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Abstract

For machine learning models to make reliable
predictions in deployment, one needs to ensure
the previously unknown test samples need to be
sufficiently similar to the training data. The com-
monly used shift-invariant kernels do not have
the compositionality and fail to capture invari-
ances in high-dimensional data in computer vi-
sion. We propose a shift-invariant convolutional
neural tangent kernel (SCNTK) based outlier de-
tector and two-sample tests with maximum mean
discrepancy (MMD) that is O(n) in the number of
samples due to using the random feature approx-
imation. On MNIST and CIFAR10 with various
types of dataset shifts, we empirically show that
statistical tests with such compositional kernels,
inherited from infinitely wide neural networks,
achieve higher detection accuracy than existing
non-parametric methods. Our method also pro-
vides a competitive alternative to adaptive kernel
methods that require a training phase.!

1. Introduction

In the two-sample hypothesis testing task, given two sets
of sampled data, we are interested in knowing whether
they come from the same distribution. In the extreme case
when either set has a sample size of 1, such testing can
be regarded as out-of-distribution (OOD) detection. For
two-sample tests, one of the simplest methods is to evaluate
the maximum mean discrepancy (MMD) statistics (Gretton
et al., 2012). MMD measures the distance between the
kernel mean embeddings of two distributions (Muandet
et al., 2016) in the reproducing kernel hilbert space (RKHS)
(Berlinet & Thomas-Agnan, 2004).

As the choice of kernel and associated hyperparame-
ters can largely affect the efficacy of the MMD-based
method, there have been methods that optimize the kernel
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for maximizing the test power (Liu et al., 2020; Gao et al.,
2020). These methods have been shown to empirically
work well for image data. Since the distributions of
high-dimensional data are expected to have complex
function form, deep kernel based methods are becoming
popular (Wilson et al., 2016; Sutherland et al., 2016; Li
et al., 2017; Jean et al., 2018; Wenliang et al., 2019). A
common deep kernel approach is to train a network to
extract features under different criteria, such as the test
power maximization. Extracted features are then fed into a
simple Gaussian kernel (Liu et al., 2020; Gao et al., 2020).

One disadvantage of the deep kernel approach is
that the method hinges on the generalization of the feature
extractor to the new “test” data. Using a portion of the test
samples as “training” data (or for fine-tuning) also means
that less “test” samples become available. Besides, in online
scenarios, nonparametric methods that optimize kernel
parameters are not computationally scalable. To address
these issues, we investigate an orthogonal direction to see
whether the compositional kernels associated with randomly
initialized convolutional neural networks (CNNs) provide a
better inductive bias than existing kernels for statistical tests
in image domains. The hope is that fast testing with their
random feature approximation (Rahimi & Recht, 2008;
Cho & Saul, 2009) is competitive to deep kernel methods
that use naive Gaussian kernels. Our motivation comes
from the recent surge of interests in neural tangent kernel
(Jacot et al., 2018; Lee et al., 2019; Bietti & Mairal, 2019)
and its empirical success in CIFAR10 classification task
(Arora et al., 2019; Li et al., 2019). We summarize our
contributions below:

1. We show the explicit conditions under which the neural
tangent kernel for certain fully-connected and convolu-
tional neural networks are shift-invariant and character-
istic, which makes it a valid kernel for two-sample tests
with MMD statistics. Shift-invariance also makes the
kernel applicable for kernel density estimation (KDE)-
based out-of-distribution detection.

2. We show how the proposed shift- invariant convolu-
tional neural tangent kernel (SCNTK) is used to com-
pute the MMD statistic for two-sample tests and the
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outlier score for OOD detection. By approximating the
exact tangent kernel using the linear kernel of gradi-
ents, our computational cost is reduced to linear O(n)
from O(n?) w.r.t to the sample size.

3. We empirically show that the SCNTK-based nonpara-
metric methods outperform kernel methods with fixed
Gaussian kernels in two-sample tests on CIFAR10 and
MNIST. It also provides a competitive and efficient
alternative to the deep kernel methods that optimize
the kernel.

2. Related work

MMD-based Two Sample Test: Recent works with deep
kernel approaches have pointed out the limited represen-
tation power of the naive Gaussian kernel in pixel space
(Wenliang et al., 2019; Kirchler et al., 2020). Optimizing the
bandwidth of such a Gaussian kernel is also insufficient to
detect the distributional difference between two datasets for
image domains and complex distributions (Liu et al., 2020).
As such, a feature extractor that extracts meaningful seman-
tic information is trained by maximizing the test power on
held-out samples. Since some data from Sg are adversar-
ially created using samples from P, Gao et al. (2020) no-
tices that these adversarial data are non-independent, which
causes issues in the MMD computation. Hence, they apply
wild bootstrap process to achieve a better result in similar
domains.

However, all these methods still rely on training the fea-
ture extrator network on the held-out data. This makes the
learning-based methods potentially very expensive in online
scenarios where the distribution of the data may change over
time. As such, we are seeking an alternative fixed kernel
approach that could improve upon the survey results with
existing fixed kernel methods in Rabanser et al. (2019).

Out-of-Distribution Detection: There have been many
outlier detection methods proposed under different problem
setups. Specifically, when the label information about the
data is given, Hendrycks & Gimpel (2016) uses the confi-
dence score of a softmax classifier trained on the labelled
data as the outlier score. Lee et al. (2017b); Liang et al.
(2017) further use temperature scaling and adversarial noise.
Another improvement to the softmax confidence-based out-
lier detector is to use the variance of an ensemble model
(Choi et al., 2018).

Fourier Feature Network: Motivated by Rahimi & Recht
(2008), which shows that simple shift-invariant kernels such
as Gaussian can be approximated with random fourier fea-
tures, we also use the periodic activation to have the shift-
invariant property for NTK. Tancik et al. (2020) shows
that such a Fourier feature mapping could allow a fully-
connected network to learn high-frequency functions in low

dimensional domains. Sitzmann et al. (2020) also shows
that sinusoidal representation networks are good fits for rep-
resenting complex natural signals and their derivatives. In
our work, we take a further step to look at the effect of using
such a periodic activation for a highly composite neural
tangent kernel associated with a convolutional network.

3. Technical Background
3.1. Two-sample hypothesis testing

Let P and Q be the underlying distributions for two sets
of samples Sp and Sg. Our task is to determine whether
P = Q. Under the framework of hypothesis testing, we have
the null hypothesis hg : P = Q and alternative hypothesis
hy : P # Q. In this work, permutation tests (Dwass, 1957,
Fernandez et al., 2008) with MMD statistics is carried out
to estimate the sampling distribution of the MMD statistics
under null hypothesis. Null hypothesis is rejected if the
the prior observed result is too extreme under the estimated
sampling distribution.

Maximum mean discrepancy (MMD). Assume a kernel
K : X x X — R has its associated reproducing ker-
nel Hilbert space Hy. The feature map from X to Hg
is K(-,x) € Hj. One common test statistics for two-
sample tests is the MMD metric, which measures the dis-
tance between two distributions P, Q using their embed-
dings in RKHS (Berlinet & Thomas-Agnan, 2004). Let
x,x' ~Pandy,y’ ~ Q, their kernel mean embeddings are
wp = E[K(-,x)], ug := E[K(-,y)]. Then MMD under
this kernel K (-, -) is the RKHS norm of two embeddings:

MMD(P, Q; Hk) = [[up — polly .

MMD expression can be simplified into the following form:

@3.1)

MMD?*(P,Q) = E[K (x,x) + K(y,y') — 2K(x,y)] (3.2)

2
Then the unbiased estimate of MMDQ, MMD,,, can be com-
puted as in Equation 3.3 using m samples {x71,...,x,} ~ P
and n samples {y1,...,yn} ~ Q. The time complexity
of computing this estimate is O(mn), or simply O(n?) if
m = n. It is quadratic w.r.t the number of test samples due
to the pairwise kernel evaluations:

— 1 1 2

MMD?2 = b— .
2 m2_ma+n2_n m(n_l)c (3.3)

QZZZK(X»“XJ') b=ZZK(Yian) (3.4)
i=1 j#i i=1 j#i

and c = >31%, 377, K(xi,y;). For MMD to be a proper
metric, MMD(P, Q; Hx) = 0 if and only if P = Q, the
kernel K (-, -) needs to be characteristic. The most common
choice is the naive gaussian kernel. In this work, we review
the kernels that operate on learned features and propose our
fixed shift-invariant kernel derived from randomly initial-
ized neural networks.
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Permutation tests and asymptotic distributions of
MMD statistics. Based on the asymptotic distributions
of mu, a permutation test under the assumption of
ho : P = Q is carried out to obtain the p-value for de-
ciding whether to accept the null hypothesis. Under the null
hypothesis hg : P = Q, this MMD statistic converges to a
chi-squared distribution:

2
nMMD,, 5 Y Ni(Z2 -2); Zi~N(0,2) (3.5

where \; are the eigenvalues in the eigen-value equation for
the centered kernel (Gretton et al., 2012). Under the alterna-
tive hypothesis h; : P # Q, it converges in distribution to a
Gaussian: (Serfling, 1980).

_— 2
Vi(MMD, —MMD?) % N(0,07,)  (3.6)

where the variance is governed by
0']%1 = 4(E[H12H13} - E[H12]2) (37)

Hij = K(xi,%x;) + K(yi,y;) — K(xi,y;) — K(yi, %)

Under the null hypothesis, samples in Sp and Sg can be
shuffled £ times to recompute test statistics MMDi,i for
i = 1,..., k. These statistics are used to estimate the null
distribution in Equation 3.5. We use this sampling distribu-
tion to determine whether the observed statistic MMDi’O,
which is computed with the original unshuffled samples, is
too large to be outside the 1 — o quantile. « is generally
chosen 0.05. Null hypothesis hg is rejected if this is the

case; p-value < a.
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Figure 1. Both histograms are plotted from 100 MMD statistics,
each of which is computed using 40 samples from each P and Q
distributions. The dimension is set to x, y € R®*®*! Left: Empir-
ical distribution of MMDi under hg, with P and Q Gaussians with
0% = 5, using 100 samples from each. Right: Empirical distri-
bution of MMD2 under h1, with P : N(0, 5I) and Q : N(0, 10T).
A simple three-layer 2-strided convolution network with a filter
size of 2 and widths of 100 is used to derive the SCNTK similar to
Equation 4.6 for MMD.

Deep Kernel method. Besides using the naive gaussian
kernels for MMD, we also investigate recently proposed
baselines that optimize the deep feature extraction network
to maximize the test power Liu et al. (2020); Gao et al.

(2020). Gaussian kernel is applied to the extracted features
K (¢(x), p(x’)) as in Equation 3.8. ¢,,(-) is the parametric
feature extractor optimized for testing power on held-out
dataset. To ensure the characteristic property of the ker-
nel, a naive gaussian kernel ¢(x,x’) in the pixel space is
multiplied. e is another tunable parameter.

K,(x,x)= [(1 — e)K(d)w(x), d)w(x')) + e]q(x, x') (3.8)

3.2. Neural tangent kernel

First, we briefly describe the standard NTK formulation
and the kernels associated with different neural network
architectures. We denote the scalar output of a randomly
initialized neural network by f(x;6y) € R where 6, € R?
is all the parameters initialized under the standard normal
distribution. x is the input and we are interested in the image
data x € REXWXC Consider two image data x and x/, the
empirical neural tangent kernel is given by:

n_ [/ 0f(x,680) Of(x',60)
K(x,x)—< 90, ' 06 > 3.9

In the large width limit, NTK under a L-layer fully-
connected network will converge to the deterministic form
in Equation 3.10 (Arora et al., 2019). It is a sum of products
of covariance and derivative covariance where each X(:=1)
is the covariance function of the i.i.d gaussiance process de-
fined for the neuron at [-th layer pre-activation f()(x). £
is the derivative covariance, which can be computed simi-
larly to ©(!) except replacing the previous layer activation
function with its derivative.

L41 L+1
K(x,x') = Z <E(l_1)(x, x") H 2“”(){,){')) (3.10)

=1 U=l

Arora et al. (2019) also shows the deterministic form of
convolutional NTK (CNTK) similar to Equation 3.10 under
a L-layer convolutional network. It also has the sum of
products of covariance form as shown in the Appendix.

3.3. Characteristic Kernel

For the deterministic form of NTK such as Equation 3.10
to be characteristic, we review the result indicating that a
characteristic kernel can be constructed by adding or mul-
tiplying positive semi-definite shift-invariant kernels to a
characteristic kernel (Sriperumbudur et al., 2010).

Definition 1 (Positive definite function). A function K :
X X X — Ris called positive definite (PD) if, for alln € N,
a1, ...,n € Randall x1,...,x, € X,

ZZaiajK(xi,xj) Z 0 (311)
i=1 j=1
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that is, a positive definite function has a positive semi-
definite matrix of size n for all possible n and function
arguments Xi, ..., Xp.

Definition 2 (Characteristic kernel). A bounded positive
definite kernel K is characteristic if the following map is
1 — 1; that is, embedding the probability distribution P into
the RKHS H i as a feature map pp is injective:

P e = BxrlK (0] = [ K(x)aP(x) (312)

Under a characteristic kernel, this definition will naturally
make MMD a valid metric for two-sample tests, evaluating
P = QorP # Q, since MMD in Equation 3.1 is the distance
between embeddings pp and pg in RKHS H i space. If
MMD = 0, up = pg and therefore we could say P = Q.

Using Bochner’s theorem (Rudin, 1962), Sriperumbudur
et al. (2010) has shown gaussian kernel to be characteristic.
The next theorem shows how to construct another character-
istic kernel from a simple characteristic kernel such as the
gaussian kernel.

Compositionality Theorem 1 (Sriperumbudur et al.
(2010)). Let K, K1, K5 be shift-invariant kernels that can
be expressed as K(x,y) = ¥(x—y) where U(-) is a
bounded continuous real-valued positive definite function
on R Suppose K is characteristic and Ko # 0 Then
K + Ky and K - K5 are characteristic.

This will become the key theorem in showing the characteris-
tic property of certain NTKs. Previous deep kernel methods
in Equation 3.8 also rely on this result for the characteristic
property of the kernel. The main difference between their
methods and our fixed NTK-based kernel is that this gaus-
sian kernel in pixel space, ¢(x,x’), is manually multiplied
in Equation 3.8. For the NTK kernel, we will see in Equa-
tion 3.10 that this gaussian kernel could naturally appear in
one of the terms under the cosine activation though other
terms still make this kernel expressive.

When the data is restricted to the hypersphere SY~!, Geif-
man et al. (2020) has shown that plain NTK for MLP with
ReLU activations includes the same sets of functions as
the Laplace kernel in their RKHS. As the Laplace kernel
is universal, this makes NTK universal and characteristic.
Since we focus on general cases, shift-invariance is a simple
sufficient condition for NTK to be characteristic. We further
discuss conditions under which this property makes CNTK
characteristic.

3.4. Out-of-distribution (OOD) detection.

When the sample size of Sg becomes 1, two-sample tests
can be regarded as outlier detections. The simplest approach
is to use kernel density estimation (KDE). Outlier can be

detected by thresholding the negative of the density as the
outlier score. For this paper, we use this task to perform
simple ablation studies on our proposed kernel. A popular
non-thresholding metric for comparing different methods is
to use the area under ROC (AUROC).

4. Shift-invariant CNTK

The goal of our proposed shift-invariant convolutional neu-
ral tangent kernel (SCNTK) is to provide a robust non-
parametric approach to two-sample tests and outlier detec-
tion that ultimately benefits from the recent advances in
deep learning. Although neural tangent kernel (NTK) has
shown to provide competitive performance to trained neural
networks in classification tasks (Arora et al., 2019), the stan-
dard NTKs with ReLU activations are not shift-invariant in
the infinite width limit. In this section, we extend the vanilla
neural tangent kernel (NTK) to satisfy the shift-invariance
property in the infinite width limit. We use K. to denote
SCNTK and K to denote shift-invariant NTK for a fully-
connected network.

4.1. Motivations for the shift-invariance

1) In section 4.4 and the appendix, we rely on the shift-
invariance to show NTK is characteristic in our particular
settings. 2) When the kernel is optimized, Liu et al. (2020)
has shown the flexibility of not being shift-invariant allows it
to adapt to the local structure of data distributions. However,
our fixed kernel cannot take this advantage. Instead, a fixed
kernel method can use more samples in the testing process
by incorporating the unused “training” data. In this scenario,
we consider the shift-invariance to be a particular prior, or a
regularization scheme. In OOD applications, it is desirable
to have the same kernel evaluation when the same shifts are
applied to the training and test example x, x’.

4.2. Shift-invariant convolutional neural tangent kernel
(SCNTK) for statistical tests

Two-sample tests. We perform the two-sample hypothe-
sis testings with MMD statistics under our shift-invariant
convolutional neural tangent kernel (SCNTK). The compu-
tational benefit of using such a linear kernel in Equation
3.9 is that we can sum up the gradients ¢(x;), ¢(y;) for Sp
and Sq separately, reducing the MMD computation or KDE
evaluations to O(n) from O(n?). Other exact kernel meth-
ods require O(n?) due to the pairwise kernel evaluations in
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Equation 3.3.

—2 1 1 2

MMDu:mg_ma+n2_nb—m(n_1)c 4.1)
m 2

a= ( Dodxi)|| - ZII¢>(X¢)I§> (4.2)
i=1 2 i=1
n 2 n

b= ( Do) - Z||¢(Yi)”§) 423)
=1 2 i=1

c= <<Z d(x:), > d(y:)) —Z<¢(Xi),¢(yi)>> (4.4

i=1 i=1 i=1

OOD detection. For a test data x’, the outlier score is
computed using the negative of the sum of shift-invariant
kernel evaluations at each of the inlier samples Dy :

|Dx|

S(x';Dx) = — Z Koe(x', x;)

i=1

4.5)

SCNTK. To make the NTK kernel shift-invariant for a con-
volutional network, we do not include the inner products of
the gradients w.r.t the first layer, as in in Equation 4.6. We
discuss about this choice in the subsection 4.3.

L ¢c® ,
Koolx,x) =3 <8f(x’0°),8f (X’0°)> (4.6)

is the weight matrix associated with the [-th layer
and the [-th output channel. The first activation layer

h(M(x) uses the cosine activation and the uniform bias
wo ~ Unif(0,2rI)

c(0)
h% (x) = po cos (Z W((i)%(ﬂ) * h&_)l)(x) + w0> 4.7
a=1

where « is the input channel index. The constant is

po = (co/(CH) x g x q))1/2 with filter size ¢ and ¢, is
the standard deviation generally used for the weight initial-
ization.

Figure 1 shows the empirical distribution of MMD? un-
der SCNTK using the synthetic toy Sp, Sg data generated
from simple Gaussians, similar to the setup in Gretton et al.
(2007). Empirically, we see that MMDZ with SCNTK could
still behave as a chi-squared distribution in Equation 3.5 un-
der hg : P = Q. And it behaves as a normal distribution 3.6
under by : P #£ Q.

4.3. Shift-invariant property

To show that SCNTK has a shift-invariant property, we
firstly establish results associated with the covaraince
»(=1(.) and derivative covariance ¥'~(-) at each I-th

pre-activation layer. One important feature is that we only
need to use cosine activations for the first layer for shift-
invariance but choose to keep the rest of activations as ReLU.
This is motivated by the fact that most neural network archi-
tectures are designed and tested under the commonly used
ReLU activations. Firstly, we note that both fully-connected
and CNNs have shift-invariant covariance matrices as long
as the first pre-activation covariance is shift-invariant. See
the Appendix for more detailed discussions on these results.

Lemma 1. If the covariance ©V) (x,x') associated with
the second pre-activation layer is shift-invariant for a fully-
connected network or a CNN, then the activation covari-
ances X (x, x') and the derivative covariances ¥V (x, x')
VIl = 2,..., L are shift-invariant.

To ensure the first-layer covariance is shift-invariant, we
make use of the random feature approximations (Rahimi
& Recht, 2008) with the cosine activation and the uniform
bias.

Proposition 1. In the infinite width limit, CNTK computed
by the inner products of gradients w.r.t parameters for
i = 2,...,L layers under first-layer cos activations is
shift-invariant; Ks(x,x') = Ks(x — x'), Kse(x,%x') =
Kq.(x — X') if the first-layer activation o(-) is sin(-) or
cos(+) and the bias is uniformly sampled wy ~ Uni f(0, 27)

We show that first-layer cosine activation with a uniform
bias in equation 4.7 will lead to a sum of patch-wise Gaus-
sian kernels for the covariance matrix of the second layer
pre-activation ¥(1) (x, x'). that is shift-invariant. Thus, we
can use Lemma 1 to show the shift-invariance property of
SCNTK K.

4.4. Characteristic property

We first show that SNTK under a fully-connected network
in equation 3.10 is a characterstic kernel. Note that it is a
sum and products of shift-invariant kernels as below:

||X—X'H3 T S(1) /
K, =cyexp| —— 12 H SO (x,x")+b (4.8)
———

2 =2
7 @ shift-inv
@ characteristic
L+1 L+1
b= | 2V x) [ 2 (x,x) (4.9)
=N Qshifiny L @) shifeiny

Since we use the cosine activation for the first layer, we
explicitly write out $!(x, x’) as a gaussian kernel. By our
lemma 1, we know @), 3 are shift-invariant kernels. With
ReLU activations for the rest of layers, all the other co-
variances give an arc-cos kernel. An arc-cos kernel is a
valid kernel that gives a positive semi-definite kernel matrix
(Cho, 2012). In addition, gaussian kernel is characteristic
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(Sriperumbudur et al., 2010). Hence, SNTK K is a sum and
products of shift-invariant kernel with a characteristic kernel
(D. By Compositionality Theorem 1, K is characteristic.

For SCNTK K., we could use similar arguments for its
deterministic form in the large width limit. It also has the
sum of products of covariance and derivative covariance,
similar to the form in Equation 4.8. At a very high-level,
K. can be factored into a sum of patch-wise kernels

Ko (x,x') = Z K(xp, %) (4.10)
p=1

where we argue that each K(x,, x},) is a characterstic ker-

nel for the patch p of the input image. p is the patch index
and 7 is the total number of patches. Each K(x,,x;,)

has the patch-wise gaussian kernel term K () (x,,x/) =

2
exp(—H [x]p — [X/]sz/Z) for the image patch p. For a

one-layer convolutional network with a fully-connected out-
put layer, the output GP covariance kernel is the sum of
these patch-wise gaussian kernels so MMD? under such a
kernel can be factored into a sum of patch-wise MMDs:
MMD?(x,x') = Y7 _; MMD?(x,,x,). Since MMD? is
non-negative, we could see that the sum of patch-wise char-
acteristic kernels can also be characterstic. We leave the
detailed discussions for the characterstic property of SC-
NTK in the Appendix.

5. Experiments

Our main experiments for two-sample tests are carried out
on two sets of samples with Sp from MNIST (LeCun et al.,
1998) or CIFAR10 (Krizhevsky et al., 2009) datasets and
Sg as used in two prior works (Liu et al., 2020; Rabanser
et al., 2019). We compare our method, which we call
MMD-SCNTK, against the recently proposed two-sample
test methods from these two prior works in their image do-
mains. Toy experiments, using Blob (Liu et al., 2020) and
Higgs (Baldi et al., 2014) datasets, are included in the ap-
pendix. We also empirically investigate the effect of increas-
ing the network width. Ablation studies are accompanied to
observe any performance gap between using finite-width ap-
proximations and using the exact NTK. Finally, we present
preliminary studies of using NTK in OOD detection.

Network architecture for SCNTK. We aim to be consis-
tent with the network architectures used in previous works.
Two main differences are: (1) we replace the relu activa-
tions of the first layer with cosine activations; (2) To have
our NTK kernel closer to its deterministic form, we use a
width of 300, which is wider than 32 and 64 used in those
baselines. Further details are provided in the Appendix.
To compare with the dimensionality reduced methods (Ra-
banser et al., 2019) in Figure 2, we use the same three-layer

convolutional network architecture. For the comparison
with optimized kernel methods (Liu et al., 2020) in Table
2 and with different widths in Table 1, we use the same
four layer network with strided convolutions without max-
pooling. This is similar to the discriminator of the DCGAN
architecture used in Radford et al. (2015). SCNTK kernel
is approximated using the inner products between the gra-
dients of the network output w.r.t parameters for two data
points x, x’.

5.1. Two-sample test comparisons with methods using
the dimensionality reduction and a fixed kernel

For each MNIST and CIFAR10 dataset, we randomly sam-
ple a subset Sp of size n. We also sample n data points
Sg from the same dataset and apply various types of data
shifts such as Gaussian noise and pixel shifts. We evalu-
ate the detection performance of dataset shift using MMD-
SCNTK against the state-of-the-art MMD-based method
in (Rabanser et al., 2019) with a fixed kernel for this task.
The baseline MMD method applies the Gaussian kernel to
the output feature of the encoder of an untrained randomly
initialized autoencoder (UAE). Under the experiment setup
by (Rabanser et al., 2019), we experimented with differ-
ent number of samples x ~ P, y ~ Q from the test set
{10, 20, 50, 100, 200} with different percentages of affected
data 0 € {0.1,0.5,1.0}. Each result in our figure compares
the detection performance between SCNTK and UAE aver-
aged over the performance from MNIST experiments and
CIFARI10 experiments, for different 4 and 5 random seeds.
Due to the space limit, we show results under 4 representa-
tive dataset shifts in Figure 2 and the rest in the Appendix.
These are:

1. Medium Gaussian noise: Injecting Gaussian noise with
a standard deviation o = 1 to the sampled data.

2. Medium rotations and translations: A fraction ¢ per-
cent of the samples are rotated by 40 degrees, translated
by 0.2 and zoomed by 0.2.

3. Adversarial samples: A fraction J percent of data is
turned into adversarial smaples by FGSM (Goodfellow
etal., 2014).

4. Imbalanced dataset: A fraction ¢ percent of data from
class 0 is removed.

Overall, Figure 2 shows MMD-SCNTK achieves better de-
tection accuracy, except for the case of imbalanced dataset.
This provides an empirical justification on using SCNTK
over a simple Gaussian kernel on with nonlinear randomly
projected feature with the untrained encoder.
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shift type: medium gaussian noise shift type: medium rotations and translations shift type: adversarial samples shlgﬁtyg)e: samples from class |mbala?red data
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Figure 2. The above four plots show comparisons between MMD-UAE and our MMD-SCNTK method. MMD-UAE baseline applies the
gaussian kernel to the output feature of the randomly initialized encoder network. The evaluation metric is the dataset shift detection
accuracy. When the dataset is injected with gaussian noise, applied rotations and translations, augmented with adversarial samples, we see
a more than 2x performance improvement with MMD-SCNTK. One exception is with the imbalanced dataset where MMD-SCNTK
performs similarly to the baseline.

methods used in (Liu et al., 2020). These baseline methods
optimize parameters of the kernel to maximize the test power
on the split training dataset. Hence, these methods use half
of the test samples as the training data to maximize the

Table 1. MNIST (a = 0.05): empirical average test power under
N real images and N DCGAN samples. C; is the number of
channels for that layer, which is the width of a conv network. The
performance becomes better and stable as the width is increased to

C; = 300. 100 is not sufficient.

testing power and the other half to test whether P = Q

N C; =100 C; =200 C;=300 «¢; =500 using the optimized kernel. We give brief a explanation for

200 | 0.10+£0.02  0.29+002  0.324003  0.33+002 these methods.
400 | 0.09+004  0.71x008 075002 0.83x008 ME (Jitkrittum et al., 2016) optimizes the data points used
600 | 0.25+007  0.92+002  0.96x002  0.97003 in the computation of distance in Gaussian kernel mean em-
800 | 021xo0s  0.96x002  L00x000  1.00£000 o y4inas SCF (Jitkrittum et al., 2016) is a similar method
1000 | 0.26+006 1.00+000 1.00+000 1.00:+000 but optimizes the frequencies of the kernel instead. C2ST-
Avg 0.18 0.78 0.81 0.83 L (Lopez-Paz & Oquab, 2016) is a classifier based method
which trains a binary classifier between Sp and Sq. If

5.2. Two-sample test comparisons with methods using
the optimized kernel

To compare MMD-SCNTK with optimized kernel methods,
we use the following experiment setup for MNIST experi-
ments and CIFAR10 experiments. The result is summarized
in Table 2. Similar to the previous set of experiments in sec-
tion 5.1, Sp is sampled from MNIST or CIFAR10 datasets,
however Sg is generated using a trained generator of a DC-
GAN for MNIST experiments. For CIFAR10 experiments,
Sg is sampled from CIFAR10.1 dataset (Recht et al., 2019).
The main difference from the experiments in section 5.1 is
that the dataset shift is no longer applied manually. The
successful rejection rate of a null hypothesis P = Q is
compared between MMD-SCNTK and baselines.

Choosing the width: As the SCNTK in Equation 4.6 only
converges to the deterministic form in the large width limit,
we empirically investigate the trend in the two-sample test
performance as we increase the width, which is the number
of channels for a convolutional network. Table 1 compares
the results of the MNIST experiments when varying the
width of the network. We see that the performance is rela-
tively stable with widths of 200, 300, and 500. So we chose
the width of 300 for our experiments in Table 2.

Baselines: We compare MMD-SCNTK with the baseline

P = Q, such a classifier should poorly behave. MMD-

O (Rabanser et al., 2019) optimizes the bandwidth o of a

naive gaussian kernel K (x,y) = exp(—%

imize the test power. MMD-D (Rabanser et al., 2019) op-
timizes the parameters w of the feature model ¢,,(x) de-
scribed in Equation 3.8. Such a training phase is carried out
using the held-out data split from Sp and Sg. In addition,
we provide another fixed kernel baseline MMD-SRF (shift-
invariant random feature), which uses the same architecture
as SCNTK but uses the inner products of the outputs of
the network under x, x’. This is to simulate MMD-based
method under an NNGP kernel (Lee et al., 2017a; Novak
et al., 2018).

Results: Table 2 shows that the proposed SCNTK achieves
quite a competitive performance relative to the strongest
baseline MMD-D without the need of optimizing the ker-
nel parameters. Most importantly, both SRF and SCNTK
perform much better than the MMD-O baseline for both
datasets under 5 different number of samples used in the
experiment. This suggests that picking a composite kernel
is more effective than merely optimizing the bandwidth o
of a simple gaussian kernel. In addition, we see that SC-
NTK is outperforming the SRF kernel (NNGP kernel) in
this domain.

) to max-

As seen, MMD-SCNTK outperforms the strongest baseline
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Table 2. MNIST and CIFAR10 (Significance level o = 0.05): Successful null hypothesis rejection accuracy for comparing /V real images
with N DCGAN samples on MNIST, and for comparing CIFAR10 images with CIFAR10.1 images. All the methods except SCNTK use
a portion of test samples as the training data to maximize the test power with respect to kernel related parameters or parameters of the
feature model. For both SCNTK and SRF methods, the default bandwidth 1.0 is used. Convolutions with a stride of 2 are used for all the
layers. The width, i.e. the number of channels, is set to 300. More details are provided in the Appendix.

MNIST ME SCF C2ST-S C2ST-L M-O M-D SRF SCNTK
200 | 0.414+0050 0.107+0.018 0.193+0037 0.234+0031 0.188+0010 0.555+0044 0.272+0039 0.324+0.032
400 | 0.921+0.032 0.152+0.021  0.65+0.039  0.706+0.047 0.363+0017 0.996+0004 0.691+0.025 0.750+0.022
600 | 1.000+0.000 0.294+0008 1.000+0.000 0.977+0012 0.619+0021 1.000+0000 0.901+0.036 0.963+0.018
800 | 1.000+0.000 0.317+0.017 1.000+0.000 1.000+0.000 0.797+0.015 1.000+0.000 0.952+0.011  1.00040.000

1000 | 1.000+0.000 0.346+0019 1.000+0.000 1.000+0.000 0.894+0016 1.000+0.000 1.000+0.000 1.000+0.000
Avg 0.867 0.243 0.768 0.783 0.572 0.91 0.763 0.807
CIFAR ME SCF C2ST-S C2ST-L M-O M-D SRF SCNTK
2000 0.588 0.171 0.452 0.529 0.316 0.744 0.440 0.805

Table 3. Using the exact NTK and Monte-Carlo approximations, same MNIST and CIFAR10 experiments in Table 2 are performed. MC
is the monte-carlo approximation of NTK kernel using 20 samples of the model. E is the exact NTK kernel. CNTK, CNTK-MC, and
CNTK-E use relu activations for all the layers whereas SCNTK kernels use the cosine activation for the first layer. Laplace uses the naive

Laplace kernel. We perform a grid search for the coefficient of the Laplace kernel between 0.1 and 10.

MNIST SCNTK SCNTK-MC SCNTK-E CNTK CNTK-MC CNTK-E Laplace
200 | 0.324+0.032 0.315+0.037 0.340+0.041  0.281+0031 0.312+0.022 0.298+0.018 0.182+0.011
400 | 0.75040.022 0.763+0.032 0.760+0.016  0.683+0019 0.71240024 0.702+0.013  0.283+0.21
600 | 0.963+0.018 0.969+0.019 0.971+0017 0.945+0021 0.942+0018 0.967+0017 0.421+0.23
800 | 1.000+0.000 1.000+0.000 1.000+0.000  1.000+0.000  1.000+0.000 1.000+0.000 0.638+0.31

1000 | 1.000=+0.000 1.000=+0.000 1.000+0.000  1.000+0.000 1.000+0.000 1.000+0.000 0.662+0.28
Avg 0.807 0.809 0.814 0.782 0.793 0.793 0.437
CIFAR SCNTK SCNTK-MC SCNTK-E CNTK CNTK-MC CNTK-E Laplace
2000 0.805 0.816 0.808 0.742 0.781 0.776 0.261

MMD-O in the CIFAR10 experiment but not in the MNIST
experiment. We conjecture that this is because of higher
diversity of CIFAR10 images versus MNIST images, which
limits its generalization power with only 1000 training sam-
ples. It should be noted that unlike MMD-O, MMD-SCNTK
can use all the 2000 samples for testing.

Ablation studies for finite widths and shift-invariance:
Since the shift-invariance property is derived under the
infinite-width limit, we include additional experiments us-
ing exact NTK and monte-carlo (MC) approximations of the
kernel. These MNIST and CIFAR10 experiments are done
under the same setup used in Table 2. We can see from the
first 3 columns in Table 3 that the performance gap between
using the finite width, MC approximations, and the exact
NTK is relatively small. This motivates the use of computa-
tionally cheap random feature approximations in practice.
In addition, we include the results with standard CNTK in
the next 3 columns of Table 3. As can be seen, SCNTK
variants do provide a slight advantage in these domains. In
the last column, we show the testing performance of using a
naive Laplace kernel, which does not take advantage of the
spatial information.

Computational advantage of MMD-SCNTK: For each
MMD-SCNTK computation used in MNIST experiments
in Table 2, we compare its wall-clock time between using
pairwise kernel evaluation in Equation 3.3 and using direct
MMD evaluation in Equation 4.1. Figure 3 shows that naive
kernel evaluation yields a quadradic time complexity w.r.t
the number of samples, while taking advantage of the ran-
dom feature approximation (linear kernel) for direct MMD
computation yields a linear time complexity.

We also compare our method against MMD-O in terms of
the wall-clock time for computing one MMD value. Table 4
shows that MMD-O has a linear growth in the training time
and a quadratic growth in the MMD computation. Overall,
we could see a competitive fixed kernel method would also
bring computational advantage when the number of samples
keeps growing.

5.3. Outlier detection as a proxy for one-sample test
experiments

For the OOD detection task, we use one of the CIFAR10
or SVHN (Netzer et al., 2011) datasets as the inlier and the
other one as outlier, similar to the setup used in (Hendrycks
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Figure 3. This plot compares the wall-clock time for computing
MMD under SCNTK using two different methods. Pairwise kernel
evaluation means that we explicitly compute the inner products
between each pair of data points first, as in Equation 3.3. Efficient
MMD directly computes the MMD using the simplified form in
Equation 4.1.

Table 4. This table compares the wall-clock time needed for com-
puting the MMD for the first time using MMD-SCNTK and MMD-
O. It uses the same MNIST experiment setup in Table 2. Our fixed
kernel method has no training time and presents a linear growth for
the MMD computation time. Due to computing per-example gra-
dients, our MMD computation time is longer than that of MMD-O,
however the fixed kernel method saves the training time. In addi-
tion, MMD-O has a quadratic growth for the MMD computation
time, and thus the gap between the computation time for SCNTK
and trained MMD-O also decrease.

MNIST | SCNTK  M-O train M-O
200 | 0.05 sec 37 sec 0.0034 sec
400 | 0.11 sec 75 sec 0.0141 sec
600 | 0.16 sec 110 sec 0.027 sec
800 | 0.21 sec 150 sec 0.051 sec

1000 | 0.27 sec 183 sec 0.076 sec

& Gimpel, 2016). Outlier scores for all inlier and outlier data
are computed using the negative of kernel density estimation.
We consider naive Gaussian KDE, CNTK KDE with all relu
activations, and CNTK KDE with all relu activations, except
the first layer which uses cosine activation (SCNTK KDE),
as described in equation 4.7.

AUROC is computed as our metric to compare the perfor-
mance of using these kernels. To compute NTK, we use
a three-layer convolutional network with max-pooling for
this task. The results in Table 5 empirically shows that (1)
shift-invariance property is crucial for KDE task, and (2)
composite kernel in the form of SCNTK is quite effective
for such OOD detection tasks in image domains.

6. Conclusion

For the NTK kernel to be a valid kernel in MMD, we inves-
tigate the conditions under which it is characteristic. We
make the kernel shift-invariant and the characteristic by us-

Table 5. SCNTK for outlier detection. SCNTK, CNTK with all
relu activations (CNTK-relu), and naive Gaussian KDE are com-
pared for the outlier detection task with CIFAR10 and SVHN
datasets. With a fixed kernel, SCNTK shows a promising results
for OOD detection in both settings.

Inlier Outlier | Gaussian CNTK-relu SCNTK
CIFAR10 SVHN 0.82 0.71 0.85
SVHN CIFARI10 0.20 0.51 0.80

ing cosine activations for the first layer, and only use the
inner products of gradients w.r.t the parameters of the layer
2 and the above. Such a shift-invariance can be understood
as “watermark” invariance. In CIFAR10 experiments, we
find our fixed kernel method with NTK could prevent the
issue of overfitting to the split training data a learning-based
deep kernel method could have.

Our two-sample test experiments mainly use MNIST and
CIFAR10. The most relavant three baselines we consider
are: (1) Gaussian kernel applied to the features of a random
encoder network, (2) Gaussian kernel with the optimized
bandwidth applied in the pixel space, and (3) Gaussian
kernel applied to the output feature of an optimized network
for the test power maximization.

Our results show the expressivity of SCNTK does bring
benefits over the other fixed kernel methods. Furthermore,
SCNTK provides a competitive and efficient alternative to
optimized kernel methods with a training phase.
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