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A. Channel Scaling Vs. Feature map Scaling
For extremely lower ReLU budgets, we use a combination
of channel scaling and fmaps’ resolution scaling. Since re-
ducing fmaps’ resolution (each spatial dimensions of fmaps)
by 2× (ρ=0.5) decreases the ReLU count by 4×, we first use
channel scaling (α = 0.5) for reducing the ReLU count by
2×. Further, for 4× reduction in ReLU count, we prefer to
use fmaps’ resolution scaling (ρ=0.5) over channel scaling
(α=0.25) since the former results in more accurate networks,
as illustrated in Table 9. Unlike fmap resolution scaling,
channel scaling reduces the parameter count along with the
ReLU count, which may reduce the expressive power of a
network. Hence, the network is more accurate with fmaps’
resolution scaling.

Table 9. Performance comparison for ReLU optimization using
channel scaling (α <1) and fmap-resolution scaling (ρ <1). Base-
line models have α=1 and ρ=1. At iso-ReLU, accuracy (w/ KD) of
the the fmap-resolution scaled models is higher than the channel
scaled models.

Network #Conv #ReLUs CIFAR-100

W/o KD (%) W/ KD (%)

ResNet18 (baseline) 17 557K 74.46 76.94
ResNet18; α=0.25, ρ=1 17 139K 68.17 70.19
ResNet18; α=1, ρ=0.5 17 139K 68.47 72.72

ResNet10 (baseline) 9 311K 74.10 76.69
ResNet10; α=0.25, ρ=1 9 78K 66.69 66.88
ResNet10; α=1, ρ=0.5 9 78K 66.67 71.86

ResNet6 (baseline) 5 188K 68.86 69.58
ResNet6; α=0.25, ρ=1 5 47K 57.64 56.9
ResNet6; α=1, ρ=0.5 5 47K 64.74 68.09

B. VGGNet DeepReDuce Pareto Points
We do not remove ReLUs from fully connected (FC) layers
as FC account only 8.192K ReLUs and training networks
without FC ReLUs is challenging. The results are shown
in Table 10. Unlike ResNets and MobileNets, ReLUs in S5

are least critical and that of the S1 is moderate.

Table 10. Stage-wise ReLUs’ criticality in VGG16 evaluated on
CIFAR-10. S5 is least critical while S2 and S3 are most critical.

Net #ReLUs W/o KD (%) W/ KD (%) Ck

S1 + FC-ReLUs 139.3K 82.0 81.4 10.90
S2 + FC-ReLUs 73.7K 86.1 85.3 14.31
S3 + FC-ReLUs 57.3K 86.4 85.1 14.40
S4 + FC-ReLUs 32.8K 77.1 77.7 9.17
S5 + FC-ReLUs 14.3K 63.9 66.0 0.00

The ReLU optimizations step for the Pareto points in Figure
5 are listed in Table 11. Models are the ReLU-optimized
versions (Thinned and Reshaped) of two Culled networks:
(1) stages S4 and S5 are Culled and (2) stages S1, S4 and
S5 are Culled.

Table 11. Optimization steps for MobileNetV1 DeepReDuce mod-
els shown in Figure 5

Optimization Steps #ReLUs Acc.(%)

S1 + S2 + S3 + FC 253.95K 93.92
S2 + S3 + FC 122.88K 92.52
SRT
2 + SRT

3 + FC 73.73K 90.23
SRT
1 + SRT

2 + SRT
3 + FC, α=0.5 69.63K 89.97

SRT
2 + SRT

3 + FC, α=0.5 36.86K 88.92

C. ReLUs’ Criticality and Pareto Points for
MobileNets

We evaluate the ReLUs’ criticality in MobileNetV1
(Howard et al., 2017) and MobileNetV2 (Sandler et al.,
2018)) on the CIFAR-100. The results are shown in Ta-
ble 12. We observed the similar trend as ResNet18 and
ResNet34 on CIFAR-100/TinyImageNet (shown in Tables 1
and 3), accuracy differs significantly across stages and S1

(S4) ReLUs are least (most) critical.

Table 12. Stage-wise criticality of ReLUs in MobileNetV1 and
MobileNetV2 evaluated on CIFAR-100. FR is baseline with Full-
ReLU (S1+S2+S3+S4+S5). ReLUs in S1 (S4) are least (most)
critical.

Net MobileNetV1 MobileNetV2

#ReLUs W/o KD(%) W/ KD(%) Ck #ReLUs W/o KD(%) W/ KD(%) Ck

FR 411.6K 67.58 - - 425.6K 68.46 - -
S1 131.1K 33.06 34.16 0.00 196.6K 37.82 34.25 0.00
S2 114.7K 49.64 50.65 11.83 110.6K 49.83 46.93 9.12
S3 57.3K 55.56 54.20 15.09 58.4K 54.74 53.06 14.15
S4 94.2K 57.37 61.10 19.60 27.6K 57.08 57.28 18.26
S5 14.3K 42.32 45.45 9.37 32.4K 48.42 50.49 12.73

The Pareto points of DeepReDuce models for MobileNetV1
(CIFAR-100) are shown in Figure 6. The optimization steps
for all DeepReDuce models are list in the Table 13.

First, in step 1 of DeepReDuce (Figure 4), we Culled the
least critical stage S1. In step 2 of ReLU Thinning, we had
two ways to remove the ReLUs from alternate layers, either
from 3× 3 depthwise convolution layer or 1× 1 pointwise
convolution layer. When downsampling is performed in
3× 3 depthwise convolution layer, the ReLU count of both
the layers are not equal. More precisely, #ReLUs in the
1× 1 pointwise convolution is twice as that in the preceding
3× 3 depthwise conv.

We empirically found that removing ReLUs from 3 × 3
depthwise conv layer yields more accurate iso-ReLU mod-
els. We suspect this is because 3×3 depthwise convolutions
perform filtering (feature learning) and 1× 1 pointwise con-
volutions perform feature aggregation (Howard et al., 2017),
the ReLUs in the former layer is more critical for accuracy.
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Table 13. Optimization steps for MobileNetV1 DeepReDuce mod-
els shown in Figure 6

Optimization Steps #ReLUs Acc.(%)

S2 + S3 + S4 + S5 280.60K 70.83
SRT
2 + SRT

3 + SRT
4 + SRT

5 108.54K 70.77
SRT
2 + SRT

3 + SRT
4 + SRT

5 , α=0.5 54.27K 67.46
SRT
2 + SRT

3 + SRT
4 + SRT

5 , ρ=0.5 27.14K 62.96
SRT
2 + SRT

3 + SRT
4 + SRT

5 , α=0.5, ρ=0.5 13.57K 58.25

D. ReLU Criticality in ResNet56
We examine the stage-wise criticality of ReLUs in ResNet56
and results are shown in Table 14.

Table 14. Stage-wise criticality of ReLUs in ResNet56 evaluated
on CIFAR-100. S3 is most critical and S1 is least critical.

Stages #ReLUs W/o KD (%) W/ KD (%) Ck

S1 311.3K 57.92 59.45 0.0
S2 147.5K 65.62 67.97 6.0
S3 73.73K 65.36 69.22 7.2

E. Layer-wise Distribution of ReLUs
We show the layer-wise distribution of FLOPs, parameters,
and ReLU count in the standard networks such as ResNet34
(He et al., 2016), VGG16 (Simonyan & Zisserman, 2014),
MobileNetV1 (Howard et al., 2017), and MobileNetV2 (San-
dler et al., 2018) in Figure 7. Consistent with ResNet18 (Fig-
ure 3), the FLOPs are evenly distributed, more parameters
are used in deeper layers, and ReLUs are mostly in initial
layers of the networks. Thus, the ReLU reduction in initial
layers has a significantly greater impact on the overall ReLU
count of these networks. Moreover, the stark difference
between the ReLU distribution and FLOPs/parameter distri-
bution indicates that ReLU optimization cannot be ensured
through the popular FLOPs/parameters pruning techniques.
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(a) Layer-wise distribution of parameter, FLOPs, and ReLUs in ResNet34 (He et al., 2016).
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(b) Layer-wise distribution of parameter, FLOPs, and ReLUs in VGG16 (Simonyan & Zisserman, 2014).
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(c) Layer-wise distribution of parameter, FLOPs, and ReLUs in MobileNetV1 (Howard et al., 2017).

Figure 7. Layer-wise percentage of parameter, FLOPs, and ReLUs in various DNNs. FLOPs are evenly distributed, parameters (ReLUs)
are increases (decreases) from initial to deeper layers.


