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Supplementary Materials

A. Further Specifications on Meta-Learning Experiments
A.1. Datasets and Model Architectures

FC100 (Oreshkin et al., 2018) is a dataset derived from CIFAR-100 (Krizhevsky & Hinton, 2009), and contains 100 classes
with each class consisting of 600 images of size 32. Following Oreshkin et al. 2018, these 100 classes are split into 60
classes for meta-training, 20 classes for meta-validation, and 20 classes for meta-testing. For all comparison algorithms,
we use a 4-layer convolutional neural networks (CNN) with four convolutional blocks, in which each convolutional block
contains a 3 X 3 convolution (padding = 1, stride = 2), batch normalization, ReLU activation, and 2 x 2 max pooling. Each
convolutional layer has 64 filters.

The minilmageNet dataset (Vinyals et al., 2016) is generated from ImageNet (Russakovsky et al., 2015), and consists of 100
classes with each class containing 600 images of size 84 x 84. Following the repository (Arnold et al., 2019), we partition
these classes into 64 classes for meta-training, 16 classes for meta-validation, and 20 classes for meta-testing. Following the
repository (Arnold et al., 2019), we use a four-layer CNN with four convolutional blocks, where each block sequentially
consists of a 3 x 3 convolution, batch normalization, ReLU activation, and 2 x 2 max pooling. Each convolutional layer has
32 filters.

A.2. Implementations and Hyperparameter Settings

We adopt the existing implementations in the repository (Arnold et al., 2019) for ANIL and MAML. For all algorithms, we
adopt Adam (Kingma & Ba, 2014) as the optimizer for the outer-loop update.

Parameter selection for the experiments in Figure 2(a): For ANIL and MAML, we adopt the suggested hyperparameter
selection in the repository (Arnold et al., 2019). In specific, for ANIL, we choose the inner-loop stepsize as 0.1, the
outer-loop (meta) stepsize as 0.002, the task sampling size as 32, and the number of inner-loop steps as 5. For MAML,
we choose the inner-loop stepsize as 0.5, the outer-loop stepsize as 0.003, the task sampling sizeas 32, and the number
of inner-loop steps as 3. For ITD-BiO, AID-BiO-constant and AID-BiO-increasing, we use a grid search to choose the
inner-loop stepsize from {0.01,0.1, 1, 10}, the task sampling size from {32, 128, 256}, and the outer-loop stepsize from
{10%,i = —3,-2,—1,0,1,2,3}, where values that achieve the lowest loss after a fixed running time are selected. For
ITD-BiO and AID-BiO-constant, we choose the number of inner-loop steps from {5, 10, 15, 20, 50}, and for AID-BiO-
increasing, we choose the number of inner-loop steps as [c(k + 1)1/ 4] as adopted by the analysis in Ghadimi & Wang 2018,
where we choose ¢ from {0.5,2, 5,10, 50}. For both AID-BiO-constant and AID-BiO-increasing, we choose the number N
of CG steps for solving the linear system from {5, 10, 15}.

Parameter selection for the experiments in Figure 2(b): For ANIL and MAML, we adopt the suggested hyperparameter
selection in the repository (Arnold et al., 2019). Specifically, for ANIL, we choose the inner-loop stepsize as 0.1, the
outer-loop (meta) stepsize as 0.001, the task sampling size as 32 and the number of inner-loop steps as 10. For MAML,
we choose the inner-loop stepsize as 0.5, the outer-loop stepsize as 0.001, the task samling size as 32, and the number of
inner-loop steps as 3. For ITD-BiO, AID-BiO-constant and AID-BiO-increasing, we adopt the same procedure as in the
experiments in Figure 2(a).

Parameter selection for the experiments in Figure 3: For the experiments in Figure 3(a), we choose the inner-loop
stepsize as 0.05, the outer-loop (meta) stepsize as 0.002, the mini-batch size as 32, and the number 7' of inner-loop steps as
10 for both ANIL and ITD-BiO. For the experiments in Figure 3(b), we choose the inner-loop stepsize as 0.1, the outer-loop
(meta) stepsize as 0.001, the mini-batch size as 32, and the number 7" of inner-loop steps as 20 for both ANIL and ITD-BiO.

B. Further Specifications on Hyperparameter Optimization Experiments

We demonstrate the effectiveness of the proposed stocBiO algorithm on two experiments: data hyper-cleaning and logistic
regression, as introduced below.

Logistic Regression on 20 Newsgroup: We compare the performance of our algorithm stocBiO with the existing baseline
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algorithms reverse, AID-FP, AID-CG and HOAG over a logistic regression problem on 20 Newsgroup dataset (Grazzi
et al., 2020). The objective function of such a problem is given by
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where L is the cross-entropy loss, ¢ = 20 is the number of topics, and p = 101631 is the feature dimension. Following Grazzi
et al. 2020, we use SGD as the optimizer for the outer-loop update for all algorithms. For reverse, AID-FP, AID-CG, we use
the suggested and well-tuned hyperparameter setting in their implementations https://github.com/prolearner/
hypertorch on this application. In specific, they choose the inner- and outer-loop stepsizes as 100, the number of inner
loops as 10, the number of CG steps as 10. For HOAG, we use the same parameters as reverse, AID-FP, AID-CG. For
stocBiO, we use the same parameters as reverse, AID-FP, AID-CG, and choose 7 = 0.5, Q = 10. We use stocBiO-B as a
shorthand of stocBiO with a batch size of B.

Data Hyper-Cleaning on MNIST. We compare the performance of our proposed algorithm stocBiO with other baseline
algorithms BSA, TTSA, HOAG on a hyperparameter optimization problem: data hyper-cleaning (Shaban et al., 2019) on a
dataset derived from MNIST (LeCun et al., 1998), which consists of 20000 images for training, 5000 images for validation,
and 10000 images for testing. Data hyper-cleaning is to train a classifier in a corrupted setting where each label of training
data is replaced by a random class number with a probability p (i.e., the corruption rate). The objective function is given by
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where L is the cross-entropy loss, o(-) is the sigmoid function, C, is a regularization parameter. Following Shaban
et al. 2019, we choose C, = 0.001. All results are averaged over 10 trials with different random seeds. We adopt
Adam (Kingma & Ba, 2014) as the optimizer for the outer-loop update for all algorithms. For stochastic algorithms, we
set the batch size as 50 for stocBiO, and 1 for BSA and TTSA because they use the single-sample data sampling. For all
algorithms, we use a grid search to choose the inner-loop stepsize from {0.01,0.1, 1,10}, the outer-loop stepsize from
{10%,i = —4,-3,-2,-1,0,1,2, 3,4}, and the number D of inner-loop steps from {1, 10, 50, 100, 200, 1000}, where
values that achieve the lowest loss after a fixed running time are selected. For stocBiO, BSA, and TTSA, we choose 1 from
{0.5 x 284 = —3,-2,-1,0,1,2,3}, and Q from {3 x 2¢,i = 0,1,2,3}.

C. Supporting Lemmas

In this section, we provide some auxiliary lemmas used for proving the main convergence results.

First note that the Lipschitz properties in Assumption 2 imply the following lemma.

Lemma 1. Suppose Assumption 2 holds. Then, the stochastic derivatives VF(z;§), VG(2;§), V,V,G(2;€) and
ViG(z; &) have bounded variances, i.e., for any z and &,

o B¢ |VF(2€) - Vf(2)|” < M2
o E¢||V.V,G(2:€) — Vo V,yg(2)|* < L.
o E¢||V2G(2:€) - Vig(2)||* < L2

Recall that ®(z) = f(z,y*(z)) in eq. (2). Then, we use the following lemma to characterize the Lipschitz properties of
V&(z), which is adapted from Lemma 2.2 in Ghadimi & Wang 2018.


https://github.com/prolearner/hypertorch
https://github.com/prolearner/hypertorch

Bilevel Optimization: Convergence Analysis and Enhanced Design

Lemma 2. Suppose Assumptions 1, 2 and 3 hold. Then, we have, for any z,x' € RP,
[VO(z) — VO(2')|| < La|lz — 2/,

where the constant Lg is given by
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D. Proof of Propositions 1 and 2
In this section, we provide the proofs for Proposition 1 and Proposition 2 in Section 2.
D.1. Proof of Proposition 1
Using the chain rule over the gradient V®(xy) = M“Tyk(“)) we have
V(er) = VS (o (@) + 22T, a7 (1) (13)

Based on the optimality of y*(x), we have V,g(zx, y*(zx)) = 0, which, using the implicit differentiation w.r.t. y, yields

dy* ()

— Vg, y* (2x)) = 0. (14)
Let v}, be the solution of the linear system V2 g(zx, y* (x1))v = V, f (2x, y* (x1)). Then, multiplying v;; at the both sides
of eq. (14) yields

Ay* (k)

—VaeVyg(ar, y* (zr))vp = —— Vyf(@e,y*(xr)),

which, in conjunction with eq. (13), completes the proof.

D.2. Proof of Proposition 2

Based on the iterative update of line 5 in Algorithm 1, we have y,’? = yg -« ZtD: 51 Vy9(zk, yL), which, combined with
the fact that V,,g(z, y}) is differentiable w.r.t. z, indicates that the inner output y,{ is differentiable w.r.t. ;. Then, based
on the chain rule, we have

5f(xk7y;?)
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Based on the iterative updates that y§ = yk —aVyg(zk, y,i’l) fort =1,..., D, we have
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B~ 0w~ OVeVudlon i) — o V(o y )
oyt
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Telescoping the above equality over ¢ from 1 to D yields

ayP 8y0 D-1 D-1 D-1
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t=0 t=0 j=t+1
W = p :
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where (4) follows from the fact that dy" = (. Combining eq. (15) and eq. (16) finishes the proof.
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E. Proof of Theorem 1
For notation simplification, we define the following quantities.
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We first provide some supporting lemmas. The following lemma characterizes the Hypergradient estimation error || @fb(x k)—
V& (zy)|, where V®(xy,) is given by eq. (3) via implicit differentiation.
Lemma 3. Suppose Assumptions 1, 2 and 3 hold. Then, we have
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where I is given by eq. (17).
Proof of Lemma 3. Based on the form of V®(zy) given by Proposition 1, we have

IV®(xr) — VO (1) |> <3|V f (2, y* (21)) — Vaf (@i, y)I? + 3 Va Vyg(zr, y2) |2 [log — vb |12
+ 3|V Vyg(an, v (2r)) — Vo Vyg(ar, yi)II o)1,
which, in conjunction with Assumptions 1, 2 and 3, yields
IV®(zx) — V()2 <3L2[ly* (zx) — yP |12 + BL2 vy — v |2 + 372 vk 2wk — v () ||
|2 RI M

@)
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where (i) follows from the fact that [[vg || < [[(V2g(zr, y* (k) NIVy f (@r, y* (zx))]] < /ML

For notation simplification, let 0 = (VZg(zk,yp)) ' Vyf(zr, yf). We next upper-bound [vj — vf|| in eq. (18).
Based on the convergence result of CG for the quadratic programing, e.g., eq. (17) in Grazzi et al. 2020, we have

N
ol — B < \/E( ‘/Efl) |vY — Dy ||. Based on this inequality, we further have
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Next, based on the definitions of v}, and 7y, we have
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Combining eq. (18), eq. (19), eq. (20) yields
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which, in conjunction with ||y2 — y* ()| < (1 —ap) 7 ||y — y* (21| and the notations in eq. (17), finishes the proof. [J

|Ve(ar) - Vo(ar)|? < (312 +
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Lemma 4. Suppose Assumptions 1, 2 and 3 hold. Choose
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where Q and Aq are given by eq. (17).

Proof of Lemma 4. Recall that 40 = y” . Then, we have
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where (4) follows from Lemma 2.2 in Ghadimi & Wang 2018 and (i7) follows from Lemma 3. In addition, note that
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where (i) follows from eq. (19). Combining eq. (24) with ||v} —v;_,|| < (k? + Zi\f—f + QLNM")HQI:;C — Zj—1||, we have
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where (7) follows from Lemma 3. Combining eq. (23) and eq. (25) yields
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which, in conjunction with eq. (21), yields

* * 1 * *
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Telescoping eq. (26) over k and using the notations in eq. (17), we finish the proof. O

Lemma 5. Under the same setting as in Lemma 4, we have
. ) N k=l k—1-j )
IVe() = Vo@ol? <bpn(3) Bo+donY_(5) IV,
j=0

where 1 n, Q) and A are given by eq. (17).

Proof of Lemma 5. Based on Lemma 3, eq. (17) and using ab + cd < (a + ¢)(b + d) for any positive a, b, ¢, d, we have
IV (1) = VO(a)|* <dp v (Ily* (zx) — w2 11> + llof — o}l
which, in conjunction with Lemma 4, finishes the proof. O

E.1. Proof of Theorem 1

In this subsection, provide the proof for Theorem 1. Based on the smoothness of the function ®(x) established in Lemma 2,
we have

L
(i) SB(en) + (VE(n), 21 — o) + - lonrn — ]|

<®(x1,) — BIVD(x1), VO(wy) — VB(z1)) — B VO(w) | + 2L || V()|
+ 2L | V(1) — V()]

<(e) — (5~ 0La) IV + (5 + 62La) [V (a1) — T0(a) )

which, combined with Lemma 5, yields
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2
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Telescoping eq. (28) over k from 0 to K — 1 yields

(5 - La) Z [V < (o) — inf () + (5 +62La )0 g
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5 K—1
(f — BLq — (B2 + 2082 Le)dp, N) IV® (2|2

k=0

S <I>(a:0) - H%fq)(l‘) + (g + B2L<I>)6D7NAO- (29)
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Choose NN and D such that
1
(Q+208Le)dp,N < T dopn <1 30)

Note that based on the definition of dp v in eq. (17), it suffices to choose D > O(x) and N > O(1/k) to satisfy eq. (30).
Then, substituting eq. (30) into eq. (29) yields

K-1

B 2 2 . B 2
A < _ =
(- #Le) ];) |90 (@) 2 < @(a0) — inf &(2) + (5 + B2Ls) Ao,
which, in conjunction with § < ¢ L , yields
K— .
k=0

In order to achieve an e-accurate stationary point, we obtain from eq. (31) that AID-BiO requires at most the total number
K = O(r3¢~1) of outer iterations. Then, based on eq. (3), we have the following complexity results.

e Gradient complexity:
Ge(f,€) =2K = O(k%*¢ 1), Ge(g,¢) = KD = O(/@‘le*l).

e Jacobian- and Hessian-vector product complexities:
WV(g,e) = K =0 (k% ") ,HV(g,e) = KN = O (k*%¢").

Then, the proof is complete.

F. Proof of Theorem 2

We first characterize an important estimation property of the outer-loop gradient estimator %‘yk) in ITD-BiO for
approximating the true gradient V® () based on Proposition 2.

Lemma 6. Suppose Assumptions 1, 2 and 3 hold. Choose o < % Then, we have

HM Vi H<( L+u)(1—au)%+2M(TM+LP)(1_W)%)||yg_y*(m)n
1 p
L LM = ap)®
1%

- D
Lemma 6 shows that the gradient estimation error H %’f”“) - Vo(zy) H decays exponentially w.r.t. the number D of the

inner-loop steps. We note that Grazzi et al. 2020 proved a similar result via a fixed point based approach. As a comparison,

our proof of Lemma 6 directly characterizes the rate of the sequence (%, t=0,.. D) converging to 8%;1”“ via the
differentiation over all corresponding points along the inner-loop GD path as well as the optimality of the point y* ().

Proof of Lemma 6. Using V®(zy) = V, f(zk, y* (2r)) + %(‘:’“)Vyf(xk, y*(z1)) and eq. (15), and using the triangle
inequality, we have

|=5e — vt
09%
0 oy*(x
V2 f o) = Vel )+ | G~ 22y, )
oy*(z .
b |2t 190 o 9 = Vo )|
(@) 0 oy*(x oy* (x .
SLlp — g+ 01 | G~ ARy g P g, 62
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8yk _ Oy* (z1)

where (7) oy

‘ in eq. (32).

Based on the updates y! = yk —aVy g(:ck, ) fort =1, ..., D in ITD-BiO and using the chain rule, we have

— t—1
Dy _ 2o (V Vo) + Vg )>. (33)

8$k 8$k

Based on the optimality of y*(x), we have V,g(xx, y*(zx)) = 0, which, in conjunction with the implicit differentiation
theorem, yields

. "
VoV ) + 2L ) = 0. 64
Substituting eq. (34) into eq. (33) yields
Oyp _ Oy*(zr) _Oy'  Oy*(zk) g Oy 2

a(vxvyguk,y*(xk)way; W) G (m))

8 t—1 ou*
SO W) (9,9, gl ) — VeVl (@)

- axk 3xk
oyt oy (k) oo t—1
a< B - D )V g(xk’yk )
oy* -
+a yagk) (V2g(xn, v () — Vig(ar,yh ). 2

Combining eq. (34) and Assumption 2 yields

Iy* (zx) . . -1 _ L
L ‘ = || Ve ustai @) [Vt v @) 7| < - (36)
Then, combining eq. (35) and eq. (36) yields
oyt Oy* (k) O ) v | Oy (k)
|5e = g | =] - a¥iste HH oo~ o |
Lp
+a(f+> Iyt - g @l
@ v - Oy L
1 - ap| 2 ) | +a <T+”) lye™ =y @)l (37)
k

where (4) follows from Assumption 3 and (i%) follows from the strong-convexity of g(z, -). Based on the strong-convexity
of the lower-level function g(z, -), we have

_ ¥ t=1 X
i =y (@)l < (1= ap) = [lyg — y* (@)]- (38)
Substituting eq. (38) into eq. (37) and telecopting eq. (37) over ¢ from 1 to D, we have

Hayk Iy* () H Hayk _ Oy*(wk) xk)H
Oy, Oz, oxy
D—1
L o . )
o <T+Mp> > (1—am)P 1 - ap)FlyR — v (@)
t=0
Ay 53/ xk) 2 (tu+ Lp) big o
=(1-au H@xk H + 12 (I —ap) 7 [lye — y" (@)
L(l—« +L b1 .
< ( . pu)P 4 (T,UM2 P)(liau) = |yl — v ()|, (39)

where the last inequality follows from gyk = 0 and eq. (36). Then, combining eq. (32), eq. (36), eq. (38) and eq. (39)
completes the proof. O
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F.1. Proof of Theorem 2

Based on the characterization on the estimation error of the gradient estimate ﬂ%;y’“) in Lemma 6, we now prove Theo-

rem 2.

~ D
Recall the notation that V®(xy) = %’f’e). Using an approach similar to eq. (27), we have

B

Baer) <ba) — (5 — Lo ) V0GP + (5 + 520 IVO(2i) - T (40)

which, in conjunction with Lemma 6 and using ||y — y* (z)||* < A, yields

D) <ba) — (5 — 510 ) V()P

2
+3A(§+52L<1>)(L2(L+M)2(1_a/J,)D-i-W(l_aN)D_l)

p? Iz
L2M2 1— 2D
+3(ﬁ+ﬂ2L ) 1 —op) @1
m
Telescoping eq. (41) over k from 0 to K — 1 yields
K—1
1 1 5 _ ®(zg) — inf, () 1 L2M?*(1 — ap)?P
— - < -
= Z (5 - 6La) IVO(@) | < e +3(5 +6La) =
L*(L + p)* p | AM?(rp+ Lp)® p-1
+3A( + BLs )(T(l—au) +T(1—au) ) (42)
Substuting § = 57— and D = log (max{#ﬂAL?(l—i- )2, %—Zﬁf‘p)}k)/log T = O(rlog 1) ineq. (42)
yields
1= 16Le(®(x0) — inf, (z))  2¢
= o 2< D 0) — T = 4
L3 Ve < - 2 @)

el
Il

0

In order to achieve an e-accurate stationary point, we obtain from eq. (43) that ITD-BiO requires at most the total number
K = O(k3¢™1) of outer iterations. Then, based on the gradient form given by Proposition 2, we have the following
complexity results.

e Gradient complexity: Ge(f,€) = 2K = O(k%!),Ge(g,¢) = KD = O (ke 'log 1) .

e Jacobian- and Hessian-vector product complexities:
4.—1 1 4 -1 1
IWV(g,e)=KD =0 | k"¢ "log— | ,HV(g9,e) = KD =0 | k"¢ "log— ] .
€ €

Then, the proof is complete.

G. Proofs of Proposition 3 and Theorem 3

In this section, we provide the proofs for the convergence and complexity results of the proposed algorithm stocBiO for the
stochastic case.
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G.1. Proof of Proposition 3

Based on the definition of vg in eq. (5) and conditioning on xy, y,? , we have

Q-1 @
Evg =En Y ] (I —nV;G(zr,yP; B))VyF(z,yP; Dr),
q=—1j=Q—q
Q
=n> (I =nVigaryl)'Vyf(zrup)
q=0
=0 (I =nVig(zryl)'Vyf(@eul) —n > (I =nViglar, y)Vyf (@ up)
q=0 qg=Q+1
=n(Vig(@r ul) Vo f@eul) —n Y (= nVigae yP) Vo f @k yl),

=Q+1

which, in conjunction with the strong-convexity of function g(z, -), yields

o0
- (1 —nu)**tM
[Evg — [Vig(am v ' Vyf (e ul)| <0 Y (L—np)'™ < ——— (44)
i K
q=Q+1
This finishes the proof for the estimation bias. We next prove the variance bound. Note that
Q-1 2
Eln > 1T U —=0ViGar,yids B))VyF(wr,ys Dr) — (Vog(en,yi )~ Vi (@, ui)
g=—1j=Q—q
@ “ 2 D 2 D 1 2 2 2M°
SQEH n Y I T=nViGn i By) = (Viglaw,ui) | M* + 5
q=—1j=Q—q neZs
Q-1 Q Q 2
54E‘ n Y. [ T=nViGar,uisB) —nd> (I —nViglaw, yi))?|| M*
g=—1j=Q—q q=0
Q 2 2M?2
480 31— n¥3a(on ) - (gt )| 017+ 2
= p2Dy
Q Q Q 2 2Q+2 7 r2 2
4(1 — M 2M
Car Z H (I = V3G, yi': B5)) — Y (I —nVyg(zk, yi))*? ;A=) +=5
=0j=Q+1 q=0 w2 pueLy
(@) 2772 < 2 D 2 D\\q ?
< 4an’M QEZ I (=nViG@w v B;) — (I —nVig(zx, yi))
q=0" j=Q+1—q
My
4(1 —nu)22*t2 2 2M?
40z " 45)

p p?*Dy

where (¢) follows from Lemma 1, (i7) follows from eq. (44), and (i7i) follows from the Cauchy-Schwarz inequality.

Our next step is to upper-bound M, in eq. (45). For simplicity, we define a general quantity M; for by replacing ¢ in M,
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with ¢. Then, we have

Q 2
EM, =EH<I g P) T] a2 P B) — (- g, o))
j=Q+2—1
Q 2
H (V2g(aruP) — V3G (e P iBas ) [[ (- nV2G(anuP:By))
j=Q+2—1
Q .
+2E<(I—W§g(wk,y5)) I[I T-9ViGwuliB) — (I —nViglaw ui)),
j=Q+2—1
Q
N(Vag(zr,yl) = VaG(an,udi Bor-i)  [] (I—WiG(%y;?;Bj))>
j=Q+2—1
(i) < 2
=EH<I o) [ - nV2GnuPs B) — (I — nV2g(w o))’
=Q+2—i
Q 2
+EHn<v;§g<xk,y£>—vzam,y,?;sw_i» [ (VG B)
J=Q+2—i

(i)
< (1= nu)’EM;— +0°(1 — nu)* EV2g(zr, yp ) — VoG, yp s Bori-i)|?

(zu) . L2

< (1= nu)’EM,_1 +n*(1 —nu)* 2 , (46)

1Bg1-i

where (i) follows from the fact that Bz, , _, V2G(zk, yt'; Bor1-i) = Vig(ak, yP). (i) follows from the strong-convexity
of function G(z, -; £), and (#i7) follows from Lemma L.

Then, telescoping eq. (46) over ¢ from 2 to g yields
]EM < L2 2 77,u 2q 2
Z B Q+1—j ‘

which, in conjunction with the choice of [Bgi1—;| = BQ(1 —nu)?~! for j = 1, ..., Q, yields

L? 1 -1t
EM, <n (1—Tlﬂ2q22 ( )

I —nu
772L2 9 2(17177,‘,4)(1 1_]- 77L2 1
= 1—nu)~ < =~ =nu)?. A7
5Q | ) o (T~ non BQ' )

Substituting eq. (47) into eq. (45) yields

2
EHn S I U =aViG(anyP:B)VyF(wkyf: Dr) — (Vig(zr, b ) " Vyf (@r yf)

q:*lj*Q q
L? 1 4(1 —nu)?Q+2Mm2  2M?
<P MPQ Y  ——————=(1—np)? +
qz; —nu)p BQ G p?Dy
APLAM? 1 4(1 —pp)2Q+2M2 202
LML ( W)2 M 48)
w B I p2Dy

where the last inequality follows from the fact that Zf:o z? < ﬁ Then, the proof is complete.
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G.2. Auxiliary Lemmas for Proving Theorem 3

We first use the following lemma to characterize the first-moment error of the gradient estimate @@(mk), whose form is
given by eq. (6).

Lemma 7. Suppose Assumptions 1, 2 and 3 hold. Then, conditioning on xj, and y,’? , we have

S 2 L* Mt LM 2L2M?(1 — nu)?@
HEVCI)(l'k) *V(I)($k)|| S 2(L P) H (l'k)HzJF (Mz 77”)
Proof of Lemma 7. To simplify notations, we define
~ -1

Based on the definition of @@(xk) in eq. (6) and conditioning on z;, and y7, we have

Eﬁfb(‘rk) :vxf(xka ykD) - vxvyg(xkay]?)EvQ
=Vp(zr) — VaVyg(zr, i) (Evg — [Vaog(ze, v~ Vo f @k ui)),

which further implies that

[EV®(24) — V(2|
<OE|VEp(x) — VO (x1)||® + 2(EVE(21) — VO p (1)
<OR||VOp(wx) — VO(zx)[|” + 2L7|[Bog — [Vog(wr, v~ Vo f (za, v

207 M?(1 —np)>9+2

<OE|V®p(z1) — VO(z1)| + 2 : (50)

where the last inequality follows from Proposition 3. Our next step is to upper-bound the first term at the right hand side
of eq. (50). Using the fact that HVyg x,y) "1 H <= and based on Assumptions 2 and 3, we have

IV®p (k) = V(i) | <[V f(@r, yt) = Vaf (2, y" () |

L? N M N
+ 7”24;? =y (i)l +*||y1? =y ()|l
+ LM ||Vig(zr, ye) " V29($k7 ()|
( L?> Mr LMp)H
o

y* (@)l (51)

where the last inequality follows from the inequality || M — M, || < || My My ||| My — My|| for any two matrices M
and M>. Combining eq. (50) and eq. (51) yields

~ L? M7 LMp\2 . 2L2M?(1 — np)2@
HEV@(Z’k)_V(I)(Z'k)H <2(L—|—?+7+ MQP) HykD_y (mk)H2+ (MQ 77#) ;

which completes the proof. O

Then, we use the following lemma to characterize the variance of the estimator @@(wk)

Lemma 8. Suppose Assumptions 1, 2 and 3 hold. Then, we have

4L2M? (8L2 M? N 16n>L*M> 1 N 16L2M?(1 — np)??
p2Dy I Dy p? B G
L2 Mr LMp i
+( ) Ellvd — v @)l

E[[Ve(xy) — V(x| <

+2)

Lt—-+
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Proof of Lemma 8. Based on the definitions of V®(z,) and V® p(z,) in eq. (4) and eq. (49) and conditioning on z, and
D
Yi » we have

E[[VO(xy) — V()|

DRV (ar) — Vop(an) |2 + [IVOp(ar) — V(i)

2M?

(@) 1 2
<2E||V.V,Glak, yt 1 Da)vg — VaVyg(@r ye ) [Vag(@e, ul)] Vyf (@i ud)||” + D,

L?> Mt LMp N
(o Z BT B ey

(m) 4M2

T EIV.V,Glak, u' Da) = VaVyg(an, yD)I? + AL%Ellvg — [Vig(ar, yD)] Vo f (@ )2

2M*?
Dy’

e =y (an)|® +

( L?> Mr LMp) 1P 52)

where () follows from the fact that EDG’DH,DF€‘I)(Z‘]§) = V®p(xy), (i) follows from Lemma 1 and eq. (51), and (iii)
follows from the Young’s inequality and Assumption 2.

Using Lemma 1 and Proposition 3 in eq. (52), yields
412 M? N 169> L' M> 1 N 16(1 —nu)?QL2M?  8L*M?
p2D, p B I p2Dy

L M LM 2M?
+( T P P v P+ 2
Dy

E|[V®(zy) — VO (zi)|* <

(53)

which, unconditioning on zj, and y,? , completes the proof. O

It can be seen from Lemmas 7 and 8 that the upper bounds on both the estimation error and bias depend on the tracking
error |y — y*(xx)||>. The following lemma provides an upper bound on such a tracking error ||y2 — y* (x)||*.

Lemma 9. Suppose Assumptions 1, 2 and 4 hold. Define constants

_ 272 2
:(%)QD(QJF BHL (L—i—L +%+L3fp)2)

AL% M 8L2

M?  16n°L*M? 1 16L*M?(1 — nu)*®
A== +(7+2) L L (2 i)
w?Dy w2 Dy % B %
4B°L? /L — p\2D
= ) B 54
2 (L—l—,u) (54)

Choose D such that A\ < 1 and set inner-loop stepsize o = L%—u Then, we have
Ellyy —y* (zx)lI?

o[ (Lo 2D|| )2+ -2 +wkzlx“mnv¢<x>n2 At i
= Ltp) W ¥WOl TS i -

Proof of Lemma 9. First note that for an integer t < D

=yt @)l =y = v 2 = vk vk — vt () + vk — v () |

=0V Gk, Y S)I* — 20(Vy G (@r, v Se)s vk — y* (@) + vk — v (@) |?. (55)

llyy,
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Conditioning on y} and taking expectation in eq. (55), we have

Ellytt =y (zn)|?

( ) 0'2 *
<a?(% + Vg, ) I2) = 20(, 9w, 50, vk — v (@)

+llyk =y (2n)|?

(@ a0 Ly IV ,9(zr, yb)|12
<3 +®||Vyg(zk, yp) I — 2a <L+ vk — y* (x)]? + w)
+ vk — " (@) 2
0420'2 2 N2 2oL
= — 1— t % ) 2 36
g <L+u a) 1Vyg(@r, yi)| +( L+u> e — y* (xn) | (56)

where (7) follows from the third item in Assumption 2, and (¢4) follows from the strong-convexity and smoothness of the

function g¢. Since o = L%m, we obtain from eq. (56) that

Bl - vl < (222 ok - @l +
“\L+p (L+p)2S
Unconditioning on y}, in eq. (57) and telescoping eq. (57) over ¢ from 0 to D — 1 yield
L—u 2D 2
E D x 2 < E 0 ,* 2
I = @l < (752) Bl - v @l + g

(L= Bl -y P+ (58)
- L+M Yr—1 Yy k LILLS’

(57

where the last inequality follows from Algorithm 2 that y) = y2 . Note that
Ellyiy —y* (@o)l* <2Ellyy — v (zr-1) 1 + 2Elly* (wr-1) — y™ (22) ]
(4) . 212
<2E||y1 — v (zr-1) > + T]Ellﬂfk = wpf?

HQ 2ﬁ2L2

<2E|lyi1 — y* (wk—1) ||V (1)

HQ 4ﬂ2L2

<2E|ly’ — ¥ (xr-1) E|V®(zr—1)]?

462L2

+

E|[V®(zy_1) — VO(zx_1)|?, (59)

where (7) follows from Lemma 2.2 in Ghadimi & Wang 2018. Using Lemma 8 in eq. (59) yields

Ellyi-1 —y* (zx)lI?

43212 L?> Mt LMp\2
<(2+ 2 (4 + EEOY VB - )P +
4B%L2% (4L2M? 8L* M?  1692L*M? 1 16L>M?(1 — nu)*@
I 12Dy p? Dy Iz B I
Combining eq. (58) and eq. (60) yields

48212
i E|[ V(1)

(60)

Ellyf — y* ()|

_ 2D 272 2
S(L p) (2+46L ( L Mt LMp
L+p u? % % I
<L - u)w 4B2L2 [AL?M? (8L2 M? N 167°L*M? 1 N 16L2M2(1 — np)*@

L+p u? w?Dy 12 Dy 12 B 12

ABI2 (L —u e
= (7L—|—u) E|[V®(xy_1)]? +L < 61)

) VBl — y* (@,-1)]?

+2) 5=
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Based on the definitions of A\, w, A in eq. (54), we obtain from eq. (61) that

Elyr —y* (@)* SAElyy — v (@r-0)? + wA + —— L 5 +@EIVO(ze)|*. (62)
Telescoping eq. (62) over k yields
Ellyy —y* ()|
= WA+ 155
VB — (o) +w 3 AN IRV ()2 4 S
7=0
2
L—/J 2D 2 k—1 A—’_LLS
<)\k ok 2 )\k 1— gE P 2 7,&!
< ((HM) oo =y ol + 775 )+ 190 ()P + 25,
which completes the proof. O

G.3. Proof of Theorem 3

In this subsection, we provide the proof for Theorem 3, based on the supporting lemmas we develop in Appendix G.2.

Based on the smoothness of the function ®(z) in Lemma 2, we have

D(i1) SO(er) + (V) ass — ) + o [ensr — 2l
<(xx) — B(VO(wy), VO(w1)) + 5213<1>||V‘1’($k)||2 + B°Lo||VO(x1) — VO (ay)|*.

For simplicity, let Ex, = E(- | 2, y?). Note that we choose 3 = 7—. Then, taking expectation over the above inequality,
we have

E®(zy41) <ED(xx) — BE(VO(z1,), ExV®(xy)) + B Lo E| VO () |2
T B LBV (i) — D ()|
(%) ~ ~
SE@(2) + DEBTD (k) — V() — TEI V()| + DEIVE(rs) ~ Tl

(i1) L2M?2(1 — 2Q
B0 () - VE|a () + U )

e
g AL2 M2 <g N 2) M? N 169°L*M? 1 . 16L2M2(1 — np)?@
12Dy p? Dy p* B I
5ﬂ L? Mr LMp «
(s ) El v @) (©3)

where (7) follows from Cauchy-Schwarz inequality, and (i¢) follows from Lemma 7 and Lemma 8. For simplicity, let

) L M LMp\?2
u:f(L+—+—T+ 2”).
pweoop I

4
Then, applying Lemma 9 in eq. (63) and using the definitions of w, A, A in eq. (54), we have

BLAM?(1 — np)*?

(64)

Ed(zp41) <E(zz) — gEHV(I)(xk)HZ n

112
5 k L— M 2P * 2 02
+ A+5 A Ttp lyo — y*(zo) |l +LuS
k—1 o2
) Br(wA + 2+
+BuwZAk_1_]E||V<I>(:rj)2+(1_)\L”S).

Jj=0
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Telescoping the above inequality over £ from 0 to K — 1 yields

51( 1 K—1k—1 ]
Ed(vr) < @(w0)— 7 S EVO(zi)|* 4 Brw Y Y NTIIR|VE(x;)|?
k=0

k=1 j=0
o? ) 1612
LuS/1—X\

KEBA (L —p\2P 2
o () o=y ol +
KBLAM2(1 —nu)?@  KBv(wA + L"Tzs)
+ + 7
2 1—A

which, using the fact that

K—-1k—1 K—-1 K— K—
SO NTIIR|VE(ay)|? < (Z Ak> E||V®(z)|? < Z E||V®(z1)|?,
k=0

,_.

k=1 j=0 k=0 k=0
yields
K—-1
1 vw 1
- — Y E|V® 2
(-1 % 3 BIve)|
— * 0_2
Do) —inf, B(a) v((F2)Pllyo — v* (z0) I + 25) LA LM )
= 8K K(1—\) 4 12
2
v(wA + =)
e (63)

We choose the number D of inner-loop steps as

D>max{1°g(12+ 480L% (4 L2 | My | LMpy2) 1og(\/B(L+L“+”ﬁT+LH]‘§p))}
> 2log( fi_Z) ) log(ﬁ‘fﬁ)

2 2
log (12+48‘i2L (L+L= +M*+“§") )

Then, since 5 = fq’ and D > 2Tog(ZEE) = , we have A < %, and eq. (65) is further simplified to

1 6 V1 2
(1‘5”‘”)? > E|[Va(wy)|
k=0

<<I>(x0) — inf, ®(x) n QV((%)QDH?JO —y*(z0)|* + ﬁ) N é n L2M?(1 — nu)?@
- BK K 4 12
2

+2u(wA+ Lo,l-J,S). (66)

272 2
og (12422550 (L L2+ Mz 1 Lie)2)

1
By the definitions of w in eq. (54) and v in eq. (64) and D > S Toa( L)
og( =y

, we have

vw =

582L2 /L — i\ 2D L?  Mr LMp\2
(*) (L+ =)
I L+u

5[322

< .
12 + 48i2L (L—l-% %4_ L%p)2 48

2
MT LMp)

(67)

log (VB(L+E24Mx 1 LMe))

In addition, since D > =
log(

Lﬂ) , we have

(§+Z)2D Z<§+Z)2D(L+L2 MT+LMP)2<3. (68)
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Substituting eq. (67) and eq. (68) in eq. (66) yields

K-1 .
1 o _8(®(z0) —inf, ®(x) + 2lyo — y*(z0)?) 1\ 16vo?
— < —
i 2 Elve@l < BK +(+ ) LuS

11 SL2M?2
———(1—np)*?@

b

which, in conjunction with eq. (54) and eq. (64), yields eq. (9) in Theorem 3.

Then, based on eq. (9), in order to achieve an e-accurate stationary point, i.e., E[|[V®(Z)|> < e with Z chosen from
xg, ..., Tc—1 uniformly at random, it suffices to choose

_ 32Lg(®(x0) — infy ®(x) + 3lyo — ¥ (z0)||*) O( )D o(k)

Q:nlog%Q,S:O(If) go< )Df (2) (’f)

Note that the above choices of ) and B satisfy the condition that B > W required in Proposition 3.

Then, the gradient complexity is given by Ge(F,e) = KD; = O(k°¢2),Ge(G,€) = KDS = O(k%e2). In addition, the
Jacobian- and Hessian-vector product complexities are given by JV(G, e) = KD, = O(k°¢ %) and

Q 6 2
. KB
=Ky BQ—nu’ = KBQ _ (”2 log = ) .
= e e 7 e

Then, the proof is complete.

H. Proof of Theorem 4

0L (b1, @L3B)

To prove Theorem 4, we first establish the following lemma to characterize the estimation variance Eg H EEn

OLp (P, Wy ) ||2

Odi
Lemma 10. Suppose Assumptions 2 and 3 are satisfied and suppose each task loss Ls, (¢, w;) is u-strongly-convex w.r.t.
w;. Then, we have

, where @,? is the output of D inner-loop steps of gradient descent at the k" outer loop.

OLp (g, WP B) aﬁp(qbk,zﬂf)H?é (1+£)2M2

Es H Py, 0Py iz W

Proof. Let @,? = (wP R wm &) be the output of D inner-loop steps of gradient descent at the k" outer loop. Using
Proposition 2, we have, for task 7;,

OLp, ¢k, w
HTH <|VsLo, (1,05
D—-1
+H0é Z VoV, Ls (dr,wiy) [[ (I —aVi, Ls, (6, w] )V, Lo, (¢r, w, )H
t=0 j=t+1
(i) = Dot LM
<M+aLMZ 1—ap) =M+77 (69)

t=0

where (4) follows from Assumptions 2 and strong-convexity of Ls, (¢, -). Then, using the definition of Lp (¢, w; B) =
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ﬁ Zz‘eB Lp, (¢, w;), we have

|9£0 Sk i) OLp(¢n, TF) H2

]EBHaﬁD ¢k7wk ) ) 6‘C'D(¢k7ﬂj]€)) H2 :i
by, 0Py, |B| Obr Oor,
O 1 8£’Di(¢k7wi?k)H2
Bl Oox.
(41) N2 M2
<(l4+—) —.
<(1+ M) 3] (70)

Lo, (¢rwDy) _ LD (¢r, D)

where (7) follows from E; 2 Don = Dor and (i7) follows from eq. (69). Then, the proof is complete. [

Proof of Theorem 4. Recall ®(¢) := Lp (¢, @ (6)) be the objective function, and let VP(¢;) = 2£2ET) Using an
approach similar to eq. (40), we have

L
B(d1) SO(0) + (VR(Sk), Su1 — d) + - [ bisr — ol

~D. 2 ~D.
<B(en) 5<V<I>(¢k), 351)((2;2;% ,B)> n B 2L<I> HaﬁD((l;;:)k ;B) H2 1)
Taking the expectation of eq. (71) yields
(4) ~ 27,
E(0ii1) TED(6) — BE(TB(00). TO(00)) + VBT ()|
aLD d)kvwk ) H
Io

(i) - L 2], L2 M?
a(00) - FE(VO(00), Ta(00) + LPEITRG0I + 21 (14 2) T
<B(or) (5~ B La)BIVE@)IP + (2 + 52La )EIVE(0r) ~ (01

B2Lg L\2 M2

(1 0) (72)

where (i) follows from EgLp (¢r, wD; B) = Lp(¢k, w) and (i) follows from Lemma 10. Using Lemma 6 in eq. (72)
and rearranging the terms, we have

11 )
= > (5~ BLe JEIVE(60)]
k=0
D(¢o) — infy 2(¢) 1 LPM*(1 —ap)*P  BLe L\2M?
ST pK +3(3+0Ls) 2 5 ()
+ 3A( + 5[@) (M(l _ au)D + M(l _ Oz,u)D_l)
’u2 N4 ’

where A = maxy, [|[0) — W*(¢x)||> < oo. Choose the same parameters 3, D as in Theorem 2. Then, we have

K-—1 . 2
LY B|va(|p < a0 il 20) | 2y Ly

K K 3" 88|
k=0

Then, the proof is complete. O



