
Monotonic Robust Policy Optimization with Model Discrepancy

Yuankun Jiang 1 Chenglin Li 2 Wenrui Dai 1 Junni Zou 1 Hongkai Xiong 2

Abstract
State-of-the-art deep reinforcement learning

(DRL) algorithms tend to overfit due to the model

discrepancy between source and target environ-

ments. Though applying domain randomization

during training can improve the average perfor-

mance by randomly generating a sufficient diver-

sity of environments in simulator, the worst-case

environment is still neglected without any perfor-

mance guarantee. Since the average and worst-

case performance are both important for general-

ization in RL, in this paper, we propose a policy

optimization approach for concurrently improving

the policy’s performance in the average and worst-

case environment. We theoretically derive a lower

bound for the worst-case performance of a given

policy by relating it to the expected performance.

Guided by this lower bound, we formulate an op-

timization problem to jointly optimize the policy

and sampling distribution, and prove that by iter-

atively solving it the worst-case performance is

monotonically improved. We then develop a prac-

tical algorithm, named monotonic robust policy

optimization (MRPO). Experimental evaluations

in several robot control tasks demonstrate that

MRPO can generally improve both the average

and worst-case performance in the source envi-

ronments for training, and facilitate in all cases

the learned policy with a better generalization ca-

pability in some unseen testing environments.

1. Introduction
With deep neural network approximation, deep reinforce-

ment learning (DRL) has extended classical reinforcement

learning (RL) algorithms to successfully solving complex

1Department of Computer Science and Engineering, Shang-
hai Jiao Tong University, Shanghai, China 2Department of
Electronic Engineering, Shanghai Jiao Tong University, Shang-
hai, China. Correspondence to: Yuankun Jiang <yuankun-
jiang@sjtu.edu.cn>, Chenglin Li <lcl1985@sjtu.edu.cn>, Junni
Zou <zou-jn@cs.sjtu.edu.cn>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

control tasks, e.g., playing computer games with human-

level performance (Mnih et al., 2013; Silver et al., 2018)

and traffic signal control (Chen et al., 2020). DRL often

requires tremendous amounts of data to train a reliable pol-

icy, especially with random exploration. It thus becomes

infeasible for some practical tasks, such as robotic control

and autonomous driving, as training in the real world is not

only expensive and time-consuming, but also dangerous.

Therefore, a very limited set of real samples is available

for training these tasks, resulting in overfitting and poor

generalization (Kang et al., 2019). One alternative solution

is to learn the policy in a simulator (i.e., source environment

for training) and then transfer it to the real world (i.e., target

environment for testing). However, it is currently impos-

sible to model the exact environment and physics of the

real world. For instance, physical effects like nonrigidity

and fluid dynamics are quite difficult to accurately model

in simulation. How to mitigate the model discrepancy be-

tween source and target environments remains challenging

for generalization in RL.

Since one can manipulate simulator settings during training,

the policy can be trained on various environments, and thus

be able to resist to model discrepancy when it is deployed on

the test environment. Based on this, a simple yet effective

method is proposed by Peng et al. (2018) and referred to as

domain randomization (DR). It randomizes the simulator

(e.g., by randomizing the distribution of environment param-

eters) to generate a variety of environments for training the

policy in the source domain. Compared with training in a

single environment, recent researches have shown that poli-

cies learned through an ensemble of environment dynamics

obtained by DR achieve a better generalization performance

in terms of expected return. The expected return is referred

to as the average performance across all the trajectories sam-

pled from different environments. Since these trajectories,

regardless of their performance, are sampled according to

a fixed distribution, the trajectories with the worst perfor-

mance would severely degrade the overall performance.

In contrast, another line of research on the generalization in

RL is from the perspective of control theory, i.e., learning

policies that are robust to environment perturbations. Robust

RL algorithms learn policies, also using model ensembles

produced by perturbing parameters of the nominal model.

EPOpt (Rajeswaran et al., 2017), a representative of them,

Monotonic Robust Policy Optimization with Model Discrepancy

trains policy solely on the worst performing subset, i.e.,

trajectories with the worst α-percentile of returns, while

discarding all the better performing trajectories. In other

words, it seeks a better worst-case performance at the cost of

degradation on the average performance. In general, robust

RL algorithms may produce policies that perform overly

conservative, such that the policy learned will not behave

very badly in a previously unseen environment.

In this paper, we focus on the generalization issue in RL,

and aim to mitigate the model discrepancy of the transition

dynamics between source and target environments. Consid-

ering that both the average and worst-case performance are

equally important for evaluating the generalization capabil-

ity of the policy, we propose a policy optimization approach

in which the distribution of sampled trajectories are specifi-

cally designed for concurrently improving both the average

and worst-case performance. Our main contributions are

summarized as follows.

• Theoretical Lower Bound Relating Wost-case with
Expected Performance. For a given policy and a wide

range of environments, we theoretically derive a lower

bound for the worst-case expected return of that policy

over all the environments, which is related to the expected

performance. Therefore, maximizing this lower bound

can be equivalently achieved by solving an expected per-

formance maximization problem, under constraints that

bound the update step in policy optimization and statisti-

cal distance between the worst and average case environ-

ments. To the best of our knowledge, this theoretical anal-

ysis of relationship between the worst-case and average

performance is reported for the first time, which provides

a practical guidance for updating policies towards both

the worst-case and average performance maximization.

• Criterion for Sampling Trajectory Selection. Environ-

ments available for training may contribute differently to

the generalization capacity of policy. Therefore, in face of

all possible environments, the problem that which types of

environments are likely to mostly affect the generalization

performance should be considered. Unlike traditional uni-

form sampling without the worst-case performance guar-

antee, and different from the worst α-percentile sampling

in which parameter α is empirically preset, we propose

a criterion for the sampling trajectory selection based on

the proposed worst-case and average performance maxi-

mization, with which both the environment diversity and

the worst-case environments are taken into account.

• MRPO for Monotonic Worst-case Performance Im-
provement. Based on the proposed theoretical analy-

sis, we develop a monotonic robust policy optimization

(MRPO) algorithm to learn the optimal policy that in-

tends to concurrently optimize the worst-case and average

performance. Specifically, MRPO carries out a two-step

optimization to update the policy and the distribution of

sampled trajectories, respectively. We further prove that

the policy optimization problem can be transformed to

trust region policy optimization (TRPO) (Schulman et al.,

2015) on all the possible environments, such that the pol-

icy update can be implemented by the commonly used

proximal policy optimization (PPO) algorithm (Schulman

et al., 2017). Finally, we prove that by updating the policy

with the MRPO, the worst-case expected return can be

monotonically increased.

• Practical Implementation and Evaluation of MRPO.
To greatly reduce the computational complexity, we im-

pose Lipschitz continuity assumptions on the transition dy-

namics and propose a practical implementation of MRPO.

We then conduct experiments on six robot control tasks

with variable transition dynamics of environments, and

show that MRPO can improve both the average and worst-

case performance in the training environments compared

to DR and Robust RL baselines, and significantly facilitate

the learned policy with a better generalization capability

in previously unseen environments used for testing.

2. Background
Under the standard RL setting, the environment is mod-

eled as a Markov decision process (MDP) defined by a

tuple < S,A, T , R >, where S is the state space and A
is the action space. For the convenience of derivation, we

assume they are finite. T : S × A × S → [0, 1] is the

transition dynamics determined by the environment param-

eter p ∈ P , where P denotes the environment parameter

space. For example, in robot control, environment parameter

could be physical coefficients that directly affect the con-

trol, such as friction of joints and torso mass. Throughout

this paper, by environment p, we mean that an environ-

ment has the transition dynamics determined by parameter

p. R : S ×A → R is the reward function. At each time step

t, the agent observes the state st ∈ S and takes an action

at ∈ A guided by policy π(at|st). Then, the agent will

receive a reward rt = R(st, at) and the environment shifts

from current state st to the next state st+1 with probability

T (st+1|st, at, p). The goal of RL is to search for a policy

π that maximizes the expected cumulative discounted re-

ward η(π|p) = Eτ [G(τ |p)], G(τ |p) = ∑∞
t=0 γ

trt, where

τ = {st, at, rt, st+1}∞t=0 denotes the trajectory generated

by policy π in environment p, γ ∈ [0, 1] is the discount fac-

tor, and η(π|p) measures the performance in return of π in

environment p. We can then define the state value function

as Vπ(s) = E
[∑∞

k=0 γ
krt+k|st = s

]
, the action value func-

tion as Qπ(s, a) = E
[∑∞

k=0 γ
krt+k|st = s, at = a

]
, and

the advantage function as Aπ(s, a) = Qπ(s, a)−Vπ(s). We

denote the state distribution under environment p and policy

Monotonic Robust Policy Optimization with Model Discrepancy

π as Pπ(s|p) and that at time step t as P t
π(s|p). During

policy optimization in RL, by updating the current policy π
to a new policy π̃, Schulman et al. (2015) prove that:

η(π̃|p) ≥ Lπ(π̃|p)−
2λγ

(1− γ)2
β2, (1)

Lπ(π̃|p) = η(π|p) + 1

1− γ
Es∼Pπ,a∼π

[
π̃(a|s)
π(a|s)Aπ(s, a)

]
,

where λ = maxs |Ea∼π(a|s)[Aπ(s, a)]| is the maximum

expected advantage following current policy π, and β =
maxs DTV (π(·|s)‖π̃(·|s)) is the maximum total variation

(TV) distance between π and π̃. The policy’s expected re-

turn after updating can be monotonically improved by max-

imizing the lower bound in (1) w.r.t. π̃. Based on this and

with a certain approximation, Schulman et al. (2015) then

propose a algorithm named trust region policy optimization

(TRPO) that optimizes π̃ towards direction of maximizing

Lπ(π̃), subject to the trust region constraint β ≤ δ.

In standard RL, environment parameter p is fixed without

any model discrepancy. While under the domain random-

ization (DR) settings, because of existence of the model

discrepancy, environment parameter should actually be a

random variable p following a probability distribution P
over P . By introducing DR, the goal of policy optimiza-

tion is to maximize the expected performance over all the

possible environment parameters, i.e., maxπ Ep∼P [η(π|p)].

3. Policy Optimization for Monotonic
Worst-case Improvement

3.1. Relating Worst-case with Expected Performance

In face of model discrepancy, our goal is to provide a perfor-

mance improvement guarantee for the worst-case environ-

ment, and meanwhile to improve the average performance

over all environments. To this end, we relate the worst-case

and expected performance through the following inequality.

Lemma 1. Guided by a certain policy π, there exists a
non-negative constant C ≥ 0, such that:

Ep∼P [η(π|p)] ≥ η(π|pw) ≥ Ep∼P [η(π|p)]− C, (2)

where pw denotes the environment that corresponds to the
worst-case performance.

Proof. See Appendix A.1 for details.

Lemma 1 states that the worst-case performance η(π|pw) is

lower bounded by the expected performance Ep∼P [η(π|p)]
subtracted with C, where C is related to π and pw. Specifi-

cally, this lower bound is derived in the following theorem,

with further consideration of the policy update.

Theorem 1. In MDPs where the reward function is bounded,
and for any distribution P over P , by updating the current
policy π to a new policy π̃, the following bound holds:

η(π̃|pw) ≥ Ep∼P [η(π̃|p)] (3)

− 2|r|max
γEp∼P [ε(pw‖p)]

(1− γ)2
− 4|r|maxd(π, π̃)

(1− γ)2
,

where pw denotes the environment that corresponds to the
worst-case performance under policy π, and we define

ε(pw‖p) � max
t

Es′,aDTV (T (s|s′, a, pw)‖T (s|s′, a, p)) ,

d(π, π̃) � max
t

Es′DTV (π(a|s′)‖π̃(a|s′)) ,

with s′ sampled from state distribution P t
π(·|pw) and a sam-

pled according to current policy π(·|s′).

Proof. See Appendix A.2 for details, and Appendix A.6 for

validation of bounded reward function condition.

In (3), ε(pw‖p) specifies the model discrepancy between

two environments pw and p, in terms of the maximum ex-

pected TV distance of their transition dynamics of all time

steps in trajectory sampled in environment pw using policy

π. And d(π, π̃) denotes the maximum expected TV distance

of the two policies, π and π̃, along trajectory sampled in

environment pw using policy π. In general, the RHS of (3)

provides a lower-bound for the expected return achieved in

the worst-case environment pw, where the first term denotes

the expected performance over all environments following

the sampling distribution P , while the other two terms can

be considered as penalization on a large TV distance be-

tween the worst-case environment pw and the average case,

and a large update step from the current policy π to the new

policy π̃, respectively.

3.2. Provably Monotonic Worst-case Improvement

Referring to Theorem 1, we expect to improve the worst-

case performance by maximizing the RHS of (3), which is

equivalent to the following constrained optimization prob-

lem with two constraints:

max
π̃,P

Ep∼P [η(π̃|p)]

s.t. d(π, π̃) ≤ δ1, Ep∼P [ε(pw‖p)] ≤ δ2. (4)

The optimization objective is to maximize the expected per-

formance over all the possible environments, by updating

not only the policy π̃, but the environment parameter’s sam-

pling distribution P . The first constraint imposes a similar

trust region to TRPO (Schulman et al., 2017) that constrains

the update step in policy optimization. In addition, we fur-

ther propose a new trust region constraint on the sampling

distribution P . It specifies that the TV distance between

Monotonic Robust Policy Optimization with Model Discrepancy

Algorithm 1 Monotonic Robust Policy Optimization

1: Input: Initial policy π0

2: for k = 0 to N − 1 do
3: Determine the worst-case environment under policy

πk, with pkw = argminp∈P η(πk|p).
4: Compute E(p, πk) for p ∈ P .

5: Use PPO for one-step policy optimization for environ-

ments in the set {p|E(p, πk) ≥ E(pkw, πk), p ∈ P}.

6: end for

the worst-case environment pw and average case over P is

bounded, such that by achieving the optimization objective

in (4), the worst-case performance is also improved.

To solve the constrained optimization problem in (4), we

need to seek for the optimal policy π̃ and the distribution P
of the sampled trajectories at the same time, which requires

a large amount of computation. In practice, we carry out

a two-step optimization procedure to reduce the computa-

tional complexity. First, we fix the policy by letting π̃ = π,

and optimize the objective in (4) w.r.t. the distribution P .

In this case, we no longer need to consider the first con-

straint on the policy update, and thus can convert the second

constraint on the sampling distribution into the objective

with the guidance of Theorem 1, formulating the following

unconstrained optimization problem:

max
P

Ep∼P [E(p, π̃)] , (5)

where for notation simplicity we denote E(p, π̃) � η(π̃|p)−
2|r|maxγε(p‖pw)

(1−γ)2 . The first term in E(p, π̃) indicates policy

π̃’s performance in environment p, while the second term

measures the model discrepancy between environments p
and pw. Since the objective function in (5) is linear to P ,

we can update P by assigning a higher probability to envi-

ronment p with higher E(p, π̃). As a consequence, sampling

according to E(p, π̃) would increase the sampling proba-

bility of environments with both poor and good-enough

performance, and avoid being trapped in the worst-case

environment. Specifically, we propose to select samples

from environment p that meets E(p, π̃) ≥ E(pw, π̃) for the

training of policy π̃, which is equivalent to assigning a zero

probability to other samples.

In the second step, we target at optimizing the policy π̃
with the updated distribution P fixed, i.e., the following

optimization problem:

max
π̃

Ep∼P [η(π̃|p)] s.t. d(π, π̃) ≤ δ1 (6)

Optimization in (6) can be transformed to a trust region

robust policy optimization similar to TRPO and solved prac-

tically with PPO (refer to Appendix A.3 and Schulman et al.

(2017) for more information). To summarize, we propose a

monotonic robust policy optimization (MRPO) in Algorithm

1. At each iteration k, we obtain the worst-case environment

pw according to the performance of policy πk in each envi-

ronment. We then perform one-step PPO optimization for

environments that satisfy E(p, πk) ≥ E(pkw, πk).

We now formally show that by applying Algorithm 1, the

worst-case performance within all the environments can be

monotonically improved by MRPO.

Theorem 2. Under the assumption that the expected re-
turns of worst-case environment between two iterations are
similar, which stems from the trust region constraint we
impose on the update step between current and new poli-
cies, the sequence of policy {π1, π2, . . . , πN} generated by
Algorithm 1 is guaranteed with the monotonic worst-case
performance improvement, i.e.,

η(π1|p1w) ≤ η(π2|p2w) ≤ · · · ≤ η(πN |pNw), (7)

where pkw denotes the parameter of environment with the
worst-case performance guided by the current policy πk at
iteration k.

Proof. See Appendix A.4 for details.

3.3. Practical Implementation Using Simulator

Motivated by Theorem 1, we propose Algorithm 1 that

provably promotes monotonic improvement for the policy’s

performance in the worst-case environment according to

Theorem 2. However, Theorem 1 imposes calculation of

ε(pw‖p) that requires the estimation of the expected total

variation distance between the worst-case environment and

every other sampled environment at each time step. Esti-

mation by sampling takes exponential complexity. Besides,

in the model-free setting, we unfortunately have no access

to analytical equation of the environment’s transition dy-

namics. Hence, computation for the total variation distance

between two environments is unavailable. Under the deter-

ministic state transition, an environment will shift its state

with a probability of one. Hence, we can set the state of

one environment’s simulator to the state along the trajectory

from the other environment, taking the same action. We then

can compare the next state and compute the total variation

distance step by step. Though feasible, this method requires

large computational consumption. Here, we propose instead

a practical implementation for the MRPO in Algorithm 1.

According to Appendix A.8, we first make an assumption

that the transition dynamics model is Lp-Lipschitz in terms

of the environment parameter p:

‖T (s|s′, a, p)− T (s|s′, a, pw)‖ ≤ Lp‖p− pw‖. (8)

Monotonic Robust Policy Optimization with Model Discrepancy

Then, we can simplify the calculation of ε(pw‖p) via:

ε(pw‖p) ≤ max
t

Es′∼P t
π(·|pw)Ea∼π(·|s′)

1

2

∑
s

Lp‖p− pw‖

=
1

2

∑
s

Lp‖p− pw‖. (9)

It can be seen from the expression of ε(pw‖p) that it mea-

sures the transition dynamics distance between the worst-

case environment pw and a specific environment p. In sim-

ulator, the environment’s transition dynamics would vary

with the environment parameters, such as the friction and

mass in robot simulation. Hence the difference between

environment parameters can reflect the distance between the

transition dynamics. In addition, if we use in practice the

penalty coefficient
2|r|maxγ
(1−γ)2 of ε(pw‖p) as recommended by

Theorem 1, the trajectory subset T on which we conduct

policy optimization would be very small. Therefore, we

integrate it with the Lipschitz constant Lp to form a tunable

hyperparameter κ and get a practical estimation of E as Ê .

To summarize, we propose a practical version of MRPO

in Algorithm 2. At each iteration k, we uniformly sample

M environments. For each environment pi, we sample L
trajectories {τi,j}Lj=1, calculate the cumulative discounted

reward G(τi,j |pi) for each trajectory, approximate η(πk|pi)
with η̂(πk|pi) =

∑L−1
j=0 G(τi,j |pi)/L, and determine the

worst-case environment pkw based on η̂(πk|pi) of a given

set of environments {pi}M−1
i=0 . For each environment pi, we

compute Ê(pi, πk) = η̂(πk|pi)− κ‖pi − pkw‖. We then op-

timize the policy with PPO on the selected trajectory subset

T according to Ê(pi, πk) and Ê(pkw, πk).

4. Experiments
We now evaluate the proposed MRPO in six robot con-

trol benchmarks designed for evaluation of generaliza-

tion under changeable dynamics. These six environments

are modified from the open-source generalization bench-

marks (Packer et al., 2018), which are implemented based

on the open-source robot control simulation environment,

Roboschool (Schulman & Klimov, 2017). We compare

MRPO with two baselines, PPO-DR and PW-DR, respec-

tively. In PPO-DR, PPO is applied for the policy optimiza-

tion in DR. For DR, we utilize uniform distribution on the

sampling of environment parameters. In PW-DR, we use

purely trajectories from the α-percentile worst-case envi-

ronments for training and still apply PPO for the policy

optimization. Note that in our experiments, PW-DR is an im-

plementation of EPOpt algorithm (Rajeswaran et al., 2017)

on Roboschool. We utilize two 64-unit hidden layers to

construct the policy network and value function in PPO. For

MRPO, we use the practical implementation as described in

Algorithm 2. Further note that during the experiments, we

find that environments generating poor performance would

Algorithm 2 Practical Implementation of MRPO

1: Initialize policy π0, uniform distribution of environ-

ment parameters U , number of environment parameters

sampled per iteration M , maximum number of itera-

tions N, and maximum episode length T .

2: for k = 0 to N − 1 do
3: Sample a set of environment parameters {pi}M−1

i=0

according to U .

4: for i = 0 to M − 1 do
5: Sample L trajectories τi = {τi,j}L−1

j=0 in envi-

ronment pi using πk and compute η̂(πk|pi) =∑L−1
j=0 G(τi,j |pi)/L.

6: end for
7: Find pkw = argminpi∈{pi}M−1

i=0
η̂(πk|pi).

8: for i = 0 to M − 1 do
9: Compute Ê(pi, πk) = η̂(πk|pi)− κ‖pi − pkw‖ for

environment pi.
10: end for
11: Select trajectory subset T = {τi : Ê(pi, πk) ≥

Ê(pkw, πk)}.

12: Use PPO for policy optimization on T to get the

updated policy πk+1.

13: end for

be far away from each other in terms of the TV distance

between their transition dynamics with the dimension of

changeable parameters increasing. In other words, a sin-

gle worst-case environment usually may not represent all

the environments in which the current policy performs very

poorly. Hence, we choose the 10% worst-case environ-

ments to replace the calculation of Ê(pkw, πk) in Algorithm

2. That is, the trajectories we add to the subset T should

have the Ê(pi, πk) greater than and equal to those of all

the 10% worst-case environments. From the expression of

Ê(pi, πk) =
∑L−1

j=0 G(τi,j |pi)/L−κ‖pi−pkw‖ for environ-

ment pi, it can be seen that the trajectory selection is based

on a trade-off between the performance and the distance

to the worst-case environment, as we described in detail in

the paragraph under (5). Our experiments are designed to

investigate the following two classes of questions:

• Can MRPO effectively improve the policy’s worst-case

and average performance over the whole range of en-

vironments during training. Compared to DR, will the

policy’s average performance degrade by using MRPO?

And will MRPO outperform PW-DR in the worst-case

environments?

• How does the performance of robust policy trained using

MRPO degrade when employed in environments with un-

seen dynamics? And what determines the generalization

performance to unseen environments during training?

Monotonic Robust Policy Optimization with Model Discrepancy

(a) Walker2d A (b) Walker2d W (c) Hopper A (d) Hopper W

(e) Halfcheetah A (f) Halfcheetah W (g) InvertedPendulum A (h) InvertedPendulum W

(i) InvertedDoublePendulum A (j) InvertedDoublePendulum W (k) Cartpole A (l) Cartpole W

Figure 1. Training curves of average return (A) and 10% worst-case return (W).

Table 1. Range of environment parameter (EP) for different tasks.

Task EP Training Range Testing Range

W2D Density [750, 1250] [1, 750]
Friction [0.2, 2.50] [0.05, 0.2]

HP Density [750, 1250] [1, 750]
Friction [0.5, 1.1] [0.2, 0.5]

HC Density [750, 1250] [1, 750]
Friction [0.2, 2.25] [0.05, 0.2]

IP Cart size [0.05, 0.25] [0.025, 0.05]
Pole length [0.50, 2.00] [0.25, 0.50]

IDP Pole 1 length [0.50, 1.00] [1.00, 1.10]
Pole 2 length [0.50, 1.00] [1.00, 1.10]

CP Force magnitude [1.00, 20.00] 10
Pole length [0.05, 1.00] [1.00, 6.00]
Pole mass [0.01, 1.00] [1.00, 6.00]

4.1. Training Performance with Different Dynamics

The six robot control tasks are as follows. (1) Walker2d
(W2D): control a 2D bipedal robot to walk; (2) Hopper
(HP): control a 2D one-legged robot to hop as fast as possi-

ble; (3) HalfCheetah (HC): control a 2D cheetah robot to

run (Brockman et al., 2016); (4) InvertedPendulum (IP):

control a cart (attached to a pendulum system by a joint)

by applying a force to prevent the pendulum from falling

over; (5) InvertedDoublePendulum (IDP): control a cart

(attached to a two-link pendulum system by a joint) by ap-

plying a force to prevent the two-link pendulum from falling

over; and (6) Cartpole (CP): control a cart (attached to a

pole by a joint) by applying a force to prevent the pole from

falling over. In robot control, the environment dynamics are

directly related to the values of some physical coefficients.

For example, if the friction in Walker2d is too small, it is

more likely for the robot to slip down, and thus will be more

difficult for the agent to manipulate the robot compared to

a larger friction. Hence, a policy that performs well for a

large friction may not be generalized to the environment

with a small friction due to the change of dynamics. In the

simulator, by randomizing certain environment parameters,

we can obtain a set of environments with the same goal

but different dynamics (Packer et al., 2018). The range of

parameters that we preset for training of each environment

is shown in Table 1.

We run the training process for the same number of iter-

ations N on environments sampled from preset range of

environment parameters. At each iteration k, we generate

Monotonic Robust Policy Optimization with Model Discrepancy

Table 2. Average and worst-case performance in training.

ALGORITHM AVERAGE W2D WORST W2D AVERAGE HP WORST HP AVERAGE HC WORST HC

MRPO 2064.8 ± 106.2 1878.2 ± 83.3 2257.4 ± 423.5 2048.0 ± 246.8 2537.0 ± 98.3 2166.7 ± 70.4
DR 2304.7 ± 16.7 1704.9.5 ± 234.8 2250.0 ± 80.4 1254.0 ± 348.5 2970.0 ± 30.0 1883.3 ± 103.7
PW-DR 1213.1 ± 386.0 1069.3 ± 370.7 1903.3 ± 49.2 1440.0 ± 243.9 1810.0 ± 41.2 1278.7 ± 215.9

ALGORITHM AVERAGE IP WORST IP AVERAGE IDP WORST IDP AVERAGE CP WORST CP

MRPO 929.2 ± 2.0 350.5 ± 19.9 9185.2 ± 165.6 5137.0 ± 1421.1 998.7 ± 1.7 988.4 ± 15.4
DR 907.2 ± 19.0 239.2 ± 86.3 8252.6 ± 439.8 1354.5 ± 381.2 995.5 ± 5.6 961.6 ± 48.3
PW-DR 843.4 ± 153.4 332.3 ± 90.0 9222.2 ± 173.3 5450.4 ± 1687.3 895.4 ± 147.2 791.4 ± 288.9

(a) Walker2d (b) Hopper

(c) Halfcheetah (d) InvertedPendulum

Figure 2. Heatmap of return in unseen environments on Walker2d, Hopper, Halfcheetah and InvertedPendulum, with policies trained by

MRPO, PW-DR and DR in the training environments, where a darker color represents a higher return.

trajectories from M = 100 environments sampled accord-

ing to a uniform distribution U . Referring to Appendix A.7,

we sample L = 1 trajectory for each environment to strike

a trade-off between the Monte Carlo estimation accuracy

and training complexity. Referring to Appendix A.11, we

set α = 10% for PW-DR since it almost achieves the best

performance on all the training environments. The results

are obtained by running each algorithm with four different

random seeds. The average return is computed over the

returns of M sampled environments at each iteration k. We

show the training curves of Walker2d, Hopper, Halfcheetah,

InvertedPendulum, InvertedDoublePendulum, and Cartpole,

respectively, in Figs. 1(a)-1(l). In Fig. 1, the solid curve

is used to represent the mean performance of each algo-

rithm on all the four seeds, while the shaded-area denotes

the standard error. It is seen that DR can steadily improve

the average performance on the whole training range as

expected, while MRPO does not significantly degrade the

average performance in all the six tasks. In some cases

like InvertedPendulum and Cartpole, MPRO achieves an

even better average performance than DR. PW-DR, on the

other hand, focuses on the worst-case performance opti-

mization, leading to a significant degradation of average

performance on Walker2d, Hopper and Halfcheetah. We

measure the worst-case performance by computing the worst

10% performance in all the sampled environments at itera-

tion k and the corresponding training curves are illustrated

in Figs. 1(b), 1(d), 1(f), 1(h), 1(j) and 1(l), respectively. It

can be observed that MRPO presents the best worst-case

performance on Walker2d, Hopper, Halfcheetah, Inverted-

Pendulum and Cartpole, while DR neglects the optimiza-

tion on its worst-case performance. PW-DR shows limited

improvement on the worst-case performance compared to

MRPO on Walker2d, Hopper, and Halfcheetah. The tabu-

lar comparison of the average and worst-case performance

achieved during training by different algorithms in differ-

ent tasks can be found in Table 2, where the performance

is averaged on 50 continuous iterations after the training

curve is stable. We discuss the generalization of MRPO to

higher dimensional randomization of environment parame-

ters in Appendix A.12, and show its potential to generalize

to higher dimensional cases.

4.2. Generalization to Unseen Environments

MRPO has been demonstrated in theoretical analysis to opti-

mize both average and worst-case performance during train-

ing. Here, we carry out experiments to show that MRPO

can generalize to a broader range of unseen environments in

testing. To this end, we compare the testing performance on

some unseen environments of Walker2d, Hopper, Halfchee-

tah and InvertedPendulum with the best policies obtained

Monotonic Robust Policy Optimization with Model Discrepancy

(a) Hopper A (b) Hopper W

Figure 3. Training curves of (a) average return and (b) 10% worst-

case return of MRPO on Hopper with different κ.

by MRPO, DR and PW-DR from training, with the range

of parameters set for testing as show in in Table 1. The

heatmap of return on these four tasks achieved by differ-

ent algorithm is shown and compared in Fig. 2, where the

testing performances are all averaged on five runs. Please

also refer to Appendix A.9 for the heatmap of return on the

other two tasks. It is observed that policies all degrade with

the decrease of friction (or cart-size in Fig. 2(d)), while

the impact of unseen density (or length in Fig. 2(d)) is not

that obvious as the friction. In addition, it can be seen that

MRPO has better generalization ability to the unseen en-

vironments, while DR or PW-DR can hardly generalize in

testing for all the four tasks. Compared to them, MRPO has

a broader generalization range with a higher performance,

from which we remark that both the worst-case and average

performance during training are crucial for the generaliza-

tion to an unseen environment.

4.3. Hyperparameter κ

In Algorithm 2, when we update the sampling distribution P
for policy optimization, κ is a hyperparameter that controls

the trade-off between the expected cumulative discounted

reward η(πk|pi) and distance ‖pi − pkw‖ to the worst-case

environment. Theoretically, a larger κ means that the policy

cares more about the poorly performing environments, while

a smaller κ would par more attention to the average perfor-

mance. As empirical evaluation, we conduct experiment of

MRPO on Hopper with different choices of hyperparameter

κ. The training curves of both average return and the 10%

worst-case return are shown in Figs. 3(a) and 3(b), respec-

tively. It can be verified that for the fixed value choice of κ,

the curve of κ = 5 outperforms the curves of κ = 20, 40, 60
in terms of the average return in Fig. 3(a), while the curve

of κ = 60 outperforms the curves of κ = 5, 20, 40 in terms

of the 10% worst-case return in Fig. 3(b). In practical

implementation, we gradually increase κ to a fixed high

value. It can therefore strike a tradeoff between the average

return and 10% worst-case return, demonstrating the best

performance both in Figs. 3(a) and 3(b). For performance

comparison of tunning κ on Waker2d and InvertedPendu-

lum, please refer to Appendix A.10.

5. Related Work
With the success of RL in recent years, plenty of works have

focused on how to improve the generalization ability for RL.

Learning a policy that is robust to the worst-case environ-

ment is one strategy. Based on theory of H∞ control (Zhou

et al., 1996), robust RL takes into account the disturbance

of environment parameters and model it as an adversary that

is able to disturb transition dynamics in order to prevent the

agent from achieving higher rewards (Morimoto & Doya,

2005). The policy optimization is then formulated as a zero-

sum game between the adversary and the RL agent. Pinto

et al. (2017) incorporate robust RL to DRL method, which

improves robustness of DRL in complex robot control tasks.

To solve robust RL problem, robust dynamic programming

formulates a robust value function and proposes accordingly

a robust Bellman operator (Iyengar, 2005; Mankowitz et al.,

2020). The optimal robust policy can then be achieved by

iteratively applying the robust Bellman operator in a similar

way to the standard value iteration (Sutton & Barto, 2018).

Besides, Rajeswaran et al. (2017) leverage data from the

worst-case environments as adversarial samples to train a

robust policy. However, the aforementioned robust formu-

lations will lead to an unstable learning. What’s worse, the

overall improvement of the average performance over the

whole range of environments will also be stumbled by their

focus on the worst-case environments. In contrast, in addi-

tion to the worst-case formulation, we also aim to improve

the average performance.

In the same vein as our work, the extension of conditional

value at risk (CVaR) to DR settings can mitigate the conser-

vative policy caused by considering only the average-case

or the worst-case. Hiraoka et al. (2019) extend the CVaR-

based policy gradient (Chow et al., 2017) to deal with model

discrepancy under DR settings. Instead of optimizing policy

towards robustness directly, they apply the extension method

to learn the robust options (temporally abstract actions) (Ba-

con et al., 2017). Lobo et al. (2020) form a static soft-robust

objective by weighed summing up the average-case objec-

tive and CVaR objective over all the possible environments

to train a robust policy. Guided from our theory, our method

aims to monotonically improve the worst-case performance

by solving constrained average-case optimization problem.

For generalization across different state spaces, an effective

way is domain adaptation, which maps different state space

to a common embedding space. The policy trained on this

common space can then be easily generalized to a specific

environment (Higgins et al., 2017b; James et al., 2019; Am-

mar et al., 2015) through a learned mapping, with certain

mapping methods, such as β-VAE (Higgins et al., 2017a),

cGAN (Isola et al., 2017), and manifold alignment (Wang

& Mahadevan, 2009).

Function approximation enables RL to solve complex tasks

Monotonic Robust Policy Optimization with Model Discrepancy

with high-dimensional state and action spaces, which also in-

curs inherent generalization issue under supervised learning.

Deep neural network (DNN) suffers overfitting due to the

distribution discrepancy between training and testing sets.

l2-regularization, dropout and dataset augmentation (Good-

fellow et al., 2016) play an significant role for generalization

in deep learning, which have also enabled improvement of

policy’s generalization on some specifically designed envi-

ronments (Cobbe et al., 2019; Farebrother et al., 2018).

In terms of the theoretical analysis, Murphy (2005) pro-

vides a generalization error bound for Q-learning, where

the generalization error is represented by the distance be-

tween expected discounted reward achieved by converged

Q-learning policy and the optimal policy. Wang et al. (2019)

analyze the generalization gap in reparameterizable RL lim-

ited to the Lipschitz assumptions on transition dynamics,

policy and reward function. For monotonic policy optimiza-

tion in RL, Schulman et al. (2015) propose to optimize a

constrained surrogate objective, which can guarantee the

performance improvement of updated policy. In the context

of model-based RL, Janner et al. (2019); Luo et al. (2019)

formulate the lower bound for a certain policy’s perfor-

mance on true environment in terms of the performance on

the learned model. It can therefore monotonically improve

the performance on true environment by maximizing this

lower bound. Different from this, the proposed MRPO in

this work can guarantee the robustness of the policy in terms

of the monotonically increased worst-case performance, and

also improve the average performance.

6. Conclusion
In this paper, we have proposed a robust policy optimiza-

tion approach, named MRPO, for improving both the aver-

age and worst-case performance of policies. Specifically,

we theoretically derived a lower bound for the worst-case

performance of a given policy over all environments, and

formulated an optimization problem to optimize the policy

and sampling distribution together, subject to constraints

that bounded the update step in policy optimization and

statistical distance between the worst and average case envi-

ronments. We proved that the worst-case performance was

monotonically improved by iteratively solving this optimiza-

tion problem. We have validated MRPO on several robot

control tasks, demonstrating a performance improvement

on both the worst and average case environments, as well

as a better generalization ability to a wide range of unseen

environments.

Acknowledgements
This work was supported in part by the National Natu-

ral Science Foundation of China under Grant 61931023,

Grant 61831018, Grant 61871267, Grant 61972256, Grant

61838303, Grant 61971285, Grant 61720106001, Grant

61932022, in part by the Program of Shanghai Science and

Technology Innovation Project under Grant 20511100100,

and in part by Shanghai Rising-Star Program under Grant

20QA1404600.

References
Ammar, H. B., Eaton, E., Ruvolo, P., and Taylor, M. E.

Unsupervised cross-domain transfer in policy gradient re-

inforcement learning via manifold alignment. In Twenty-
Ninth AAAI Conference on Artificial Intelligence. Cite-

seer, 2015.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic

architecture. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

Schulman, J., Tang, J., and Zaremba, W. Openai gym.

arXiv preprint arXiv:1606.01540, 2016.

Chen, C., Wei, H., Xu, N., Zheng, G., Yang, M., Xiong, Y.,

Xu, K., and Li, Z. Toward a thousand lights: Decentral-

ized deep reinforcement learning for large-scale traffic

signal control. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 3414–3421, 2020.

Chow, Y., Ghavamzadeh, M., Janson, L., and Pavone, M.

Risk-constrained reinforcement learning with percentile

risk criteria. The Journal of Machine Learning Research,

18(1):6070–6120, 2017.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman,

J. Quantifying generalization in reinforcement learning.

In International Conference on Machine Learning, pp.

1282–1289. PMLR, 2019.

Farebrother, J., Machado, M. C., and Bowling, M. Gen-

eralization and regularization in dqn. arXiv preprint
arXiv:1810.00123, 2018.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.

Deep learning, volume 1. MIT press Cambridge, 2016.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,

Botvinick, M., Mohamed, S., and Lerchner, A. beta-

vae: Learning basic visual concepts with a constrained

variational framework. 2017a.

Higgins, I., Pal, A., Rusu, A. A., Matthey, L., Burgess, C. P.,

Pritzel, A., Botvinick, M., Blundell, C., and Lerchner,

A. Darla: Improving zero-shot transfer in reinforcement

learning. arXiv preprint arXiv:1707.08475, 2017b.

Hiraoka, T., Imagawa, T., Mori, T., Onishi, T., and Tsu-

ruoka, Y. Learning robust options by conditional value

Monotonic Robust Policy Optimization with Model Discrepancy

at risk optimization. In Advances in Neural Information
Processing Systems, pp. 2619–2629, 2019.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-

image translation with conditional adversarial networks.

In Conference on computer vision and pattern recogni-
tion, pp. 1125–1134, 2017.

Iyengar, G. N. Robust dynamic programming. Mathematics
of Operations Research, 30(2):257–280, 2005.

James, S., Wohlhart, P., Kalakrishnan, M., Kalashnikov, D.,

Irpan, A., Ibarz, J., Levine, S., Hadsell, R., and Bous-

malis, K. Sim-to-real via sim-to-sim: Data-efficient

robotic grasping via randomized-to-canonical adaptation

networks. In Conference on Computer Vision and Pattern
Recognition, pp. 12619–12629, 2019.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to

trust your model: Model-based policy optimization. In

Advances in Neural Information Processing Systems, pp.

12519–12530, 2019.

Kang, K., Belkhale, S., Kahn, G., Abbeel, P., and Levine, S.

Generalization through simulation: Integrating simulated

and real data into deep reinforcement learning for vision-

based autonomous flight. In International Conference on
Robotics and Automation, pp. 6008–6014. IEEE, 2019.

Lobo, E. A., Ghavamzadeh, M., and Petrik, M. Soft-robust

algorithms for handling model misspecification. CoRR,

abs/2011.14495, 2020. URL https://arxiv.org/
abs/2011.14495.

Luo, Y., Xu, H., Li, Y., Tian, Y., Darrell, T., and Ma, T. Algo-

rithmic framework for model-based deep reinforcement

learning with theoretical guarantees. In International
Conference on Learning Representations, 2019.

Mankowitz, D. J., Levine, N., Jeong, R., Abdolmaleki, A.,

Springenberg, J. T., Shi, Y., Kay, J., Hester, T., Mann,

T., and Riedmiller, M. Robust reinforcement learning

for continuous control with model misspecification. In

International Conference on Learning Representations,

2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,

Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing

atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Morimoto, J. and Doya, K. Robust reinforcement learning.

Neural computation, 17(2):335–359, 2005.

Murphy, S. A. A generalization error for q-learning. Journal
of Machine Learning Research, 6(Jul):1073–1097, 2005.

Packer, C., Gao, K., Kos, J., Krähenbühl, P., Koltun, V., and

Song, D. Assessing generalization in deep reinforcement

learning. arXiv preprint arXiv:1810.12282, 2018.

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel,

P. Sim-to-real transfer of robotic control with dynam-

ics randomization. In IEEE international conference on
robotics and automation, pp. 1–8. IEEE, 2018.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. Ro-

bust adversarial reinforcement learning. In International
Conference on Machine Learning, pp. 2817–2826, 2017.

Rajeswaran, A., Ghotra, S., Ravindran, B., and Levine, S.

Epopt: Learning robust neural network policies using

model ensembles. 2017.

Schulman, J. and Klimov, O. Roboschool.

https://openai.com/blog/roboschool/, 2017.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,

P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and

Klimov, O. Proximal policy optimization algorithms.

arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,

M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-

pel, T., et al. A general reinforcement learning algorithm

that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Wang, C. and Mahadevan, S. Manifold alignment without

correspondence. In International Joint Conferences on
Artificial Intelligence, volume 2, pp. 3. Citeseer, 2009.

Wang, H., Zheng, S., Xiong, C., and Socher, R. On the

generalization gap in reparameterizable reinforcement

learning. In International Conference on Machine Learn-
ing, pp. 6648–6658, 2019.

Zhou, K., Doyle, J. C., Glover, K., et al. Robust and optimal
control, volume 40. Prentice hall New Jersey, 1996.

