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Abstract
In multi-dimensional classification (MDC), there
are multiple class variables in the output space
with each of them corresponding to one hetero-
geneous class space. Due to the heterogeneity
of class spaces, it is quite challenging to consid-
er the dependencies among class variables when
learning from MDC examples. In this paper, we
propose a novel MDC approach named SLEM
which learns the predictive model in an encoded
label space instead of the original heterogeneous
one. Specifically, SLEM works in an encoding-
training-decoding framework. In the encoding
phase, each class vector is mapped into a real-
valued one via three cascaded operations includ-
ing pairwise grouping, one-hot conversion and
sparse linear encoding. In the training phase, a
multi-output regression model is learned within
the encoded label space. In the decoding phase,
the predicted class vector is obtained by adapting
orthogonal matching pursuit over outputs of the
learned multi-output regression model. Experi-
mental results clearly validate the superiority of
SLEM against state-of-the-art MDC approaches.

1. Introduction
In traditional supervised learning, the semantics of objects
are usually characterized by only one output variable, e.g.,
multi-class classification. However, in some real-world ap-
plications, the semantics of objects need to be characterized
along different dimensions. For example, the e-commerce
websites should categorize laptops from different dimen-
sions (e.g., brand, operating system, CPU, GPU, etc.) to
make it more convenient for consumers to choose the right
laptop for themselves. In fact, similar requirements widely
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exist in various fields, e.g., text classification (Shatkay et al.,
2008), bioinformatics (Rodrı́guez et al., 2012), resource al-
location (Al Muktadir et al., 2019), ecology (Verma et al.,
2021), etc. These special applications can be naturally for-
malized under the multi-dimensional classification (MDC)
learning framework (Read et al., 2014a; Ma & Chen, 2018;
Jia & Zhang, 2020a; Wang et al., 2020). In MDC, each
example is represented by a single instance while associat-
ed with multiple class variables. Here, each class variable
corresponds to one specific class space which characterizes
the semantics of objects from one dimension.

Formally speaking, let X = Rd be the input (feature) s-
pace, and Y = C1 × C2 × · · · × Cq be the output space
which corresponds to the Cartesian product of q class s-
paces. Here, each class space Cj (1 ≤ j ≤ q) consists
of Kj possible class labels, i.e., Cj = {cj1, c

j
2, . . . , c

j
Kj
}.

Given the MDC training set D = {(xi,yi) | 1 ≤ i ≤ m}
with m training examples, for each example (xi,yi) ∈ D,
xi = [xi1, xi2, . . . , xid]

> ∈ X is a d-dimensional feature
vector and yi = [yi1, yi2, . . . , yiq]

> ∈ Y is the class vector
associated with xi, where each component yij is one possi-
ble item in Cj , i.e., yij ∈ Cj . The MDC task aims to learn
a predictive model f : X 7→ Y from D which can return a
proper class vector f(x) ∈ Y for unseen instance x.

To solve the MDC problem, we can independently deal with
each dimension which is actually a multi-class classifica-
tion problem. Nonetheless, this strategy does not consider
potential dependencies among class spaces which would de-
generate its generalization ability. Therefore, most existing
MDC studies focus on how to model class dependencies
more appropriately, e.g., specifying a chaining structure over
class variables (Zaragoza et al., 2011; Read et al., 2014b),
partitioning class spaces into several groups (Read et al.,
2014a), learning a direct acyclic graph structure over class
variables (Bielza et al., 2011; Gil-Begue et al., 2021), etc.

Due to the heterogeneity of class spaces, it is quite chal-
lenging to directly consider the dependencies among class
variables in the original output space as most existing MDC
approaches do. In this paper, we attempt to learn the pre-
dictive model which solves the MDC problem in its trans-
formed label space. Accordingly, we propose a novel ap-
proach named SLEM, i.e., Sparse Label Encoding for Multi-
dimensional classification, which works in an encoding-
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training-decoding framework by utilizing the sparse prop-
erty of the transformed label space. In the encoding phase,
the output space is transformed into a new one via three
cascaded operations, including pairwise grouping, one-hot
conversion and sparse linear encoding. To be more specific,
pairwise grouping aims at making the results of one-hot
conversion sparser and linear encoding further maps the
sparse label vector into a real-valued one. In the training
phase, SLEM learns a multi-output regression model in the
encoded label space to deal with the resulting problem. In
the decoding phase, based on the predicted real-valued label
vector which is obtained by feeding unseen instance into the
learned multi-output regressor, SLEM conducts three inverse
operations corresponding to the encoding phase in reverse
order to predict the class vector for unseen instance. To be
more specific, the inverse operation of sparse linear encod-
ing is implemented by adapting the orthogonal matching
pursuit algorithm (Tropp & Gilbert, 2007) and the other two
inverse operations can be implemented directly. Experimen-
tal results clearly validate the superiority of SLEM against
state-of-the-art MDC approaches.

The rest of this paper is organized as follows. Firstly, related
works on MDC are briefly discussed. Secondly, technical
details of the proposed approach are presented. Thirdly,
experimental results of comparative studies are reported.
Finally, we conclude this paper.

2. Related Work
To solve the MDC problem, we can either decompose it into
a number of independent multi-class classification problems,
one per class space, or transform it into a single multi-class
classification problem, where each distinct class combina-
tion in the training set is regarded as one new class. How-
ever, the first strategy cannot consider the dependencies
among class spaces (i.e., underfitting), while the second
strategy cannot return class combinations not appearing in
the training set (i.e., overfitting). To alleviate the under-
fitting problem, the classifier chains model trains a chain
of multi-class classifiers, one per class space, where the
subsequent classifiers on the chain will augment the feature
space with the class spaces which are used to train the pre-
ceding classifiers (Zaragoza et al., 2011; Read et al., 2014b;
Liu et al., 2017). To alleviate the overfitting problem, the
super-class model partitions the class spaces into several
groups, where each group will be treated as a new class
space (Read et al., 2014a). Besides, due to the powerful
modeling abilities of probabilistic graphical model, we can
also learn a direct acyclic graph over the class variables to
explicitly model the class dependencies (Zhu et al., 2016;
Bolt & van der Gaag, 2017; Benjumeda et al., 2018).

The gMML approach solves the MDC problem in a binary-
valued label space which is obtained by concatenating the

one-vs-rest decomposition of each class space (Ma & Chen,
2018). Because the simple concatenation cannot blend the
heterogeneous class spaces into an integrated label space,
there is no intrinsic difference between the decomposed la-
bel space and the original one. Thus, the responsibilities
for considering class dependencies should be taken by the
following predictive model induced in the decomposed la-
bel space, which is accomplished via a metric approach in
gMML. Besides, it is less reasonable to directly align predic-
tive outputs of class labels from different class spaces due to
the heterogeneity assumption in MDC. To address or allevi-
ate the aforementioned issues, the proposed approach in this
paper attempts to encode the multi-dimensional class spaces
into an integrated label space, within which a predictive
model is induced. It is worth noting that the label encoding
strategy (Tai & Lin, 2012; Shen et al., 2018; Liu & Shen,
2019; Liu et al., 2019) has been successfully applied to
solve the multi-label classification (MLC) problem (Zhang
& Zhou, 2014; Gibaja & Ventura, 2015), which can be re-
garded as degenerated version of MDC by restricting each
class variable to be binary-valued.

3. The SLEM Approach
The workflow of the proposed SLEM approach is shown in
Figure 1 where the whole process can be divided into three
parts: encoding, training and decoding. In the following of
this section, we will present their technical details.

3.1. Encoding Phase

For each training example (xi,yi) ∈ D, we generally con-
vert the nominal class vector yi ∈ Y into its one-hot form
y′i ∈ {0, 1}

∑q
j=1Kj when we need to do some numeric com-

putations for it.1 We denote the one-hot conversion in output
space Y as y′i = ΦY(yi) and its inverse as yi = Φ−1

Y (y′i).
It is easy to know that the length-

∑q
j=1Kj vector y′i is

always q-sparse,2 and there is one and only one ‘1’ among
the (1 +

∑a−1
j=1 Kj)-th to (

∑a
j=1Kj)-th entries which we

call the a-th local group of y′i (1 ≤ a ≤ q). In this paper,
we refer to this property as local sparsity. For the proposed
SLEM approach, its decoding process to be introduced in
Subsection 3.3 will utilize the sparse property. However, in
light of our observations on existing real-world MDC data
sets (cf. Table 1), the sparsity of the one-hot vector is usual-
ly not sparse enough to ensure the sparsity reconstruction
algorithm working properly.

To tackle this issue, motivated by the idea of super-class

1Specifically, the one-hot form of the j-th entry yij in yi is
a length-Kj vector y′ij ∈ {0, 1}Kj , where the a-th entry in y′ij
equals 1 if yij = cja and 0 otherwise. The vector y′i corresponds
to the concatenation of q different y′ij (1 ≤ j ≤ q).

2A vector is q-sparse if it has at most q non-zero entries.
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Figure 1. The workflow of the proposed SLEM approach. Here, ui = PY(yi), vi = ΦU (ui), zi = Avi correspond to the three cascaded
operations including pairwise grouping in output space Y , one-hot conversion in output space U , spare linear encoding with matrix
A, respectively; D̃ = {(xi,zi) | 1 ≤ i ≤ m} is a multi-output regression data set, h =M(D̃) is the learned multi-output regressor
whereM corresponds to the employed multi-output regression algorithm, ẑ = h(x), v̂ = R(ẑ) whereR is the sparsity reconstruction
algorithm, û = Φ−1

U (v̂), ŷ = P−1
Y (û) where Φ−1

U (·) and P−1
Y (·) correspond to the inverse function of ΦU (·) and PY(·), respectively.

partition (Read et al., 2014a), we further group the q class
spaces Cj (1 ≤ j ≤ q) into b q2c pairs (plus a singleton class
space if q is odd). Let U = C ′1 × C ′2 × · · · × C ′d q2 e be the
newly-obtained output space from Y = C1×C2×· · ·×Cq ,
and [τ(1), . . . , τ(q)] be the ascending order according to
the number of class labels in each class space, i.e., Cτ(1)

and Cτ(q) include the least and most number of class labels
respectively. For each class space C ′j (1 ≤ j ≤ b q2c), it
corresponds to the powerset transformation of Cτ(j) and
Cτ(q̄−j+1), i.e., each class label in C ′j corresponds to one
distinct class combination in the Cartesian product Cτ(j) ×
Cτ(q̄−j+1). Here, q̄ equals q if q is even and q − 1 if q is
odd. Let sj be the number of class labels in C ′j , generally
we have sj = Kτ(j)×Kτ(q̄−j+1). Besides, if q is odd, then
C ′d q2 e

= Cτ(q) and sd q2 e = Kτ(q). we refer to this operation
as pairwise grouping in this paper.

With the pairwise grouping operation, the output space Y
is transformed into U , and then the length-q class vector
yi ∈ Y will be transformed into another length-d q2e class
vector ui ∈ U . We denote the pairwise grouping oper-
ation in output space Y as ui = PY(yi) and its inverse
as yi = P−1

Y (ui). Here, PY(·) just heuristically aims at
making the number of class labels in each class space of
U as balanced as possible, and more subtle designs can
be explored in the future. In summary, this operation will
bring two benefits. The first one is that ΦU (ui) will be
sparser than ΦY(yi) which is also the original intention
of this operation.3 The second one can be regarded as a
bonus of this operation that it can consider the dependen-
cies between class spaces grouped into one pair, which can
be modeled more reliably than dependencies among many
class spaces with limited number of training examples. We
denote the one-hot conversion of ui in output space U as
vi, i.e., vi = ΦU (ui). It is easy to know that the length-∑d q2 e
j=1 sj vector vi is always d q2e-sparse, and there is one

and only one ‘1’ among the (1+
∑a−1
j=1 sj)-th to (

∑a
j=1 sj)-

th entries, i.e., the a-th local group of vi (1 ≤ a ≤ d q2e).
3Because a × b must be greater than a + b if a, b > 2, the

length of ΦU (ui) (i.e.,
∑d q

2
e

j=1 sj) must be greater than the length
of ΦY(yi) (i.e.,

∑q
j=1Kj), while the sparsity level of ΦU (ui)

(i.e., d q
2
e) is less than the sparsity level of ΦY(yi) (i.e., q).

For the sake of brevity, we further denote the length of vi
as s =

∑d q2 e
j=1 sj and its sparsity level as k = d q2e in the rest

of this paper.

Let A ∈ Rs′×s be an encoding matrix, which can linearly
encode any length-s vector v into another length-s′ vec-
tor z, i.e., z = Av. Here, we require s′ ≤ s and hope
s′ � s to be held. In this paper, we focus more on label
encoding rather than label compression but the whole pro-
posed framework can also work properly under label com-
pression scenario. According to the theory of compressed
sensing (Donoho, 2006), there are valid reconstruction algo-
rithms which can recover the vector v from the compressed
observation z if v is k-sparse and A satisfies k-RIP given
in the following Definition 1:

Definition 1. (Restricted Isometry Property). For matrix
A, if there is a constant δk ∈ [0, 1) which satisfies

(1− δk) ‖v‖22 ≤ ‖Av‖
2
2 ≤ (1 + δk) ‖v‖22 (1)

where v is any k-sparse vector, then A is known as satisfy-
ing k-order Restricted Isometry Property (k-RIP).

It has been proved that some random matrices satisfy k-RIP
with large probability (Baraniuk et al., 2008), e.g., Gaussian
matrix and Bernoulli matrix. With the encoding matrix A,
each binary-valued vector vi ∈ {0, 1}s can be mapped into
a real-valued vector zi ∈ Rs′ . Obviously, each entry in zi is
related to all the entries in yi, each of which belongs to one
heterogeneous class space Cj (1 ≤ j ≤ q). Therefore, even
if the following induced predictive model deals with each
entry of zi independently, the q class spaces in the original
output space Y will be tackled in a joint manner.

3.2. Training Phase

With the three cascaded operations, i.e., pairwise grouping,
one-hot conversion and sparse linear encoding, each class
vector yi can be transformed into one real-valued vector
zi, then we can obtain a new data set D̃ = {(xi, zi) | 1 ≤
i ≤ m} based on D, which actually corresponds to a multi-
output regression problem (Borchani et al., 2015; Reeve &
Kaban, 2020). To solve the resulting problem, we learn a
multi-output regressor h(x) = W>x + b via optimizing
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the following formulation:

min
W,b,V̂

1

2
‖W‖2F + λ

m∑
i=1

[
‖h(xi)− zi‖22 +

γ1

(
‖h(xi)−Av̂i‖22 + γ2 ‖v̂i − vi‖1

)]
(2)

Here, W = [w1,w2, . . . ,ws′ ] ∈ Rd×s′ and b =
[b1, b2, . . . , bs′ ]

> are the model parameters of h to be deter-
mined, V̂ = [v̂1, . . . , v̂m]> ∈ Rm×s with v̂i corresponding
to the recovered sparse vector for vi based on its predic-
tion h(xi), and λ, γ1 and γ2 are three trade-off parameters.
Specifically, the term ‖W‖2F penalizes the model’s complex-
ity, the term ‖h(xi)− zi‖22 corresponds to the squared error
loss, and the two terms ‖h(xi)−Av̂i‖22 + γ2 ‖v̂i − vi‖1
require that the regressor h can facilitate the subsequent
sparse reconstruction procedure in the decoding phase.

To solve the above problem (2), we derive an alternating
method, where the two sets of parameters {W, b} and V̂
are optimized alternately until convergence.

Optimizing W and b when V̂ is fixed. When V̂ is fixed,
we can reformulate the optimization problem (2) as follows:

min
W,b

1

2
‖W‖2F + λ

m∑
i=1

[
‖h(xi)− zi‖22 +

γ1 ‖h(xi)−Av̂i‖22
]

(3)

Theorem 1. The optimization problem (3) can be equiva-
lently reformulated as follows:

min
W,b

1

2
‖W‖2F +

λ̃

2

m∑
i=1

‖h(xi)− z̃i‖22 (4)

where λ̃ = 2λ(1 + γ1) and z̃i = zi+γ1Av̂i

1+γ1
.

Proof. In Eq.(3), for the second term of the objective func-
tion, each summation term can be reformulated as follows:

‖h(xi)− zi‖22 + γ1 ‖h(xi)−Av̂i‖22
= ‖h(xi)‖22 − 2〈h(xi), zi〉+ ‖zi‖22

+ γ1(‖h(xi)‖22 − 2〈h(xi),Av̂i〉+ ‖Av̂i‖22)

=(1 + γ1) ‖h(xi)‖22 − 2〈h(xi), zi + γ1Av̂i〉

+
‖zi + γ1Av̂i‖22

1 + γ1
+ Ci

=(1 + γ1)

∥∥∥∥h(xi)−
zi + γ1Av̂i

1 + γ1

∥∥∥∥2

2

+ Ci (5)

where 〈·, ·〉 returns the inner product of two vectors, Ci =

‖zi‖22 + γ1 ‖Av̂i‖22 −
‖zi+γ1Av̂i‖22

1+γ1
is a constant which is

not dependent on variables W and b. Plugging Eq.(5) into
Eq.(3) and this completes the proof.

According to Theorem 1, the formulation (3) can be op-
timized by equivalently transforming it into a general re-
gression problem (4), whose closed-form solution can be
obtained by solving the following linear equations:[

Id + λ̃X>X λ̃X>1m
1>mX m

] [
W
b>

]
=

[
λ̃X>Z̃

1>mZ̃

]
where Id is an identity matrix with size d×d, 1m is a colum-
n vector of all ones with length m, X = [x1, . . . ,xm]> ∈
Rm×d is the instance matrix, Z̃ = [z̃1, . . . , z̃m]> ∈ Rm×s′

is the real-valued label matrix. Moreover, if we transform
the d-dimensional feature space to one d′-dimensional fea-
ture space with nonlinear mapping function φ : Rd → Rd′ ,
we can learn a nonlinear multi-output regressor, i.e., h(x) =
W>φ(x) + b. Here, note that W = [w1,w2, . . . ,ws′ ] ∈
Rd′×s′ . According to the Representer Theorem (Schölkopf
& Smola, 2002), the predictive model can be expressed as
a linear combination of the training instances under fairly
general conditions, i.e., wj =

∑m
i=1 θjiφ(xi). Let θj =

[θj1, . . . , θjm]> ∈ Rm×1, Θ = [θ1, . . . ,θs′ ] ∈ Rm×s′ ,
and Φ = [φ(x1), . . . , φ(xm)]> ∈ Rm×d′ , the closed-form
solution of kernelized problem (4) can be obtained by solv-
ing the following linear equations:[

Im + λ̃K λ̃1m
1>mK m

] [
Θ
b>

]
=

[
λ̃Z̃

1>mZ̃

]
where K = ΦΦ> ∈ Rm×m with (i, j)th element Kij =
〈φ(xi), φ(xj)〉 = κ(xi,xj) . Here, κ(·, ·) is the kernel
function which is utilized to avoid directly computing inner
product in d′-dimensional feature space.

Optimizing V̂ when W and b are fixed. When W and
b are fixed, we can reformulate the optimization problem (2)
as a total of m independent problems as follows:

min
v̂i

‖h(xi)−Av̂i‖22 + γ2 ‖v̂i − vi‖1 (6)

In this paper, we solve this problem via accelerated proximal
gradient (APG) method (Huang et al., 2016).
Theorem 2. Let g(v̂i) = ‖h(xi)−Av̂i‖22, for the deriv-
able function g(v̂i),∇g(v̂i) is Lipschitz continuous and the
Lipschitz constant is Lf =

∥∥2A>A
∥∥
F

, where ∇ denotes
the gradient operator.

Proof. For∇g(v̂i), it can be calculated as:

∇g(v̂i) = 2A>Av̂i − 2A>h(xi)

Given any v̂′i and v̂i, we have:

‖∇g(v̂′i)−∇g(v̂i)‖2
‖v̂′i − v̂i‖2

=

∥∥2A>A(v̂′i − v̂i)
∥∥

2

‖v̂′i − v̂i‖2

≤
∥∥2A>A

∥∥
F
‖v̂′i − v̂i‖2

‖v̂′i − v̂i‖2
=
∥∥2A>A

∥∥
F
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Algorithm 1 Solving problem (6) via APG

Require: The encoding matrix A ∈ Rs′×s, the ground-
truth sparse vector vi ∈ {0, 1}s, the trade-off parameter
γ2;

Ensure: The recovered sparse vector v̂i;
1: Calculate the Lipschitz constant Lf =

∥∥2A>A
∥∥
F

;

2: Initialize v̂(0)
i = v̂

(1)
i = vi, r0 = r1 = 1, t = 1;

3: repeat
4: Obtain ζ(t) according to Eq.(10);
5: Compute ν(t) = ζ(t) − 1

Lf
∇g(ζ(t));

6: Obtain v̂(t+1)
i according to Eq.(8);

7: Compute rt+1 =
1+
√

1+4r2t
2 ;

8: t = t+ 1;
9: until convergence

10: Return v̂i = v̂
(t)
i .

which completes the proof.

According to Theorem 2, given any initial value v̂(t)
i of v̂i,

let ∆v̂i = v̂i − v̂(t)
i , the following inequation always holds:∥∥∥∇g(v̂i)−∇g(v̂

(t)
i )
∥∥∥

2
≤ Lf ‖∆v̂i‖2

Then, the quadratic approximation of g(v̂i) around v̂(t)
i can

be given as follows:

ĝ(v̂i) ' g(v̂
(t)
i ) + 〈∇g(v̂

(t)
i ),∆v̂i〉+

Lf
2
‖∆v̂i‖22

=
Lf
2

∥∥∥v̂i − ν(t)
∥∥∥2

2
+ CLf

where CLf
= − 1

2Lf

∥∥∥∇g(v̂
(t)
i )
∥∥∥2

2
+ g(v̂

(t)
i ) is a constant

which is not dependent on variables v̂i, and

ν(t) = v̂
(t)
i −

1

Lf
∇g(v̂

(t)
i ) (7)

According to the descent lemma (Bauschke et al., 2017),
ĝ(v̂i) is an upper bound of g(v̂i), i.e., g(v̂i) ≤ ĝ(v̂i) always
holds. Therefore, g(v̂i) can be minimized by iteratively
minimizing its approximation ĝ(v̂i). Plugging ĝ(v̂i) into
the optimization problem (6), we can obtain the following
iterative equation:

v̂
(t+1)
i = arg min

v̂i

Lf
2

∥∥∥v̂i − ν(t)
∥∥∥2

2
+ γ2 ‖v̂i − vi‖1

= softc(ν(t),
γ2

Lf
,vi) (8)

where the (element-wise) function softc(·, ·, ·) is defined as
follows:

softc(x, µ, c) =

 x− µ if x− c > µ
x+ µ if x− c < −µ
c otherwise.

(9)

Algorithm 2 LOMP: v = R(z,A, k, I)

Input: The encoding matrix A ∈ Rs′×s, the real-valued
vector z ∈ Rs′ , sparsity level k, local sparsity informa-
tion I : s1, s2, . . . , sk;

Output: The recovered k-sparse vector v;
1: Initialize v as zero vector with length s =

∑k
j=1 sj ;

2: Initialize r0 = z, J = ∅, B = A;
3: for i = 1 to k do
4: j∗ = arg maxj |〈ri−1,B:j〉|;
5: v(j∗) = 1;
6: J = J ∪ {j∗};
7: ri = z −A:J(A>:JA:J)−1A>:Jz;
8: for κ = 1 to k do
9: tf =

∑κ
t=1 st;

10: if j∗ ≤ tf then
11: tb = tf − sκ;
12: T = {tb + 1, tb + 2, . . . , tf};
13: B:T = 0;
14: break;
15: end if
16: end for
17: end for
18: Return v.

Here, note that softc is different with the well-known soft-
thresholding function which is defined as follows:

soft(x, µ) =

 x− µ if x > µ
x+ µ if x < −µ
0 otherwise.

where there is an additional constant term in softc. In a
nutshell, the solution in Eq.(8) can be obtained by perform-
ing variable substitution method, where the variables v̂i are
substituted with the variables χi = v̂i − vi.

In (Beck & Teboulle, 2009), it is shown that the convergence
rate of Eq.(8) can be improved to O(t−2) from O(t−1) if
we replace v̂(t)

i in Eq.(7) with the following ζ(t):

ζ(t) = v̂
(t)
i +

rt−1 − 1

rt
(v̂

(t)
i − v̂

(t−1)
i ) (10)

where r0 = r1 = 1 and rt =
1+
√

1+4r2t−1

2 when t > 1.
In summary, Algorithm 1 shows the procedure of solving
problem (6) via APG.

We alternately optimize the formulations in Eq.(3) and
Eq.(6) until convergence, and then we can obtain the optimal
model parameters (W, b) of the multi-output regressor.

3.3. Decoding Phase

Given the unseen instance x, suppose its ground-truth class
vector is y ∈ Y , then its grouped class vector is u =
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PY(y) ∈ U , the one-hot conversion is v = ΦU (u) ∈
{0, 1}s and the encoded real-valued vector z = Av ∈ Rs′ .
The decoding phase corresponds to the inverse operations
of these steps to obtain x’s predicted class vector ŷ.

Specifically, we firstly predict the encoded vector ẑ = h(x)
with the learned multi-output regression model h. Then,
we can recover the d q2e-sparse vector v̂ = R(ẑ) by some
reconstruction algorithm R. After that, the correspond-
ing grouped class vector can be returned by û = Φ−1

U (v̂).
Finally, the predicted class vector can be obtained by
ŷ = P−1

Y (û). Obviously, the first two steps are the key
operations which could introduce predictive errors while the
last two steps can be done accurately as long as their inputs
are accurate. Therefore, we optimize the formulation (2) to
accomplish the first multi-output regression learning task.
For the sparse reconstruction step, we design a reconstruc-
tion algorithm which can consider the local sparsity prop-
erty by adapting the orthogonal matching pursuit (OMP)
algorithm (Tropp & Gilbert, 2007). We name the adapted
algorithm as local orthogonal matching pursuit (LOMP).
Algorithm 2 shows the pseudo-code of LOMP, where v(j∗)
denotes the j∗-th entry of vector v, and A:J denotes the
submatrix consisting of the columns of A indexed by J . In
contrast with the standard OMP, the key adaptions in LOMP
is to set the related columns to zero which belong to the
same local group with the current selected column of A, i.e.,
steps 8-16. This adaption ensures that there is one and only
one ‘1’ in each local group of the recovered v̂.

4. Experiments
4.1. Experimental Setup

4.1.1. BENCHMARK DATA SETS

In this paper, the experiments are conducted over a total of
11 benchmark data sets, whose detailed characteristics are
summarized in Table 1, including the number of examples
(#Exam.), the number of dimensions (#Dim.), the number of
class labels per dimension (#Labels/Dim.),4 and the number
of features (#Features).

4.1.2. EVALUATION METRICS

In this paper, the performance of MDC approaches is mea-
sured by three widely-used metrics (Ma & Chen, 2018; Jia
& Zhang, 2020a;b;c; Wang et al., 2020), i.e., Hamming S-
core (HS), Exact Match (EM) and Sub-Exact Match (SEM),
whose formal definitions can be given as follows:

HSS(f) =
1

p

p∑
i=1

1

q
· r(i)

4Here, we record the numbers for all dimensions in turn. If all
numbers are the same to each other, then we only record one of
them.

Table 1. Characteristics of the benchmark data sets.

Data Set #Exam. #Dim. #Labels/Dim. #Features5

Jura 359 2 4,5 9n
Oes10 403 16 3 298n
Voice 3136 2 4,2 19n
Scm20d 8966 16 4 61n
Rf1 8987 8 4,4,3,4,4,3,4,3 64n
Scm1d 9803 16 4 280n
CoIL2000 9822 5 6,10,10,4,2 81x
Flickr 12198 5 3,4,3,4,4 1536n
Disfa 13095 12 5,5,6,3,4,4,5,4,4,4,6,4 136n
Fera 14052 5 6 136n
Adult 18419 4 7,7,5,2 5n,5x

EMS(f) =
1

p

p∑
i=1

1r(i)=q

SEMS(f) =
1

p

p∑
i=1

1r(i)≥q−1

Here, S = {(xi,yi) | 1 ≤ i ≤ p} is the test set with p
examples, f : X 7→ Y is the MDC model to be evaluated,
r(i) =

∑q
j=1 1yij=ŷij is the number of class labels for

which f returns the correct predictions for xi, where yij and
ŷij correspond to the ground-truth and predicted class label
of xi’s j-th class space, and predicate 1π returns 1 if π holds
and 0 otherwise. Obviously, for all the three metrics, the
larger the metric value, the better the performance. In the
experiments, we conduct ten-fold cross validation over each
data set for all compared approaches, and both mean metric
value and standard deviation are recorded for performance
comparison.

4.1.3. COMPARED APPROACHES

In this paper, the proposed SLEM approach is compared with
five state-of-the-art MDC baselines, including BR, CP, BCC,
ESC, gMML. Specifically, to solve the MDC problem, BR
trains q independent multi-class classifiers, one per class
space, while CP trains a single multi-class classifier by
regarding the q class spaces as a compound one, where
each distinct class combination corresponds to one new
class in the compound class space. BCC trains q chain-
structured multi-class classifiers, one per class space, where
the subsequent classifiers will augment the feature space
with predictions of preceding ones and the chain structure
is determined by Bayesian learning techniques (Zaragoza
et al., 2011). ESC partitions the class spaces into several
groups which are treated as a compound class space, and
solves the resulting problem via classifier chains (Read et al.,
2014a). gMML decomposes the class spaces into a binary-

5Here, n and x denote numeric and nominal features.
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Table 2. Experimental results (mean ± std.) of each MDC approach. In addition, •/◦ indicates whether SLEM is statistically superi-
or/inferior to other compared MDC approaches on each data set (pairwise t-test at 0.05 significance level), and the experimental results
marked as ‘N/A’ are unavailable due to “out of memory” error of Libsvm package.

Data Hamming Score
Set SLEM BR CP BCC ESC gMML
Jura 0.717±0.049 0.586±0.069• 0.570±0.061• 0.568±0.065• 0.558±0.055• 0.606±0.072•
Oes10 0.763±0.014 0.664±0.019• 0.179±0.041• 0.674±0.028• 0.633±0.020• 0.775±0.017◦
Voice 0.944±0.010 0.940±0.010 0.916±0.010• 0.938±0.010 0.931±0.009• 0.842±0.009•
Scm20d 0.873±0.004 0.632±0.006• N/A 0.605±0.008• N/A 0.600±0.007•
Rf1 0.927±0.002 0.852±0.005• 0.813±0.010• 0.855±0.004• 0.794±0.007• 0.730±0.007•
Scm1d 0.884±0.003 0.725±0.007• N/A 0.691±0.007• N/A 0.697±0.007•
CoIL2000 0.899±0.005 0.874±0.005• 0.738±0.006• 0.875±0.005• 0.851±0.008• 0.894±0.004•
Flickr 0.737±0.018 0.715±0.006• 0.658±0.008• 0.715±0.006• 0.651±0.007• 0.779±0.004◦
Disfa 0.935±0.002 0.885±0.003• N/A 0.883±0.003• 0.878±0.003• 0.884±0.003•
Fera 0.765±0.007 0.599±0.008• N/A 0.593±0.008• N/A 0.589±0.007•
Adult 0.696±0.006 0.701±0.004◦ 0.682±0.005• 0.680±0.006• 0.675±0.006• 0.705±0.004◦
Data Exact Match
Set SLEM BR CP BCC ESC gMML
Jura 0.552±0.056 0.329±0.110• 0.326±0.099• 0.304±0.099• 0.298±0.098• 0.368±0.119•
Oes10 0.054±0.036 0.064±0.035 0.077±0.041 0.079±0.045 0.067±0.037 0.079±0.040
Voice 0.907±0.012 0.884±0.017• 0.841±0.016• 0.881±0.017• 0.867±0.016• 0.699±0.017•
Scm20d 0.247±0.015 0.054±0.006• N/A 0.080±0.009• N/A 0.052±0.007•
Rf1 0.581±0.008 0.322±0.011• 0.319±0.025• 0.336±0.010• 0.275±0.012• 0.138±0.011•
Scm1d 0.278±0.015 0.115±0.010• N/A 0.123±0.013• N/A 0.102±0.009•
CoIL2000 0.608±0.016 0.515±0.012• 0.273±0.012• 0.520±0.010• 0.468±0.019• 0.576±0.015•
Flickr 0.248±0.017 0.187±0.011• 0.125±0.016• 0.187±0.011• 0.114±0.014• 0.287±0.009◦
Disfa 0.539±0.015 0.378±0.011• N/A 0.377±0.011• 0.374±0.011• 0.379±0.011•
Fera 0.400±0.013 0.199±0.013• N/A 0.196±0.013• N/A 0.196±0.013•
Adult 0.288±0.011 0.228±0.006• 0.282±0.012 0.272±0.007• 0.269±0.011• 0.230±0.009•
Data Sub-Exact Match
Set SLEM BR CP BCC ESC gMML
Jura 0.883±0.061 0.844±0.059 0.813±0.040• 0.833±0.056 0.819±0.045• 0.844±0.049
Oes10 0.144±0.051 0.119±0.059 0.107±0.044 0.142±0.055 0.117±0.048 0.176±0.038
Voice 0.981±0.011 0.996±0.005◦ 0.991±0.005◦ 0.996±0.005◦ 0.995±0.005◦ 0.985±0.011
Scm20d 0.486±0.015 0.105±0.007• N/A 0.135±0.013• N/A 0.100±0.009•
Rf1 0.877±0.011 0.655±0.017• 0.580±0.022• 0.669±0.015• 0.542±0.014• 0.375±0.014•
Scm1d 0.523±0.012 0.223±0.016• N/A 0.206±0.012• N/A 0.198±0.015•
CoIL2000 0.902±0.013 0.873±0.016• 0.576±0.016• 0.875±0.014• 0.820±0.017• 0.903±0.010
Flickr 0.611±0.035 0.543±0.015• 0.426±0.018• 0.544±0.017• 0.414±0.017• 0.689±0.016◦
Disfa 0.791±0.008 0.596±0.011• N/A 0.588±0.009• 0.575±0.010• 0.590±0.009•
Fera 0.654±0.012 0.387±0.012• N/A 0.380±0.013• N/A 0.378±0.013•
Adult 0.624±0.014 0.657±0.010◦ 0.599±0.008• 0.597±0.012• 0.586±0.011• 0.669±0.008◦

valued label space via one-vs-rest strategy and solves the
resulting problem via a metric approach (Ma & Chen, 2018).

For BR, CP, BCC, ESC, support vector machine (SVM) is
used as the base multi-class classifier to implement each
of them. Specifically, the Libsvm package (Chang & Lin,
2011) with default parameter settings is used in experiments.
For ESC, the ensemble is constructed with ten base models

whose results are combined via majority voting (Read et al.,
2014a). For gMML, its parameters λ, t, γ and k are tuned
as suggested in (Ma & Chen, 2018). For the proposed SLEM
approach, we use random Gaussian matrix to serve as the
encoding matrix A with s′ = s− 1, and the three trade-off
parameters in the formulation (2) are set as λ = 1, γ1 = 1
and γ2 = 1.
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Figure 2. Performance comparision between SLEM and its two variants.

Table 3. Win/tie/loss counts of pairwise t-test (at 0.05 significance
level) between SLEM and each MDC approach.

Evaluation SLEM against
metric BR CP BCC ESC gMML
HS 9/1/1 7/0/0 10/1/0 8/0/0 8/0/3
EM 10/1/0 5/2/0 10/1/0 7/1/0 9/1/1
SEM 7/2/2 5/1/1 8/2/1 6/1/1 5/4/2
In Total 26/4/3 17/3/1 28/4/1 21/2/1 22/5/6

4.2. Experimental Results

Table 2 shows the experimental results of SLEM and all
compared approaches over the benchmark data sets in terms
of each evaluation metric.6 We also conduct pairwise t-test
(at 0.05 significance level) to show whether SLEM is statisti-
cally superior/inferior to other compared MDC approaches
on each data set, and Table 3 summarizes the corresponding
win/tie/loss counts.

According to the reported experimental results, the follow-
ing observations can be made:

• Among all the 144 configurations (11 data set × 5
compared approaches × 3 evaluation metrics [exclud-
ing the 21 ‘N/A’ cases]), SLEM achieves superior or
at least comparable performance against the five com-
pared approaches in 132 cases.

• The two approaches BR and CP represent two extreme
MDC baselines which consider none or exhaustive
class dependencies, respectively. As shown in Table 3,
SLEM achieves 26 and 17 superior cases against BR
and CP respectively, which clearly validates the effec-
tiveness of SLEM’s dependency modeling strategy.

• The two approaches BCC and ESC specially consider
the class dependencies via chain structure or super-
class partition in the original label space. The over-
whelming advantage of SLEM over BCC and ESC in-

6In Table 2, there are a total of 21 cases marked as ‘N/A’ whose
experimental results are unavailable due to “out of memory” error
of Libsvm package. The error is caused by the high computational
complexity of the CP and ESC over the corresponding data sets.

Table 4. Wilcoxon signed-ranks test for SLEM against its two de-
generated versions in terms of each evaluation metric (significance
level α = 0.05; p-values shown in the brackets).

SLEM Evaluation metric
versus HS EM SEM
DeV1 win[9.77e-04] win[9.77e-04] win[9.77e-04]
DeV2 win[3.91e-03] win[3.91e-03] win[3.91e-03]

dicates that it is beneficial to learn predictive models
in the encoded label space.

• It is shown that SLEM achieves 6 loss cases against
gMML, which is relatively larger than other compared
approaches. The gMML approach learns predictive
model by utilizing the distance metric learning mecha-
nism, which can also be introduced into label encoding
in the future.

4.3. Further Analysis

In this subsection, we further compare the performance
of SLEM with its two degenerated versions to analyze the
effectiveness of SLEM’s label encoding strategy. We denote
the two variants as DeV1 and DeV2 respectively:

• DeV1: This variant directly obtains vi by conducting
one-hot conversion on yi, i.e., vi = ΦY(yi), and the
decoding phase is changed accordingly. In other words,
DeV1 omits the pairwise grouping operation PY(·).

• DeV2: This variant separately deals with the d q2e en-
tries in ui with the same encoding-decoding procedure
between vi and v̂ (cf. Figure 1), each of which corre-
sponds to one class space in U . In other words, DeV2
doesn’t encode the heterogeneous class spaces into an
integrated label space and only considers the depen-
dencies between class spaces grouped into one pair.

The detailed comparative results are shown in Figure 2.
Moreover, we also employ Wilcoxon signed-ranks test at
0.05 significance level (Demšar, 2006) to test the statistical
relationship between SLEM and its two variants, and the
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corresponding test results with p-values shown in brackets
are summarized in Table 4.

As shown in Table 4, SLEM achieves statistically superior
performance against its two degenerated versions in terms of
each evaluation metric which clearly validates the effective-
ness of SLEM’s label encoding strategy. To be more specific,
the superiority of SLEM against DeV1 shows the benefits
of the pairwise grouping operation, and the superiority of
SLEM against DeV2 shows the benefits of encoding the
heterogeneous class spaces into an integrated label space.

5. Conclusion
In this paper, we investigate the label encoding techniques
for multi-dimensional classification. Different from most
existing MDC approaches, the proposed SLEM approach
learns predictive model in the transformed label space in-
stead of the original one. Specifically, SLEM transforms the
output space into a new one via three cascaded operations,
including pairwise grouping, one-hot conversion and sparse
linear encoding. Within the transformed label space, SLEM
learns a multi-output regression model based on the train-
ing examples, and then obtains a real-valued label vector
for unseen instance by feeding it into the learned multi-
output regressor. The final predicted class vector is obtained
by conducting decoding procedure corresponding to the
inverse operations of encoding steps based on the predict-
ed real-valued label vector. We compare the performance
of SLEM with five state-of-the-art MDC approaches over
eleven benchmark data sets, and the experimental results
clearly show the superiority of SLEM against the baselines.
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