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Abstract
Pre-trained representations are becoming crucial
for many NLP and perception tasks. While repre-
sentation learning in NLP has transitioned to train-
ing on raw text without human annotations, vi-
sual and vision-language representations still rely
heavily on curated training datasets that are expen-
sive or require expert knowledge. For vision appli-
cations, representations are mostly learned using
datasets with explicit class labels such as Ima-
geNet or OpenImages. For vision-language, popu-
lar datasets like Conceptual Captions, MSCOCO,
or CLIP all involve a non-trivial data collection
(and cleaning) process. This costly curation pro-
cess limits the size of datasets and hence hinders
the scaling of trained models. In this paper, we
leverage a noisy dataset of over one billion image
alt-text pairs, obtained without expensive filter-
ing or post-processing steps in the Conceptual
Captions dataset. A simple dual-encoder archi-
tecture learns to align visual and language rep-
resentations of the image and text pairs using a
contrastive loss. We show that the scale of our
corpus can make up for its noise and leads to
state-of-the-art representations even with such a
simple learning scheme. Our visual representation
achieves strong performance when transferred to
classification tasks such as ImageNet and VTAB.
The aligned visual and language representations
enables zero-shot image classification and also
set new state-of-the-art results on Flickr30K and
MSCOCO image-text retrieval benchmarks, even
when compared with more sophisticated cross-
attention models. The representations also enable
cross-modality search with complex text and text
+ image queries.

1Google Research. Correspondence to: Chao Jia <chao-
jia@google.com>, Yinfei Yang <yinfeiy@google.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1. Introduction
In the existing literature, visual and vision-language repre-
sentation learning are mostly studied separately with differ-
ent training data sources. In the vision domain, pre-training
on large-scale supervised data such as ImageNet (Deng
et al., 2009), OpenImages (Kuznetsova et al., 2020), and JFT-
300M (Sun et al., 2017; Kolesnikov et al., 2020) has proven
to be critical for improving performance on downstream
tasks via transfer learning. Curation of such pre-training
datasets requires heavy work on data gathering, sampling,
and human annotation, and hence is difficult to scale.

Pre-training has also become the de-facto approach
in vision-language modeling (Lu et al., 2019; Chen
et al., 2020c; Li et al., 2020). However, vision-language
pre-training datasets such as Conceptual Captions (Sharma
et al., 2018), Visual Genome Dense Captions (Krishna
et al., 2016), and ImageBERT (Qi et al., 2020) require
even heavier work on human annotation, semantic parsing,
cleaning and balancing. As a result, the scales of these
datasets are only in the realm of ∼10M examples. This is at
least an order of magnitude smaller than their counterparts
in the vision domain, and much smaller than large corpora
of text from the internet for NLP pre-training (e.g., Devlin
et al. (2019); Radford et al. (2019); Yang et al. (2019); Liu
et al. (2019b); Raffel et al. (2020)).

In this work, we leverage a dataset of over one billion noisy
image alt-text pairs to scale visual and vision-language rep-
resentation learning. We follow the procedures described
in the Conceptual Captions dataset (Sharma et al., 2018)
to have a large noisy dataset. But instead of applying the
complex filtering and post-processing steps as proposed
by (Sharma et al., 2018) to clean the dataset, we only apply
simple frequency-based filtering. The resulting dataset is
noisy, but is two orders of magnitude larger than the Con-
ceptual Captions dataset. We show that visual and vision-
language representations pre-trained on our exascale dataset
achieve very strong performance on a wide range of tasks.

To train our model, we use an objective that aligns the visual
and language representations in a shared latent embedding
space using a simple dual-encoder architecture. Similar
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Figure 1. A summary of our method, ALIGN. Visual and language representations are jointly learned from noisy image alt-text data. The
representations can be used for vision-only or vision-language task transfer. Without any fine-tuning, ALIGN powers zero-shot visual
classification and cross-modal search including image-to-text search, text-to-image search and even search with joint image+text queries.

objectives has been applied to learning visual-semantic
embeddings (VSE) (Frome et al., 2013; Faghri et al., 2018).
We name our model ALIGN: A Large-scale ImaGe and
Noisy-text embedding. Image and text encoders are learned
via a contrastive loss (formulated as normalized softmax)
that pushes the embeddings of matched image-text pair
together while pushing those of non-matched image-text
pair apart. This is one of the most effective loss functions
for both self-supervised (Chen et al., 2020b) and supervised
(Zhai & Wu, 2019; Musgrave et al., 2020) representation
learning. Considering paired texts as fine-grained labels of
images, our image-to-text contrastive loss is analogous to
the conventional label-based classification objective; and
the key difference is that the text encoder generates the
“label” weights. The top-left of Figure 1 summarizes the
method we use in ALIGN.

The aligned image and text representations are naturally
suited for cross-modality matching/retrieval tasks and
achieve state-of-the-art (SOTA) results in corresponding
benchmarks. For instance, ALIGN outperforms the previous
SOTA method by over 7% in most zero-shot and fine-tuned
R@1 metrics in Flickr30K and MSCOCO. Moreover, such
cross-modality matching naturally enables zero-shot image
classification when feeding the classnames into the text en-
coder, achieving 76.4% top-1 accuracy in ImageNet without
using any of its training samples. The image representa-
tion itself also achieves superior performance in various
downstream visual tasks. For example, ALIGN achieves
88.64% top-1 accuracy in ImageNet. Figure 1-bottom shows
the cross-modal retrieval examples that come from a real
retrieval system built by ALIGN.

2. Related Work
High-quality visual representations for classification or
retrieval are usually pre-trained on large-scale labeled
datasets (Mahajan et al., 2018; Kolesnikov et al., 2020;
Dosovitskiy et al., 2021; Juan et al., 2020). Recently,
self-supervised (Chen et al., 2020b; Tian et al., 2020;
He et al., 2020; Misra & Maaten, 2020; Li et al., 2021;
Grill et al., 2020; Caron et al., 2020) and semi-supervised
learning (Yalniz et al., 2019; Xie et al., 2020; Pham et al.,
2020) have been studied as alternative paradigms. However,
models trained by these methods so far show limited
transferability to downstream tasks (Zoph et al., 2020).

Leveraging images and natural language captions is another
direction of learning visual representations. Joulin et al.
(2015); Li et al. (2017); Desai & Johnson (2020); Sariyildiz
et al. (2020); Zhang et al. (2020) show that a good visual
representation can be learned by predicting the captions
from images, which inspires our work. These works are
however limited to small datasets such as Flickr (Joulin
et al., 2015; Li et al., 2017) and COCO Captions (Desai
& Johnson, 2020; Sariyildiz et al., 2020), and the resulting
models don’t produce a vision-language representation that
is needed for tasks like cross-modal retrieval.

In the vision-language representation learning domain,
visual-semantic embeddings (VSE) (Frome et al., 2013;
Faghri et al., 2018) and improved versions (e.g., leveraging
object detectors, dense feature maps, or multi-attention
layers) (Socher et al., 2014; Karpathy et al., 2014; Kiros
et al.; Nam et al., 2017; Li et al., 2019; Messina et al., 2020;
Chen et al., 2020a) have been proposed. Recently more
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advanced models emerge with cross-modal attention layers
(Liu et al., 2019a; Lu et al., 2019; Chen et al., 2020c; Huang
et al., 2020b) and show superior performance in image-text
matching tasks. However, they are orders of magnitudes
slower and hence impractical for image-text retrieval
systems in the real world. In contrast, our model inherits
the simplest VSE form, but still outperforms all previous
cross-attention models in image-text matching benchmarks.

Closely related to our work is CLIP (Radford et al., 2021),
which proposes visual representation learning via natural
language supervision in a similar contrastive learning
setting. Besides using different vision and language encoder
architectures, the key difference is on training data: ALIGN
follows the natural distribution of image-text pairs from the
raw alt-text data, while CLIP collects the dataset by first
constructing an allowlist of high-frequency visual concepts
from English Wikipedia. We demonstrate that strong visual
and vision-language representations can be learned with
a dataset that doesn’t require expert knowledge to curate.

3. A Large-Scale Noisy Image-Text Dataset
The focus of our work is to scale up visual and vision-
language representation learning. For this purpose, we resort
to a much larger dataset than existing ones. Specifically,
we follow the methodology of constructing Conceptual
Captions dataset (Sharma et al., 2018) to get a version of
raw English alt-text data (image and alt-text pairs). The
Conceptual Captions dataset was cleaned by heavy filtering
and post-processing. Here, for the purpose of scaling, we
trade quality for scale by relaxing most of the cleaning
steps in the original work. Instead, we only apply minimal
frequency-based filtering as detailed below. The result is a
much larger (1.8B image-text pairs) but noisier dataset. Fig-
ure 2 shows some sample image-text pairs from the dataset.

“motorcycle front wheel” “thumbnail for version as of 21 
57 29 june 2010”

“file frankfurt airport 
skyline 2017 05 jpg”

“file london barge race 2 jpg” “moustache seamless 
wallpaper design”

“st oswalds way and shops”

Figure 2. Example image-text pairs randomly sampled from the
training dataset of ALIGN. One clearly noisy text annotation is
marked in italics.

Image-based filtering. Following Sharma et al. (2018),
we remove pornographic images and keep only images
whose shorter dimension is larger than 200 pixels and aspect

ratio is smaller than 3. Images with more than 1000 associ-
ated alt-texts are discarded. To ensure that we don’t train on
test images, we also remove duplicates or near-duplicates
of test images in all downstream evaluation datasets (e.g.,
ILSVRC-2012, Flickr30K, and MSCOCO). See supplemen-
tary material for more details.

Text-based filtering. We exclude alt-texts that are shared
by more than 10 images. These alt-texts are often irrelevant
to the content of the images (e.g., “1920x1080”, “alt img”,
and “cristina”). We also discard alt-texts that contain any
rare token (outside of 100 million most frequent unigrams
and bigrams from the raw dataset), and those that are ei-
ther too short (<3 unigrams) or too long (>20 unigrams).
This removes noisy texts like “image tid 25&id mggqpuwe-
qdpd&cache 0&lan code 0”, or texts that are too generic to
be useful.

4. Pre-training and Task Transfer
4.1. Pre-training on Noisy Image-Text Pairs

We pre-train ALIGN using a dual-encoder architecture. The
model consists of a pair of image and text encoders with a
cosine-similarity combination function at the top. We use
EfficientNet with global pooling (without training the 1x1
conv layer in the classification head) as the image encoder
and BERT with [CLS] token embedding as the text em-
bedding encoder (we generate 100k wordpiece vocabulary
from our training dataset). A fully-connected layer with
linear activation is added on top of BERT encoder to match
the dimension from the image tower. Both image and text
encoders are trained from scratch.

The image and text encoders are optimized via normalized
softmax loss (Zhai & Wu, 2019). In training, we treat
matched image-text pairs as positive and all other random
image-text pairs that can be formed in a training batch as
negative.

We minimize the sum of two losses: one for image-to-text
classification

Li2t = −
1

N

N∑
i

log
exp(x>i yi/σ)∑N

j=1
exp(x>i yj/σ)

(1)

and the other for text-to-image classification

Lt2i = −
1

N

N∑
i

log
exp(y>i xi/σ)∑N

j=1
exp(y>i xj/σ)

(2)

Here, xi and yj are the normalized embedding of image in
the i-th pair and that of text in the j-th pair, respectively. N
is the batch size, and σ is the temperature to scale the logits.
For in-batch negatives to be more effective, we concatenate
embeddings from all computing cores to form a much larger
batch. The temperature variable is crucial as both image
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and text embeddings are L2-normalized. Instead of man-
ually sweeping for the optimal temperature value, we find
that it can be effectively learned together with all the other
parameters.

4.2. Transferring to Image-Text Matching & Retrieval

We evaluate ALIGN models on image-to-text and text-to-
image retrieval tasks, with and without finetuning. Two
benchmark datasets are considered: Flickr30K (Plummer
et al., 2015) and MSCOCO (Chen et al., 2015). We also
evaluate ALIGN on Crisscrossed Captions (CxC) (Parekh
et al., 2021), which is an extension of MSCOCO with
additional human semantic similarity judgments for
caption-caption, image-image, and image-caption pairs.
With extended annotations, CxC enables four intra- and
inter-modal retrieval tasks including image-to-text, text-to-
image, text-to-text, and image-to-image retrieval, and three
semantic similarity tasks including semantic textual sim-
ilarity (STS), semantic image similarity (SIS), and semantic
image-text similarity (SITS). As the training set is identical
to the original MSCOCO, we can directly evaluate the
MSCOCO fine-tuned ALIGN model on CxC annotations.

4.3. Transferring to Visual Classification

We first apply zero-shot transfer of ALIGN to visual classifi-
cation tasks on ImageNet ILSVRC-2012 benchmark (Deng
et al., 2009) and its variants including ImageNet-R(endition)
(Hendrycks et al., 2020) (non-natural images such as art,
cartoons, sketches), ImageNet-A(dversarial) (Hendrycks
et al., 2021) (more challenging images for ML models), and
ImageNet-V2 (Recht et al., 2019). All of these variants
follow the same set (or a subset) of ImageNet classes, while
the images in ImageNet-R and ImageNet-A are sampled
from drastically different distributions from ImageNet.

We also transfer the image encoder to downstream visual
classification tasks. For this purpose, we use the ImageNet
as well as a handful of smaller fine-grained classifica-
tion datasets such as Oxford Flowers-102 (Nilsback &
Zisserman, 2008), Oxford-IIIT Pets (Parkhi et al., 2012),
Stanford Cars (Krause et al., 2013), and Food101 (Bossard
et al., 2014). For ImageNet, results from two settings are
reported: training the top classification layer only (with
frozen ALIGN image encoder) and fully fine-tuned. Only
the latter setting is reported for fine-grained classification
benchmarks. Following Kolesnikov et al. (2020), we
also evaluate the robustness of our model on Visual Task
Adaptation Benchmark (VTAB) (Zhai et al., 2019) which
consists of 19 diverse (covering subgroups of natural,
specialized and structured image classification tasks) visual
classification tasks with 1000 training samples each.

5. Experiments and Results
We train our ALIGN models from scratch, using the open-
sourced implementation of EfficientNet as the image en-
coder and BERT as the text encoder. Unless in the ablation
study, we use the results of ALIGN where the image encoder
is EfficientNet-L2 and the text encoder is BERT-Large. The
image encoder is trained at resolution of 289 × 289 pixels
no matter what EfficientNet variant is used. We first resize
input images to 346 × 346 resolution and then perform ran-
dom crop (with additional random horizontal flip) in training
and central crop in evaluation. For BERT we use wordpiece
sequence of maximum 64 tokens since the input texts are
no longer than 20 unigrams. The softmax temperature vari-
able is initialized as 1.0 (this temperature variable is shared
between image-to-text loss and text-to-image loss) and we
use 0.1 as label smoothing parameter in the softmax losses.
We use LAMB optimizer (You et al., 2020)1 with weight
decay ratio 1e-5. The learning rate is warmed up linearly
to 1e-3 from zero in 10k steps, and then linearly decay to
zero in 1.2M steps (∼12 epochs). We train the model on
1024 Cloud TPUv3 cores with 16 positive pairs on each
core. Therefore the total effective batch size is 16384.

5.1. Image-Text Matching & Retrieval

We evaluate ALIGN on Flickr30K and MSCOCO cross-
modal retrieval benchmarks, in both zero-shot and fully
fine-tuned settings. We follow (Karpathy & Fei-Fei, 2015)
and most existing works to obtain the train/test splits. Specif-
ically, for Flickr30K, we evaluate on the standard 1K test
set, and finetune on the 30k training set. For MSCOCO, we
evaluate on the 5K test set, and finetune on 82K training
plus 30K additional validation images that are not in the 5K
validation or 5K test sets.

During fine-tuning, the same loss function is used. But there
can be false negatives when the batch size is comparable
to the total number of training samples. So we reduce the
global batch size from 16384 to 2048. We also reduce the ini-
tial learning rate to 1e-5 and train for 3K and 6K steps (with
linear decay) respectively on Flickr30K and MSCOCO. All
the other hyper-parameters are kept the same as pre-training.

Table 1 shows that, compared to previous works, ALIGN
achieves SOTA results in all metrics of Flickr30K and
MSCOCO benchmarks. In the zero-shot setting, ALIGN
gets more than 7% improvement in image retrieval task
compared to the previous SOTA, CLIP (Radford et al.,
2021). With fine-tuning, ALIGN outperforms all existing
methods by a large margin, including those that employ
more complex cross-modal attention layers such as
ImageBERT (Qi et al., 2020), UNITER (Chen et al., 2020c),

1We tried SGD with momentum and ADAM which are known
to work well for CNNs and BERT respectively. LAMB appears to
be a better choice for training both image and text encoders.
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Table 1. Image-text retrieval results on Flickr30K and MSCOCO datasets (zero-shot and fine-tuned). ALIGN is compared with Image-
BERT (Qi et al., 2020), UNITER (Chen et al., 2020c), CLIP (Radford et al., 2021), GPO (Chen et al., 2020a), ERNIE-ViL (Yu et al.,
2020), VILLA (Gan et al., 2020), and Oscar (Li et al., 2020).

Flickr30K (1K test set) MSCOCO (5K test set)
image→ text text→ image image→ text text→ image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot

ImageBERT 70.7 90.2 94.0 54.3 79.6 87.5 44.0 71.2 80.4 32.3 59.0 70.2
UNITER 83.6 95.7 97.7 68.7 89.2 93.9 - - - - - -
CLIP 88.0 98.7 99.4 68.7 90.6 95.2 58.4 81.5 88.1 37.8 62.4 72.2
ALIGN 88.6 98.7 99.7 75.7 93.8 96.8 58.6 83.0 89.7 45.6 69.8 78.6

Fine-tuned

GPO 88.7 98.9 99.8 76.1 94.5 97.1 68.1 90.2 - 52.7 80.2 -
UNITER 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0
ERNIE-ViL 88.1 98.0 99.2 76.7 93.6 96.4 - - - - - -
VILLA 87.9 97.5 98.8 76.3 94.2 96.8 - - - - - -
Oscar - - - - - - 73.5 92.2 96.0 57.5 82.8 89.8
ALIGN 95.3 99.8 100.0 84.9 97.4 98.6 77.0 93.5 96.9 59.9 83.3 89.8

Table 2. Multimodal retrieval performance on Crisscrossed Captions (CxC) dataset. ALIGN is compared with VSE++ (Faghri et al.,
2018), VSRN (Li et al., 2019), DEI2T (Parekh et al., 2021), and DET2T+I2T (Parekh et al., 2021).

image→ text text→ image text→ text image→ image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
VSE++ 43.1 74.3 84.2 32.5 62.7 75.4 38.7 62.3 72.2 36.4 70.4 81.3
VSRN 52.4 81.9 90.0 40.1 71.1 81.5 41.0 64.8 74.5 44.2 76.7 86.2
DEI2T 53.9 82.7 91.2 39.8 70.2 80.9 26.0 47.1 57.5 38.3 74.1 85.0
DET2T+I2T 55.9 84.2 91.8 41.7 72.3 83.0 42.4 64.9 74.0 38.5 73.6 84.9
ALIGN 78.1 94.3 97.4 61.8 84.9 91.1 45.4 66.8 75.2 49.4 81.4 89.1

Table 3. Spearman’s R Bootstrap Correlation (×100) on Criss-
crossed Captions (CxC) dataset. ALIGN is compared with
VSE++ (Faghri et al., 2018), VSRN (Li et al., 2019), DEI2T (Parekh
et al., 2021), and DET2T+I2T (Parekh et al., 2021).

Model STS SIS SITS Mean Avg
avg ± std avg ± std avg ± std

VSE++ 74.4±0.4 73.3±0.9 55.2±1.5 67.6
VSRN 73.0±0.4 70.1±1.0 60.4±1.3 67.8
DEI2T 50.9±0.6 81.3±0.7 61.6±1.4 64.6
DET2T+I2T 74.2±0.4 74.5±0.9 61.9±1.3 70.2
ALIGN 72.9±0.4 77.2±0.8 67.6±1.2 72.6

ERNIE-ViL (Yu et al., 2020), VILLA (Gan et al., 2020) and
Oscar (Li et al., 2020).

Table 2 reports the performance of ALIGN on Crisscrossed
Captions (CxC) retrieval tasks. Again, ALIGN achieves
SOTA results in all metrics, especially by a large margin
on image-to-text (+22.2% R@1) and text-to-image (20.1%
R@1) tasks. Table 3 shows that ALIGN also outperforms
the previous SOTA on SITS task with an improvement of
5.7%. One interesting observation is that, despite being
much better on inter-modal tasks, ALIGN is not as impres-
sive on intra-modal tasks. For instance, the improvements
on text-to-text and image-to-image retrieval tasks (in partic-
ular the former) are less significant compared to those on
image-to-text and text-to-image tasks. The performance on
STS and SIS tasks is also slightly worse than VSE++ and

DEI2T. We suspect it is because the training objective of
ALIGN focuses on cross-modal (image-text) matching in-
stead of intra-modal matching. Parekh et al. (2021) suggest
multitask learning could produce more balanced representa-
tions. We leave it to the future work.

5.2. Zero-shot Visual Classification

If we directly feed the texts of classnames into the text
encoder, ALIGN is able to classify images into candidate
classes via image-text retrieval. Table 4 compares ALIGN
with CLIP on Imagenet and its variants. Similar to CLIP,
ALIGN shows great robustness on classification tasks
with different image distributions. In order to make a
fair comparison, we use the same prompt ensembling
method as CLIP. Each classname is expanded with a set
of prompt templates defined by CLIP such as “A photo
of a {classname}”. The class embedding is computed by
averaging the embeddings of all templates followed by an
L2-normalization. We find that such ensembling gives 2.9%
improvement on ImageNet top-1 accuracy.

Table 4. Top-1 Accuracy of zero-shot transfer of ALIGN to image
classification on ImageNet and its variants.

Model ImageNet ImageNet-R ImageNet-A ImageNet-V2

CLIP 76.2 88.9 77.2 70.1
ALIGN 76.4 92.2 75.8 70.1
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Table 5. ImageNet classification results. ALIGN is compared with WSL (Mahajan et al., 2018), CLIP (Radford et al., 2021),
BiT (Kolesnikov et al., 2020), ViT (Dosovitskiy et al., 2021), NoisyStudent (Xie et al., 2020), and Meta-Pseudo-Labels (Pham et al.,
2020).

Model (backbone) Acc@1 w/ frozen features Acc@1 Acc@5

WSL (ResNeXt-101 32x48d) 83.6 85.4 97.6
CLIP (ViT-L/14) 85.4 - -
BiT (ResNet152 x 4) - 87.54 98.46
NoisyStudent (EfficientNet-L2) - 88.4 98.7
ViT (ViT-H/14) - 88.55 -
Meta-Pseudo-Labels (EfficientNet-L2) - 90.2 98.8
ALIGN (EfficientNet-L2) 85.5 88.64 98.67

5.3. Visual Classification w/ Image Encoder Only

On the ImageNet benchmark, we first freeze the learned
visual features and only train the classification head.
Afterwards we fine-tune all layers. We use basic data aug-
mentations including random cropping (same as in Szegedy
et al. (2015)) and horizontal flip. In evaluation we apply a
single central crop with ratio of 0.875. Following Touvron
et al. (2019), we use 0.8 scale ratio between training and
evaluation to mitigate the resolution discrepancy introduced
by random crop. Specifically, train/eval resolution is
289/360 with frozen visual features, and is 475/600 when
fine-tuning all variables.

In both stages of training, we use a global batch size of
1024, SGD optimizer with momentum 0.9, and learning
rate decayed every 30 epochs with ratio 0.2 (100 epochs
in total). Weight decay is set to zero. With frozen visual
features, we use the initial learning rate of 0.1. When
fine-tuning all layers with use the initial learning rate of
0.01, and use 10x smaller learning rate on the backbone
network compared to the classification head.

Table 5 compares ALIGN with previous methods on the Im-
ageNet benchmark. With frozen features, ALIGN slightly
outperforms CLIP and achieves SOTA result of 85.5% top-1
accuracy. After fine-tuning ALIGN achieves higher accu-
racy than BiT and ViT models, and is only worse than Meta
Pseudo Labels which requires deeper interaction between
ImageNet training and large-scale unlabeled data. Com-
pared to NoisyStudent and Meta-Pseudeo-Labels which also
use EfficientNet-L2, ALIGN saves 44% FLOPS by using
smaller test resolution (600 instead of 800).

In VTAB eval, we follow a hyper-parameter sweep as shown
in the Appendix I in (Zhai et al., 2019) with 50 trials for each
task. Each task is trained on 800 images and the hyperpa-
rameters are selected using the validation set of 200 images.
After the sweep, the selected hyperparameters are used to
train on the combined training and validation splits of 1000
images for each task. Table 6 reports the mean accuracy
(including the breakdown results on each subgroup) with
standard deviation from three fine-tuning runs and shows
that ALIGN outperforms BiT-L (Kolesnikov et al., 2020)
with similar hyper-parameter selection method applied.

Table 6. VTAB (19 tasks) comparison between ALIGN and BiT-L.

Model All tasks Natural Specialized Structured

Bit-L 78.72 - - -
ALIGN 79.99±0.15 83.38 87.56 73.25

To evaluate on smaller fine-grained classification bench-
marks, we adopt a simple fine-tuning strategy for all tasks.
We use the same data augmentation and optimizer as in Ima-
geNet fine-tuning. Similarly, we first train the classification
head and then fine-tune all layers, except with batch norm
statistics frozen. The train/eval resolution is fixed at 289/360.
We use batch size 256 and weight decay 1e-5. The initial
learning rate is set to 1e-2 and 1e-3 respectively, with cosine
learning rate decay in 20k steps. Table 7 compares ALIGN
with BiT-L (Kolesnikov et al., 2020) and SAM (Foret et al.,
2021) which both apply same fine-tuning hyper-parameters
for all tasks.2 For small tasks like these, details in fine-
tuning matter. So we list the baseline results in (Foret et al.,
2021) without using SAM optimization for a fairer compari-
son. Our result (average of three runs) is comparable to the
SOTA results without tweaking on optimization algorithms.

Table 7. Transfer learning results on Fine-grained Classifica-
tion Tasks. BiT-L (Kolesnikov et al., 2020) was trained with
ResNet152 x 4 whereas SAM-baseline, SAM-final (Foret et al.,
2021) and ALIGN were trained with EfficientNet-L2.

Model Oxford Oxford Stanford Food101Flowers Pets Cars

BiT-L 99.63 96.62 - -
SAM-baseline 99.60 96.92 95.07 96.03
SAM-final 99.65 97.10 95.96 96.18
ALIGN 99.65 96.19 96.13 95.88

6. Ablation Study
In the ablation study, we compare model performance
mostly on MSCOCO zero-shot retrieval and ImageNet K-
Nearest-neighbor (KNN) tasks.3 We find these two met-

2ViT (Dosovitskiy et al., 2021) uses different hyper-parameters
for different tasks and hence is not included in comparison.

3For each image in the validation set of ImageNet, we retrieve
its nearest neighbors from the training set w/ pre-trained image
encoder. Recall@K metric is calculated based on if the groundtruth
label of the query image appears in the top-K retrieved images.
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rics are representative and correlate well with other metrics
reported in the section above. If not mentioned, hyper-
parameters other than the ablated factor are kept the same
as in the baseline model.

6.1. Model Architectures

We first study the performance of ALIGN models using
different image and text backbones. We train EfficientNet
from B1 to L2 for the image encoder and BERT-Mini to
BERT-Large for the text encoder. We add an additional
fully-connected layer with linear activation on top of B1,
B3, B5 and L2 globally-pooled features to match the output
dimension of B7 (640). A similar linear layer is added to
all text encoders. We reduce the training steps to 1M in
ablation to save some runtime.

Figures 3 shows MSCOCO zero-shot retrieval and Ima-
geNet KNN results with different combinations of image
and text backbones. Model quality improves nicely with
larger backbones except that the ImageNet KNN metric
starts to saturate from BERT-Base to BERT-Large with
EfficientNet-B7 and EfficientNet-L2. As expected, scaling
up image encoder capacity is more important for vision
tasks (e.g., even with BERT-Mini text tower, L2 performs
better than B7 with BERT-Large). In image-text retrieval
tasks the image and text encoder capacities are equally
important. Based on the nice scaling property shown in
Figure 3, we only fine-tune the model with EfficientNet-L2
+ BERT-Large as reported in Section 5.

We then study key architecture hyperparameters including
embedding dimensions, number of random negatives in the
batch, and the softmax temperature. Table 8 compares a
number of model variants to a baseline model (first row)
trained with the following settings: EfficientNet-B5 image
encoder, BERT-Base text encoder, embedding dimension
640, all negatives in the batch, and a learnable softmax
temperature.

Rows 2-4 of Table 8 show that model performance improves
with higher embedding dimensions. Hence, we let the
dimension scale with larger EfficientNet backbone (L2 uses
1376). Rows 5 and 6 show that using fewer in-batch neg-
atives (50% and 25%) in the softmax loss will degrade the
performance. Rows 7-9 study the effect of the temperature
parameter in the softmax loss. Compared to the baseline
model that learns the temperature parameter (converged to
about 1/64), some hand-selected, fixed temperatures could
be slightly better. However, we choose to use the learnable
temperature as it performs competitively and makes
learning easier. We also notice that the temperature usually
quickly decrease to only around 1.2x of the converged
values in the first 100k steps, and then slowly converges
until the end of training.

Table 8. Ablation study of key architecture parameters. Baseline
model (first row) is trained with embedding dimension 640, using
all negatives in the batch, and a learnable softmax temperature.

Model MSCOCO ImangeNet KNN
I2T R@1 T2I R@1 R@1

B5 + BERT-base 51.7 37.5 64.6
w/ embedding dim=320 50.3 34.1 64.0
w/ embedding dim=160 47.0 34.4 63.7
w/ embedding dim=80 42.0 29.3 61.9
w/ 50% in-batch negs 50.2 37.0 63.8
w/ 25% in-batch negs 48.7 35.8 63.3
w/ softmax temp=1/128 52.2 36.5 64.8
w/ softmax temp=1/64 52.2 37.3 64.8
w/ softmax temp=1/32 39.6 26.9 61.2

6.2. Pre-training Datasets

It’s also important to understand how the model performs
when trained on different datasets with varying size. For
this purpose, we train two models: EfficientNet-B7 + BERT-
base and EfficientNet-B3 + BERT-mini on three different
datasets: full ALIGN training data, 10% randomly sampled
ALIGN training data, and Conceptual Captions (CC-3M,
around 3M images). CC-3M is much smaller so we train
the model with 1/10 of the default number of steps. All
models are trained from scratch. As shown in Table 9, a
large scale training set is essential to allow scaling up of
our models and to achieve better performance. For instance,
models trained on ALIGN data clearly outperform those
trained on CC-3M data. On CC-3M, B7+BERT-base starts
to overfit and performs even worse than B3+BERT-mini.
Conversely, a larger model is required to fully utilize the
larger dataset – the smaller B3+BERT-mini almost saturate
at 10% of ALIGN data, while with the larger B7+BERT-
base, there is a clear improvement with full ALIGN data.

Table 9. Ablation study of different training datasets.

Model + Data MSCOCO ImangeNet KNN
I2T R@1 T2I R@1 R@1

B7 + BERT-base
+ ALIGN full data 55.4 41.7 69.3
+ ALIGN 10% data 52.0 39.2 68.8
+ CC-3M data 18.9 15.5 48.7

B3 + BERT-mini
+ ALIGN full data 37.4 24.5 56.5
+ ALIGN 10% data 36.7 24.4 55.8
+ CC-3M data 22.1 17.3 48.9

To understand better how data size scaling wins over the
increased noise, we further randomly sample 3M, 6M, and
12M ALIGN training data and compare them with the
cleaned CC-3M data on B7+BERT-base model. Table 10
shows that while the ALIGN data performs much worse
than CC data with the same size (3M), the model quality
trained on 6M and 12M ALIGN data rapidly catches up.
Despite being noisy, ALIGN data outperforms Conceptual
Captions with only 4x size.
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Figure 3. Zero-shot image-text retrieval and ImageNet KNN accuracy@1 with different image and text encoder sizes.

Table 10. Tradeoff between training data size and quality.

Model + Data MSCOCO ImangeNet KNN
I2T R@1 T2I R@1 R@1

B7 + BERT-base
+ ALIGN 12M data 23.8 17.5 51.4
+ ALIGN 6M data 15.8 11.9 47.9
+ ALIGN 3M data 8.1 6.3 41.3
+ CC-3M data 18.9 15.5 48.7

7. Analysis of Learned Embeddings
We build a simple image retrieval system to study the
behaviors of embeddings trained by ALIGN. For demon-
stration purposes, we use an index consisting of 160M
CC-BY licensed images that are separate from our training
set. Figure 4 shows the top 1 text-to-image retrieval results
for a handful of text queries not existing in the training
data. ALIGN can retrieve precise images given detailed
descriptions of a scene, or fine-grained or instance-level
concepts like landmarks and artworks. These examples
demonstrate that our ALIGN model can align images
and texts with similar semantics, and that ALIGN can
generalize to novel complex concepts.

“Van Gogh Starry Night ...”
“details” “in black and white” “on a canvas” “in dark wood frame”

“Lombard street ...”
“view from bottom” “view from top” “bird’s eye view” “in heavy rain”

“seagull in front of ...”
“Golden Gate 

Bridge”
“London Tower 

Bridge”
“Sydney Harbour 

Bridge”
“Rialto 
Bridge”

Figure 4. Image retrieval with fine-grained text queries using
ALIGN’s embeddings.

Previously word2vec (Mikolov et al., 2013a;b) shows that
linear relationships between word vectors emerge as a re-
sult of training them to predict adjacent words in sentences
and paragraphs. We show that linear relationships between

+ “red”

+ “forest” + “desert” + “orange”

+ “blue” + “purple” + “from distance”

+ “beige” + “red” + “purple”

+ “Australia” + “Madagascar”

- “cars” - “trees” - “houses”

- “flowers” - “orange” + “rose”

- “bridge” - “waterfall”  - “mountain”

Figure 5. Image retrieval with image±text queries. We add (or
subtract) text query embedding to (or from) the image query em-
bedding, and then use the resulting embedding to retrieve relevant
images using cosine similarity.

image and text embeddings also emerge in ALIGN. We
perform image retrieval using a combined image+text query.
Specifically, given a query image and a text string, we add
their ALIGN embeddings together and use it to retrieve
relevant images.4 Figure 5 shows results for a variety of

4We normalize the text and image embeddings before adding
them. We also tried various scale factor and found that a scale of 2
for the text embedding and 1 for the image embedding give best
results as shown in the figure, although 1:1 also works well.



Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision

image+text queries. These examples not only demonstrate
great compositionality of ALIGN embeddings across vision
and language domains, but also show the feasibility of a new
paradigm of “search with multi-modal query” that would
otherwise be hard using only text query or image query. For
instance, one could now look for the “Australia” or “Mada-
gascar” equivalence of pandas, or turn a pair of black shoes
into identically-looking shoes with the color of “beige”. Fi-
nally, as shown in the last three rows of Figure 5, removing
objects/attributes from a scene is possible by performing
subtraction in the embedding space.

8. Multilingual ALIGN Model
One advantage of ALIGN is that the model is trained on
noisy web image text data with very simple filters, and none
of the filters are language specific. Given that, we further lift
the language constraint of the conceptual caption data pro-
cessing pipeline to extend the dataset to multilingual (cover-
ing 100+ languages) and match its size to the English dataset
(1.8B image-text pairs). A multilingual model ALIGNmling
is trained using this data. We created a new mutlilingual
wordpiece vocabulary with size 250k to cover all languages.
Model training follows the exact English configuration.

We test the multilingual model on Multi30k, a multilin-
gual image text retrieval dataset extends Flickr30K (Plum-
mer et al., 2015) to German (de) (Elliott et al., 2016),
French (fr) (Elliott et al., 2017) and Czech (cs) (Barrault
et al., 2018). The dataset consists of 31,783 images with
5 captions per image in English and German and 1 cap-
tion per image in French and Czech. The train/dev/test
splits are defined in Young et al. (2014). We evaluate the
zero-shot model performance of ALIGN and compare it
with M3P (Huang et al., 2020a) and UC2 (Zhou et al., 2021).
The evaluation metric is mean Recall (mR), which computes
the average score of Recall@1, Recall@5 and Recall@10
on image-to-text retrieval and text-to-image retrieval tasks.

Table 11 shows that the zero-shot performance of
ALIGNmling outperforms M3P on all languages by a large
margin, with the largest +57.8 absolution mR improvement
on fr. The zero-shot performance of ALIGNmling is even
comparable to the fine-tuned (w/ training splits) M3P and
UC2 except on cs. On en, ALIGNmling performs slightly
worse on its counterpart ALIGNEN (trained on EN-only
data.)

9. Conclusion
We present a simple method of leveraging large-scale noisy
image-text data to scale up visual and vision-language rep-
resentation learning. Our method avoids heavy work on
data curation and annotation, and only requires minimal
frequency-based cleaning. On this dataset, we train a simple

Table 11. Multimodal retrieval performance on Multi30K dataset.
The metric is the mean Recall (mR).

Model en de fr cs

zero-shot
M3P 57.9 36.8 27.1 20.4
ALIGNEN 92.2 - - -
ALIGNmling 90.2 84.1 84.9 63.2

w/ fine-tuning
M3P 87.7 82.7 73.9 72.2
UC2 88.2 84.5 83.9 81.2

dual-encoder model using a contrastive loss. The result-
ing model, named ALIGN, is capable of cross-modal re-
trieval and significantly outperforms SOTA VSE and cross-
attention vision-language models. In visual-only down-
stream tasks, ALIGN is also comparable to or outperforms
SOTA models trained with large-scale labeled data.

10. Social Impacts and Future Work
While this work shows promising results from a method-
ology perspective with a simple data collection method,
additional analysis of the data and the resulting model is
necessary before the use of the model in practice. For in-
stance, considerations should be made towards the potential
for the use of harmful text data in alt-texts to reinforce such
harms. On the fairness front, data balancing efforts may be
required to prevent reinforcing stereotypes from the web
data. Additional testing and training around sensitive reli-
gious or cultural items should be taken to understand and
mitigate the impact from possibly mislabeled data.

Further analysis should also be taken to ensure that the de-
mographic distribution of humans and related cultural items
like clothing, food, and art do not cause model performance
to be skewed. Analysis and balancing would be required if
such models will be used in production.

Finally, unintended misuse of such models for surveillance
or other nefarious purposes should be prohibited.
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