)f(y | x, t)dy

= inf
u∈Uni

µ(x, t) +

∫
u(y)(y − µ(x, t))f(y | x, t)dy

α′Γt (x) +
∫
u(y)f(y | x, t)dy

= inf
y∗∈Y

µ(x, t) +

∫ y∗

−∞(y − µ(x, t))f(y | x, t)dy

α′Γt (x) +
∫ y∗

−∞ f(y | x, t)dy

= inf
y∗∈Y

µ(x, t) +

∫ y∗

−∞(y − µ(x, t))f(y | x, t)dy

α′Γt (x) + P(Y ≤ y∗ | x, t)

= inf
y∗∈Y

µ(x, t) +

∫ y∗

−∞ rt(y)f(y | x, t)dy

α′Γt (x) + P(Y ≤ y∗ | x, t)
.

B. CATE Interval Estimator
Proof for Theorem 1. Here we prove that µ̂Γ

ω
(x, t)

p−→ µΓ(x, t), from which µ̂
Γ

ω(x, t)
p−→ µΓ(x, t) can be proved analo-

gously. Note that
p−→ indicates convergence in probability. As a reminder

µ̂Γ

ω
(x, t) = inf

y∗∈Y
µ̂ω(x, t) +

∫ y∗

−∞(y − µ̂ω(x, t))fω(y | x, t)dy

α′Γω (x, t) +
∫ y∗

−∞ fω(y | x, t)dy
, (16)

and

µΓ(x, t) = inf
y∗∈Y

µ(x, t) +

∫ y∗

−∞(y − µ(x, t))f(y | x, t)dy

α′Γt (x) + P(Y ≤ y∗ | x, t)
. (17)

Further, our assumptions are

1. n→∞, and x ∈ D.

2. Y is a bounded random variable.

3. fω(y | x, t) converges in measure to f(y | x, t). Specifically, limn→∞ P ({y ∈ Y : |f(y | x, t)− fω|Dn
(y | x, t)| ≥

ε}) = 0, for every ε ≥ 0, where Dn is a dataset of size n. Convergence in measure is a generalization of convergence
in probability.

4. êt,ω(x) and µ̂ω(x) are consistent estimators of E[T = t | X = x] and E[Y | X = x,T = t].

5. et(x, y) is bounded away from 0 and 1 uniformly over x ∈ X , y ∈ Y , and t ∈ {0, 1}.

We need to show that limn→∞ P (|µ̂Γ

ω
(x, t)− µΓ(x, t)| ≥ ε) = 0, for all ε > 0, where the parameters ω are dependent on

the size of the dataset n. First, define the following quantities:

κy∗

y (x, t;n) =

∫ y∗

−∞
(y − µ̂ω(x, t))fω(y | x, t)dy, Iy∗

y (x, t) =

∫ y∗

−∞
(y − µ(x, t))f(y | x, t)dy,

κy∗(x, t;n) =

∫ y∗

−∞
fω(y | x, t)dy, Iy∗(x, t) =

∫ y∗

−∞
f(y | x, t)dy,
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so that

µ̂Γ

ω
(x, t) = inf

y∗∈Y
µ̂ω(x, t) +

κy∗

y (x, t;n)

α′Γω (x, t) + κy∗(x, t;n)
, µΓ(x, t) = inf

y∗∈Y
µ(x, t) +

Iy∗

y (x, t)

α′Γt (x) + Iy∗(x, t)

To start, we want to express |µ̂Γ

ω
(x, t)− µΓ(x, t)| in terms of the following 4 terms: ∆1(x, t;n) = |µ̂ω(x, t)− µ(x, t)|;

∆2(x, t;n) =
∣∣α′Γω − α′Γt ∣∣; ∆3(x, t;n) = supy∗∈Y |δ3|, where δ3 = κy∗

y − Iy∗

y ; and ∆4(x, t;n) = supy∗∈Y |δ4|, where
δ4 = κy∗ − Iy∗ . To this end, we use Lemma 3 from Kallus et al. (2019) in line 1 below and define the following inequality:

|µ̂Γ

ω
(x, t)− µΓ(x, t)| ≤ sup

y∗∈Y

∣∣∣∣∣µ̂ω(x, t)− µ(x, t) +
κy∗

y (x, t;n)

α′Γω (x, t) + κy∗(x, t;n)
−

Iy∗

y (x, t)

α′Γt (x) + Iy∗(x, t)

∣∣∣∣∣ ,
≤ ∆1(x, t;n) + sup

y∗∈Y

∣∣∣∣∣ κy∗

y

α′Γω + κy∗
−

Iy∗

y

α′Γt + Iy∗

∣∣∣∣∣ ,
≤ ∆1(x, t;n) + sup

y∗∈Y

{
|κy∗

y |
|(α′Γω + κy∗)− (α′Γt + Iy∗)|
|α′Γω + κy∗ ||α′Γt + Iy∗ |

−
|κy∗

y − Iy∗

y |
|α′Γt + Iy∗ |

}
,

≤ ∆1(x, t;n) + sup
y∗∈Y

{
|κy∗

y ||α′Γω − α′Γt |
|α′Γω + κy∗ ||α′Γt + Iy∗ |

+
|κy∗

y ||κy∗ − Iy∗ |
|α′Γω + κy∗ ||α′Γt + Iy∗ |

+
|κy∗

y − Iy∗

y |
|α′Γt + Iy∗ |

}
,

≤ ∆1(x, t;n) + sup
y∗∈Y

|κy∗

y ||α′Γω − α′Γt |
|α′Γω + κy∗ ||α′Γt + Iy∗ |

+ sup
y∗∈Y

|κy∗

y ||κy∗ − Iy∗ |
|α′Γω + κy∗ ||α′Γt + Iy∗ |

+ sup
y∗∈Y

|κy∗

y − Iy∗

y |
|α′Γt + Iy∗ |

,

= ∆1(x, t;n) + |α′Γω − α′Γt | sup
y∗∈Y

|κy∗

y |
|α′Γω + κy∗ ||α′Γt + Iy∗ |

+ sup
y∗∈Y

|κy∗

y ||κy∗ − Iy∗ |
|α′Γω + κy∗ ||α′Γt + Iy∗ |

+ sup
y∗∈Y

|κy∗

y − Iy∗

y |
|α′Γt + Iy∗ |

= ∆1(x, t;n) + ∆2(x, t;n) sup
y∗∈Y

|κy∗

y |
|α′Γω + κy∗ ||α′Γt + Iy∗ |

+ sup
y∗∈Y

|κy∗

y ||κy∗ − Iy∗ |
|α′Γω + κy∗ ||α′Γt + Iy∗ |

+ sup
y∗∈Y

|κy∗

y − Iy∗

y |
|α′Γt + Iy∗ |

,

≤ ∆1(x, t;n) + ∆2(x, t;n) sup
y∗∈Y

|κy∗

y − Iy∗

y + Iy∗

y |
|α′Γω + κy∗ ||α′Γt + Iy∗ |

+ sup
y∗∈Y

|κy∗

y − Iy∗

y + Iy∗

y ||κy∗ − Iy∗ |
|α′Γω + κy∗ ||α′Γt + Iy∗ |

+ sup
y∗∈Y

|κy∗

y − Iy∗

y |
|α′Γt + Iy∗ |

,

= ∆1(x, t;n) + ∆2(x, t;n) sup
y∗∈Y

|δ3 + Iy∗

y |
|α′Γω + κy∗ ||α′Γt + Iy∗ |

+ sup
y∗∈Y

|δ3 + Iy∗

y ||κy∗ − Iy∗ |
|α′Γω + κy∗ ||α′Γt + Iy∗ |

+ sup
y∗∈Y

|δ3|
|α′Γt + Iy∗ |

,

≤ ∆1(x, t;n) + ∆2(x, t;n) sup
y∗∈Y

|δ3 + Iy∗

y |
|α′Γω + κy∗ ||α′Γt |

+ sup
y∗∈Y

|δ3 + Iy∗

y ||κy∗ − Iy∗ |
|α′Γω + κy∗ ||α′Γt |

+ sup
y∗∈Y

|δ3|
|α′Γt |

,

≤ ∆1(x, t;n) + ∆2(x, t;n) sup
y∗∈Y

|δ3|+ |Iy∗

y |
|α′Γω + κy∗ ||α′Γt |

+ sup
y∗∈Y

(|δ3|+ |Iy∗

y |)|κy∗ − Iy∗ |
|α′Γω + κy∗ ||α′Γt |

+ sup
y∗∈Y

|δ3|
|α′Γt |

,

≤ ∆1(x, t;n) + ∆2(x, t;n) sup
y∗∈Y

|δ3|
|α′Γω + κy∗ ||α′Γt |

+ sup
y∗∈Y

|δ3||κy∗ − Iy∗ |
|α′Γω + κy∗ ||α′Γt |

+ sup
y∗∈Y

|δ3|
|α′Γt |

,

≤ ∆1(x, t;n) + ∆2(x, t;n) sup
y∗∈Y

|δ3|
|α′Γω ||α′Γt |

+ sup
y∗∈Y

|δ3||κy∗ − Iy∗ |
|α′Γω ||α′Γt |

+ sup
y∗∈Y

|δ3|
|α′Γt |

,

≤ ∆1(x, t;n) + ∆2(x, t;n) sup
y∗∈Y

|δ3|
|α′Γω ||α′Γt |

+ sup
y∗∈Y

|δ3||δ4|
|α′Γω ||α′Γt |

+ sup
y∗∈Y

|δ3|
|α′Γt |

,

= ∆1(x, t;n) +
∆2(x, t;n)∆3(x, t;n)

α′Γω α
′Γ
t

+
∆3(x, t;n)∆4(x, t;n)

α′Γω α
′Γ
t

+
∆3(x, t;n)

α′Γt
.

So, we now need only prove that ∆1(x, t;n)
p−→ 0, ∆2(x, t;n)

p−→ 0, ∆3(x, t;n)
p−→ 0, and ∆4(x, t;n)

p−→ 0, when n→∞.
Note that both ∆1(x, t;n)

p−→ 0 and ∆2(x, t;n)
p−→ 0 are covered by Assumption 4 of Theorem 1; namely, êt,ω(x) and

µ̂ω(x) are consistent estimators of E[T = t | X = x] and E[Y | X = x,T = t].

First, we prove that ∆4(x, t;n)
p−→ 0.
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Prove that supy∗∈Y
∣∣κy∗ − Iy∗

∣∣ p−→ 0

sup
y∗∈Y

∣∣∣κy∗ − Iy∗
∣∣∣ = sup

y∗∈Y

∣∣∣∣∣
∫ y∗

−∞
fω(y | x, t)dy −

∫ y∗

−∞
f(y | x, t)dy

∣∣∣∣∣
= sup

y∗∈Y
|Pω(y ≤ y∗ | x, t)− P (y ≤ y∗ | x, t)|

Convergence in probability implies convergence in distribution (limn→∞ Pn(X ≤ x) = P (X ≤ x)), so by Assumption 3
in Theorem 1

lim
n→∞

P

(∣∣∣∣ sup
y∗∈Y

∣∣∣κy∗ − Iy∗
∣∣∣∣∣∣∣ ≥ ε) = lim

n→∞
P

(
sup

y∗∈Y
|Pω(y ≤ y∗ | x, t)− P (y ≤ y∗ | x, t)| ≥ ε

)
= P

(
sup

y∗∈Y
|P (y ≤ y∗ | x, t)− P (y ≤ y∗ | x, t)| ≥ ε

)
= P

(
sup

y∗∈Y
|0| ≥ ε

)
= P (0 ≥ ε)
= 0

Finally, we prove ∆3(x, t;n)
p−→ 0.

Prove that supy∗∈Y
∣∣κy∗

y − Iy∗

y

∣∣ p−→ 0

sup
y∗∈Y

|κy∗

y − Iy∗

y | = sup
y∗∈Y

∣∣∣∣∣
∫ y∗

−∞
(y − µ̂ω(x, t))fω(y | x, t)dy −

∫ y∗

−∞
(y − µ(x, t))f(y | x, t)dy

∣∣∣∣∣ ,
= sup

y∗∈Y

∣∣∣∣∣
∫ y∗

−∞
yfω(y | x, t)dy −

∫ y∗

−∞
yf(y | x, t)dy + µ(x, t)

∫ y∗

−∞
f(y | x, t)dy − µ̂ω(x, t)

∫ y∗

−∞
fω(y | x, t)dy

∣∣∣∣∣ ,
= sup

y∗∈Y

∣∣∣∣∣
∫ y∗

−∞
yfω(y)dy −

∫ y∗

−∞
yf(y)dy + µ

∫ y∗

−∞
f(y)dy − µ̂ω

∫ y∗

−∞
fω(y)dy

∣∣∣∣∣ ,
= sup

y∗∈Y

∣∣∣∣∣
∫ y∗

−∞
yfω(y)dy −

∫ y∗

−∞
yf(y)dy + (µ− µ̂ω + µ̂ω)

∫ y∗

−∞
f(y)dy − µ̂ω

∫ y∗

−∞
(fω(y)− f(y) + f(y))dy

∣∣∣∣∣ ,
= sup

y∗∈Y

∣∣∣∣∣
∫ y∗

−∞
yfω(y)dy −

∫ y∗

−∞
yf(y)dy + (µ− µ̂ω)

∫ y∗

−∞
f(y)dy − µ̂ω

∫ y∗

−∞
(fω(y)− f(y)) dy

∣∣∣∣∣ ,
= sup

y∗∈Y

∣∣∣∣∣
∫ y∗

−∞
yfω(y)dy −

∫ y∗

−∞
yf(y)dy + (µ− µ̂ω)

∫ y∗

−∞
f(y)dy − µ̂ω (Pω(y ≤ y∗ | x, t)− P (y ≤ y∗ | x, t))

∣∣∣∣∣ .
As a first step, we can use the result for ∆4(x, t;n) to remove the green term from the supremum and now we need to show
that

lim
n→∞

P

(
sup

y∗∈Y

∣∣∣∣∣
∫ y∗

−∞
yfω(y)dy −

∫ y∗

−∞
yf(y)dy + (µ− µ̂ω)

∫ y∗

−∞
f(y)dy

∣∣∣∣∣ ≥ ε.
)

= 0

Next, under assumption 4 of Theorem 1 we have µ(x, t)− µ̂ω(x, t)
p−→ 0, and we are left finally to show that

lim
n→∞

P

(
sup

y∗∈Y

∣∣∣∣∣
∫ y∗

−∞
yfω(y)dy −

∫ y∗

−∞
yf(y)dy

∣∣∣∣∣ ≥ ε.
)

= 0

Assumption 2 of Theorem 1 states that Y is a bounded random variable. As such, there exists a g(y) such that |yfω(y)| ≤
g(y) for all n and y ∈ Y . Therefore, in conjunction with Assumption 3, by Lebesgue’s dominated convergence theorem we
have limn→∞

∫ y∗

−∞ yfω(y)dy =
∫ y∗

−∞ yf(y)dy
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lim
n→∞

P

(
sup

y∗∈Y

∣∣∣∣∣
∫ y∗

−∞
yfω(y)dy −

∫ y∗

−∞
yf(y)dy

∣∣∣∣∣ ≥ ε.
)

= P

(
sup

y∗∈Y

∣∣∣∣∣ lim
n→∞

∫ y∗

−∞
yfω(y)dy −

∫ y∗

−∞
yf(y)dy

∣∣∣∣∣ ≥ ε.
)

= P

(
sup

y∗∈Y

∣∣∣∣∣
∫ y∗

−∞
yf(y)dy −

∫ y∗

−∞
yf(y)dy

∣∣∣∣∣ ≥ ε.
)

= P

(
sup

y∗∈Y
|0| ≥ ε.

)
= 0

Therefore, µ̂Γ

ω
(x, t)

p−→ µΓ(x, t), and µ̂
Γ

ω(x, t)
p−→ µΓ(x, t) can be proved analogously, which concludes our proof that both

τ̂ω(x; Γ)
p−→ τ(x; Γ), and τ̂ω(x; Γ)

p−→ τ(x; Γ).

C. Datasets
C.1. Simulated Data

The simulated dataset presented by Kallus et al. (2019) is described by the following structural causal model (SCM):

u := Nu, (22a)
x := Nx, (22b)
t := Nt, (22c)
y := (2t− 1)x + (2t− 1)− 2 sin(2(2t− 1)x)− 2(2u− 1)(1 + 0.5x) +Ny, (22d)

where Nu ∼ Bern(0.5), Nx ∼ Unif[−2, 2], Nu ⊥⊥ Nx, Nt ∼ Bern(e(x,u)), e(x,u) = u
αt(x;Γ∗) + 1−u

βt(x;Γ∗) , e(x) =

sigmoid(0.75x + 0.5), and Ny ∼ N (0, 1).

Remember that only x, t, and y are observed. So the bias induced by hidden confounding at x is given by

τ̃(x)− τ(x) = 2(2 + x) (P (u = 1 | T = 1,X = x)− P (u = 1 | T = 0,X = x)) , (23)

where τ̃(x) is the confounded CATE estimate.

Each random realization of the simulated dataset generates 1000 training examples, 100 validation examples, and 1000 test
examples. In the experiments we report results over 50 random realizations. The seeds for the random number generators
are i, i+ 1, and i+ 2; {i ∈ [0, 1, . . . , 49]}, for the training, validation, and test sets, respectively. Code is available in file
/library/datasets/synthetic.py on github at https://github.com/anndvision/quince.

C.2. HC-MNIST

HC-MNIST is an extension of the above dataset with high-dimensional covariates x. Specifically, x are MNIST digits.
HC-MNIST is described by the following SCM:

u := Nu, (24a)
x := Nx, (24b)

φ :=

(
clip

(
µNx − µc

σc
;−1.4, 1.4

)
−Minc

)
Maxc −Minc

1.4− -1.4
(24c)

t := Nt, (24d)
y := (2t− 1)φ+ (2t− 1)− 2 sin(2(2t− 1)φ)− 2(2u− 1)(1 + 0.5φ) +Ny, (24e)

where Nu, Nt (swapping x for φ), and Ny are as described in Appendix C.1. Nx is a sample of an MNIST image. The
sampled image has a corresponding label c ∈ [0, . . . , 9]. µNx is the average intensity of the sampled image. µc and σc are
the mean and standard deviation of the average image intensities over all images with label c in the MNIST training set.

https://github.com/anndvision/quince
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In other words, µc = E[µNx | c] and σ2
c = Var[µNx | c]. To map the high dimensional images x onto a one-dimensional

manifold φ with the same domain as x ∈ [−2, 2] above, we first clip the standardized average image intensity on the range
(−1.4, 1.4). Each digit class has its own domain in φ, so there is a linear transformation of the clipped value onto the range
[Minc,Maxc]. Finally, Minc = −2 + 4

10c, and Maxc = −2 + 4
10 (c + 1).

For each random realization of the dataset, the MNIST training set is split into training (n = 35000) and validation
(n = 15000) subsets using the scikit-learn function train test split(). The test set is generated using the MNIST test set
(n = 10000). The random seeds are {i ∈ [0, 1, . . . , 19]} for the 20 random realizations generated. Code to generate this
dataset is available in file /library/datasets/hcmnist.py on github at https://github.com/anndvision/quince.

C.3. IHDP Hidden Confounding

The experimental data from the Infant Health and Development Program (IHDP) are used by Hill (2011) to generate
simulated outcomes. The treatment group reveives “intensive high-quality child care and home visits from a trained
provider.” Hill (2011) uses “measurements on the child–birth weight, head circumference, weeks born preterm, birth order,
first born, neonatal health index, sex, twin status–as well as behaviors engaged in during pregnancy–smoked cigarettes,
drank alcohol, took drugs–and measurements on the mother at the time she gave birth–age, marital status, educational
attainment (did not graduate from high school, graduated from high school, attended some college but did not graduate,
graduated from college), whether she worked during pregnancy, whether she received prenatal care–and the site (8 total) in
which the family resided at the start of the intervention. There are 6 continuous covariates and 19 binary covariates.” Hill
(2011) excludes “a nonrandom portion of the treatment group: all children with nonwhite mothers,” in order to simulate an
observational study. Table 3 enumerates the included covariates. There are 139 examples in the treatment group and 608
examples in the control group, for a total of 747 examples.

Table 3. IHDP Covariates Binary covariates x9 − x18 are attributes of the mother. Mother’s education level “College” indicated by
covariates x10 − x12 all zero. Site 8 indicated by covariates x19 − x25 all zero. We show the frequency of occurrence for each binary
covariate p(x = 1), as well as the adjusted mutual information I(x; t) between the binary covariate and the treatment variable.

Continuous Binary
Covariate Description Covariate Description I(x; t) p(x = 1)

x1 birthweight x7 child’s gender (female=1) 0.00 0.51
x2 head circumference x8 is child a twin 0.00 0.09
x3 number of weeks pre-term x9 married when child born 0.02 0.52
x4 birth order x10 left High School 0.00 0.36
x5 “neo-natal health index” x11 completed High School 0.00 0.27
x6 mom’s age x12 some College 0.00 0.22

x13 child is first born 0.00 0.36
x14 smoked cigarettes when pregnant 0.01 0.48
x15 consumed alcohol when pregnant 0.00 0.14
x16 used drugs when pregnant 0.00 0.96
x17 worked during pregnancy 0.01 0.59
x18 received any prenatal care 0.01 0.96
x19 site 1 0.00 0.14
x20 site 2 0.01 0.14
x21 site 3 0.00 0.16
x22 site 4 0.01 0.08
x23 site 5 0.02 0.07
x24 site 6 0.01 0.13
x25 site 7 0.02 0.16

https://github.com/anndvision/quince
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Response surface B, designed by Hill (2011), is described by the following SCM:

x := Nx, (25a)
t := Nt, (25b)
y := (t− 1) (exp(βx(x + w)) +NY0) + t (βxx− ωs +NY1)) , (25c)

where (Nx, Nt) ∼ pD({x1, . . . x25}, t), NY0 ∼ N (0, 1), and NY1 ∼ N (0, 1). The coefficients βx are a vector of randomly
sampled values (0.0, 0.1, 0.2, 0.3, 0.4) with probabilities (0.6, 0.1, 0.1, 0.1, 0.1). Hill (2011) describes ωs as follows: “For
the sth simulation, [ωs] is chosen in the overlap setting, where we estimate the effect of the treatment on the treated
[(CATT)], such that CATT equals 4; similarly it was chosen in the incomplete setting, where we estimate the effect of the
treatment on the controls [(CATC)], so that CATC equals 4.” An offset vector w, equal in dimension to x, with every value
set to 0.5, is added to x.

To induce hidden confounding, we need to select a variable u that is associated with the treatment that will be hidden from
the CATE interval estimator, and design a response surface where the outcome will always be affected by u. In Table 3,
we list 3 potential candidates for u: x9, x14, and x17. Each of these variable have a non-negligible association with the
treatment, as indicated by the adjusted mutual information score I(x; t), and have a frequency of taking the value 1 at around
0.5 (increasing the chances that we will have both positive and negative examples in each of the training, validation, and
testing splits). Here we select x9 and define the following SCM:

u := Nu, (26a)
x := Nx, (26b)
t := Nt, (26c)
y := (t− 1)(exp(βx(x + w) + βu(u + 0.5)) +NY0) + t(βxx + βuu− ωs +NY1)), (26d)

where (Nu, Nx, Nt) ∼ pD(x9, {x1, . . . , x8, x10, . . . , x25}, t), NY0 ∼ N (0, 1), and NY1 ∼ N (0, 1). The coefficient βu is
randomly sampled from (0.1, 0.2, 0.3, 0.4, 0.5) with probabilities (0.2, 0.2, 0.2, 0.2, 0.2). The remaining parameters–βx,
ωs, and ω–are given as above, taking into account u.

For each random realization of the dataset, the IHDP data is split into training (n = 470), validation (n = 202) and
test (n = 75) subsets using the scikit-learn function train test split(). The random seeds for both splitting and outcome
generation are {i ∈ [0, 1, . . . , 999]} for the 1000 realizations generated. Code to generate this dataset is available in file
/library/datasets/ihdp.py on github at https://github.com/anndvision/quince.

D. Implementation Details
Experiments for the Simulated and IHDP datasets were run using a single NVIDIA GeForce GTX 1080 ti, an Intel(R)
Core(TM) i7-8700K, on a desktop computer with 16GB of RAM. Experiments for the HCMNIST dataset were run using 4
NVIDIA GeForce RTX 2080 ti GPUs, an Intel(R) Core(TM) i9-9900K, on a server with 64GB of RAM. Code is written
in python. Packages used include PyTorch (Paszke et al., 2019), scikit-learn (Pedregosa et al., 2011), Ray (Moritz et al.,
2018), NumPy, SciPy, and Matplotlib. We use ray tune (Liaw et al., 2018) with the hyperopt (Bergstra et al., 2013) search
algorithm to optimize our network hyper-parameters. The hyper-parameters we consider are accounted for in Table 4. The
hyper-paramter optimization objective for each dataset is the expected batch-wise log-likelihood of the validation data for a
single dataset realization with random seed 1331.

Each experiment is replicated using the training, validation, and testing datasets described in the previous section.

Code to replicate these experiments is available at https://github.com/anndvision/quince.

D.1. Simulated Data

As a reminder, we need parametric models for the distribution over outcomes pω(Y | x, t) and the nominal propensity êω(x).
For pω(Y | x, t), we use a 4 hidden layer mixture density network (MDN) (Bishop, 1994) with 5 mixture components. The
1D treatment variable t and 1D covariate x are concatenated to make a 2D network input. Each hidden layer is comprised of
a 100 neuron linear transformation, followed by a ReLU activation function. The MDN parameters are inferred using a linear
layer to predict the 5 means, a linear layer followed by a softplus activation to predict the square root of the 5 variances, and

https://github.com/anndvision/quince
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Hyper-parameter Search Space

hidden units [50, 100, 200, 400]
network depth [1, 2, 3, 4, 5]
negative slope [ReLU, 0.1, 0.2, 0.3, 0.4, 0.5, ELU]
dropout rate [0.00, 0.10, 0.15, 0.20, 0.25, 0.50]
spectral norm [0.95, 1.0, 2.5, 3.0, 6.0, 12.0, 24.0]
batch size [16, 32, 64, 100, 200]
learning rate [5e-5, 1e-4, 2e-4, 5e-4, 1e-3]

Table 4. Hyper-parameter search space

Hyper-parameter Simulated HCMNIST IHDP

hidden units 200 200 200
network depth 4 2 4
negative slope ReLU ReLU LeakyReLU 0.3
dropout rate 0.10 0.15 0.5
spectral norm 6.0 3.0 6.0
batch size 32 200 200
learning rate 1e-3 5e-4 5e-4

Table 5. Final hyper-parameters for each dataset

a linear layer to predict the logits of the 5 mixture components. We use the pytorch MixtureSameFamily distribution, with
mixture distribution=Categorical(.), and component distribution=Normal(.) (Paszke et al., 2019). The objective function
optimized is the negative log likelihood for the label y of the above distribution with the parameters predicted from (x, t).
Dropout is applied to the inputs of each layer after the input layer with a rate of 0.1. Spectral normalization is applied to
the weights of the networks with value 6.0. For êω(x), we use a 4 hidden layer neural network with Bernoulli likelihood.
Each hidden layer is comprised of a 200 neuron linear transformation, followed by a ReLU activation function. Spectral
normalization is applied to the weights of the networks with value 6.0. The objective function optimized is the negative log
likelihood for the observed treatment t of the Bernoulli distribution with the logits predicted from x. For both models, We
use Adam optimization with default pytorch parameters (Kingma & Ba, 2017). We use a batch size of 32. We use early
stopping based on the objective function value on the validation set with a patience of 20 epochs and train for a maximum of
500 epochs. We train an ensemble of 10 models as an estimation of Bayesian model averaging. At test time, we do 10 MC
samples, corresponding to a forward pass of each model in the ensemble for ω and 100 MC samples for y, for each model
under t = 0 and t = 1.

Hyper-parameter selection The hyper parameter search space is given in Table 4 and a summary of the final hyper-
parameters used are given in Table 5 under the column Simulated. Because the hidden confounding is a binary variable, it
induces a bi-modal distribution in y at x, as shown in Figure 5. In practice, we would not know the form of the distribution
of y at x. To this end we select 5 mixture components for the MDN to show that we can over estimate the true modality, and
still obtain sensible results. Alternatively, the validation set could be used to find the number of components that minimizes
negative log likelihood of the data. The number of MC samples are chosen based on the stability of network predictions, i.e.
we increase the number of MC samples until the variances with respect to ω or y no longer change significantly.

D.2. HC-MNIST

For pω(Y | x, t), we use a ResNet CNN feature extractor with 2 residual blocks, followed by a 2 hidden layer MDN with 5
mixture components. The 1D treatment variable t and ResNet output are concatenated to make a 49 dimensional MDN
input. Each hidden layer in the MDN is comprised of a 200 neuron linear transformation, followed by a ReLU activation
function. The MDN parameters are inferred using in the same manner as for the Simulated data above. The objective
function optimized is the negative log likelihood for the label y of the above distribution with the parameters predicted
from (x, t). Dropout is applied to the inputs of each layer after the input layer with a rate of 0.15. Spectral normalization is
applied to the weights of the network with value 3.0. For êω(x), we use a ResNet CNN feature extractor with 2 residual
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Figure 5. Hidden confounding induces a multi-modal distribution in y at x

blocks, followed by a 2 hidden layer neural network with Bernoulli likelihood. Each hidden layer of the Neural Network is
comprised of a 200 neuron linear transformation, followed by a ReLU activation function. Dropout is applied to the inputs
of each layer after the input layer with a rate of 0.15. Spectral normalization is applied to the weights of the network with
value 3.0. The objective function optimized is the negative log likelihood for the observed treatment t of the Bernoulli
distribution with the logits predicted from x. For both models, We use Adam optimization with a learning rate of 5e-4
(Kingma & Ba, 2017). We use a batch size of 200. We use early stopping based on the objective function value on the
validation set with a patience of 20 epochs and train for a maximum of 500 epochs. We train an ensemble of 5 models as an
estimation of Bayesian model averaging. At test time, we do 5 MC samples, corresponding to a forward pass of each model
in the ensemble for ω and 100 MC samples for y, for each model under t = 0 and t = 1.

D.3. IHDP Hidden Confounding

For pω(Y | x, t), we use a neural network feature extractor with 4 hidden layers, followed by a 2 hidden layer MDN with 5
mixture components. The 1D treatment variable t and feature extractor output are concatenated to make a 201 dimensional
MDN input. Each hidden layer in the feature extractor and MDN is comprised of a 200 neuron linear transformation,
followed by an LeakyReLU activation function. The MDN parameters are inferred using in the same manner as for the
Simulated data above. The objective function optimized is the negative log likelihood for the label y of the above distribution
with the parameters predicted from (x, t). Dropout is applied to the inputs of each layer after the input layer with a rate of
0.5. Spectral normalization is applied to the weights of the network with value 6.0. For êω(x), we use a neural network
feature extractor with 3 hidden layers, followed by a 2 hidden layer neural network with Bernoulli likelihood. Each hidden
layer of the Neural Network is comprised of a 200 neuron linear transformation, followed by a ELU activation function.
Dropout is applied to the inputs of each layer after the input layer with a rate of 0.5. Spectral normalization is applied to the
weights of the network with value 6.0. The objective function optimized is the negative log likelihood for the observed
treatment t of the Bernoulli distribution with the logits predicted from x. For both models, We use Adam optimization with
a learning rate of 5e-4 (Kingma & Ba, 2017). We use a batch size of 200. We use early stopping based on the objective
function value on the validation set with a patience of 20 epochs and train for a maximum of 500 epochs. We train an
ensemble of 10 models as an estimation of Bayesian model averaging. At test time, we do 10 MC samples, corresponding to
a forward pass of each model in the ensemble for ω and 100 MC samples for y, for each model under t = 0 and


