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Abstract

We give the first single-pass streaming algorithm
for Column Subset Selection with respect to the
entrywise {,-norm with 1 < p < 2. We study
the £, norm loss since it is often considered
more robust to noise than the standard Frobe-
nius norm. Given an input matrix A € R¥*"
(n > d), our algorithm achieves a multiplica-
tive k%_%poly(log nd)-approximation to the er-
ror with respect to the best possible column subset
of size k. Furthermore, the space complexity of
the streaming algorithm is optimal up to a log-
arithmic factor. Our streaming algorithm also
extends naturally to a 1-round distributed proto-
col with nearly optimal communication cost. A
key ingredient in our algorithms is a reduction to
column subset selection in the £, o-norm, which
corresponds to the p-norm of the vector of Eu-
clidean norms of each of the columns of A. This
enables us to leverage strong coreset construc-
tions for the Euclidean norm, which previously
had not been applied in this context. We also give
the first provable guarantees for greedy column
subset selection in the ¢; » norm, which can be
used as an alternative, practical subroutine in our
algorithms. Finally, we show that our algorithms
give significant practical advantages on real-world
data analysis tasks.

1. Introduction

Column Subset Selection (k-CSS) is a widely studied ap-
proach for low-rank approximation and feature selection. In
k-CSS, on an input data matrix A € R4*™ we seek a small
subset A of k columns from A such that miny || A;V — A||
is minimized for some norm || - ||. In contrast to general
low-rank approximation, where one finds U € R?** and
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V € R¥*" such that [|[UV — A|| is minimized (Clarkson &
Woodruff, 2013; Woodruff, 2014c), k-CSS outputs an actual
subset of the columns of A as the left factor U. The main
advantage of k-CSS over general low-rank approximation
is that the resulting factorization is more interpretable. For
instance, the subset A; can represent salient features of A,
while in general low-rank approximation, the left factor U
may not be easy to relate to the original dataset. In addition,
the subset A; preserves sparsity of the original matrix A.

k-CSS has been extensively studied in the Frobenius norm
(Guruswami & Sinop, 2012; Boutsidis et al., 2014; Boutsidis
& Woodruff, 2017; Boutsidis et al., 2008b) and also the
operator norm (Halko et al., 2011; Woodruff, 2014a). A
number of recent works (Song et al., 2017; Chierichetti
et al., 2017; Dan et al., 2019; Ban et al., 2019; Mahankali
& Woodruff, 2021) studied this problem in the £, norm for
1 < p < 2, due to its robustness properties. The ¢; norm,
especially, is less sensitive to outliers, and better at handling
missing data and non-Gaussian noise, than the Frobenius
norm (Song et al., 2017). Using the /1 norm loss has been
shown to lead to improved performance in many real-world
applications of low-rank approximation, such as structure-
from-motion (Ke & Kanade, 2005) and image denoising
(Yu et al., 2012).

In this work, we give algorithms for £-CSS in the £,, norm,
or k-CSS,, in the streaming and distributed settings for
1 < p < 2. The streaming algorithm can be used on small
devices with memory constraints, when the elements of a
large dataset are arriving one at a time and storing the entire
stream is not possible. The distributed algorithm is useful
when a large dataset is partitioned across multiple devices.
Each device only sees a subset of the entire dataset, and it is
expensive to communicate or transmit data across devices.

1.1. Background: k-CSS,, in the Streaming Model

We study the column-update streaming model (See Defini-
tion 2.1) where the dataset A is a d X n matrix with n > d,
and the columns of A arrive one by one. In this setting, our
goal is to maintain a good subset of columns of A, while
using space that can be linear in d and k, but sublinear in n.
This model is relevant in settings where memory is limited,
and the algorithm can only make one pass over the input
data, e.g. (Drineas & Kannan, 2003).
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k-CSS and low-rank approximation with the Frobenius
norm loss have been extensively studied in the column-
update streaming model (or equivalently the row-update
streaming model), e.g. (Clarkson & Woodruff, 2009;
Liberty, 2013; Ghashami & Phillips; Woodruff, 2014b;
Altschuler et al., 2016; Boutsidis et al., 2016). However,
k-CSS in the streaming model has not been studied in the
more robust £, norm, and it is not clear how to adapt exist-
ing offline k-CSS,, or £,, low-rank approximation algorithms
into streaming k-CSS,, algorithms. In fact, the only work
which studies ¢, low-rank approximation in the column-
update streaming model is (Song et al., 2017). They obtain
a poly(k, log d)-approximate algorithm with O(dk) space,
and using the techniques of (Wang & Woodruff, 2019) this
approximation factor can be further improved. However, it
is not clear how to turn this streaming algorithm of (Song
et al., 2017) into a streaming k-CSS,, algorithm.

In addition, it is not clear how to adapt many known algo-
rithms for £, low-rank approximation and column subset se-
lection into one-pass streaming algorithms for k-CSS,,. For
instance, one family of offline algorithms for k-CSS,,, stud-
ied by (Chierichetti et al., 2017; Dan et al., 2019; Song et al.,
2019b; Mahankali & Woodruff, 2021), requires O(logn)
iLerations. In each of these iterations, the algorithm selects
O(k) columns of A and uses their span to approximate a
constant fraction of the remaining columns, which are then
discarded. Since these rounds are adaptive, this algorithm
would require O(log n) passes over the columns of A if im-
plemented as a streaming algorithm, making it unsuitable.

1.2. Streaming k-CSS,,: Our Results

In this work, we give the first non-trivial single-pass algo-
rithm for £-CSS,, in the column-update streaming model
(Algorithm 1). The space complexity of our algorithm,
O(kd), is nearly optimal up to a logarithmic factor, since
for k columns, each having d entries, ©2(dk) words of space
are needed. Our algorithm is bi-criteria, meaning it outputs
a column subset of size O(k) (where O hides a poly(log k)
factor) for a target rank k. Bi-criteria relaxation is stan-
dard in most low-rank approximation algorithms to achieve
polynomial running time, since obtaining a solution with
rank exactly k or exactly k& columns can be NP hard, e.g.,
in the ¢; norm case (Gillis & Vavasis, 201 5). Further-
more, we note that our algorithm achieves an O(k'/P~1/2)-
approximation to the error from the optimal column subset
of size k, instead of the optimal rank-%k approximation error
(i-e., mingnk—xa, ||Ax — Allp). (Song et al., 2017) shows
any matrix A € R has a subset of O(klog k) columns
which span an O(k/P~1/2)-approximation to the optimal
rank-k approximation error. Thus our algorithm is able to
achieve an O(k%/P~1)-approximation relative to the optimal
rank-k approximation error.

1.3. Streaming k-CSS,,: Our Techniques

Our first key insight is that we need to maintain a small
subset of columns with size independent of n that globally
approximates all columns of A well throughout the stream
under the desired norm. A good data summarization tech-
nique for this is a strong coreset, which can be a subsampled
and reweighted subset of columns that preserves the cost of
projecting onto all subspaces (i.e., the span of the columns
we ultimately choose in our subset). However, strong core-
sets are not known to exist in the £, norm for 1 < p < 2.
Thus, we reduce to low rank approximation in the ¢;, > norm,
which is the sum of the p-th powers of the Euclidean norms
of all columns (see Definition 2.3). Strong coresets in the
¢, o norm have been extensively studied and developed, see,
e.g., (Sohler & Woodruff, 2018). However, to the best of
our knowledge, £, » strong coresets have not been used for
developing ¢, low-rank approximation or k-CSS algorithms
prior to our work.

The next question to address is how to construct and main-
tain strong coresets of A during the stream. First we observe
that strong coresets are mergeable. If two coresets Cy, Cy
provide a (1 £ €)-approximation to the ¢, »-norm cost of
projecting two sets of columns A, and A respectively, to
any subspace, then the coreset of C; U Cy gives a (1 + €)2-
approximation to the cost of projecting Ay, U Ay onto
any subspace. Thus, we can construct strong coresets for
batches of input columns from A and merge these core-
sets to save space while processing the stream. In order
to reduce the number of merges, and hence the approxima-
tion error, we apply the Merge-and-Reduce framework (see,
e.g., (McGregor, 2014)). Our algorithm greedily merges the
strong coresets in a binary tree fashion, where the leaves
correspond to batches of the input columns and the root is
the single strong coreset remaining at the end. This further
enables us to maintain only O(log n) coresets of size O(k)
throughout the stream, and hence achieve a space complex-
ity of O(kd) words.

One problem with reducing to the £, » norm is that this
leads to an approximation factor of d'/?~1/2, Our second
key insight is to apply a dimensionality reduction technique
in the ¢, norm, which reduces the row dimension from
d to kpoly(lognd) via data-independent (i.e., oblivious)
sketching matrices of i.i.d. p-stable random variables (see
Definition 2.4), which only increases the approximation
error by a factor of O(log nd). The overall approximation
error is thus reduced to O(k'/P~1/2poly(log nd)).

As a result, our algorithm constructs coresets for the
sketched columns instead of the original columns. How-
ever, since we do not know which subset of columns will be
selected a priori, we need approximation guarantees of di-
mensionality reduction via oblivious skecthing matrices for
all possible subsets of columns. We combine a net argument
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with a union bound over all possible subspaces spanned by
column subsets of A of size O(k) (see Lemma 2). Previous
arguments involving sketching for low-rank approximation
algorithms, such as those by (Song et al., 2017; Ban et al.,
2019; Mahankali & Woodruff, 2021), only consider a single
subspace at a time.

At the end of the stream we will have a single coreset of
size k - poly(lognd). To further reduce the size of the
set of columns output, we introduce an O(1)-approximate
bi-criteria column subset selection algorithm in the £, o
norm (k-CSS,, 2; see Section 3.3) that selects kpoly(log k)
columns from the coreset as the final output.

1.4. Distributed k-CSS,: Results and Techniques

Our streaming algorithm and techniques can be extended
to an efficient one-round distributed protocol for k-CSS,,
(1 < p < 2). We consider the column partition model in
the distributed setting (see Definition 2.2), where s servers
communicate to a central coordinator via 2-way channels.
This model can simulate arbitrary point-to-point communi-
cation by having the coordinator forward a message from
one server to another; this increases the total communication
by a factor of 2 and an additive log s bits per message to
identify the destination server.

Distributed low-rank approximation arises naturally when
a dataset is too large to store on one machine, takes a pro-
hibitively long time for a single machine to compute a rank-
k approximation, or is collected simultaneously on multiple
machines. The column partition model arises naturally in
many real world scenarios such as federated learning (Fara-
hat et al., 2013; Altschuler et al., 2016; Liang et al., 2014).
Despite the flurry of recent work on k-CSS,, this prob-
lem remains largely unexplored in the distributed setting.
This should be contrasted to Frobenius norm column subset
selection and low-rank approximation, for which a num-
ber of results in the distributed model are known, see, e.g.,
(Altschuler et al., 2016; Balcan et al., 2015; 2016; Boutsidis
etal., 2016).

In this work, we give the first one-round distributed protocol
for k-CSS,, (Algorithm 3). Each server sends the coordina-
tor a strong coreset of columns. To reduce the number of
columns output, our protocol applies the O(1)-approximate
bi-criteria k-CSS,, » algorithm to give kpoly(log k) output
columns, independentwof s,n, and d. The communication
cost of our algorithm, O(sdk) is optimal up to a logarithmic
factor. Our distributed protocol is also a bi-criteria algorithm
outputting O(k) columns and achieving an O(k'/P~1/2)-
approximation relative to the error of the optimal column
subset.

1.5. Comparison with Alternative Approaches in the
Distributed Setting

If one only wants to obtain a good left factor U, and not
necessarily a column subset of A, in the column partition
model, one could simply sketch the columns of A; by ap-
plying an oblivious sketching matrix S on each server. Each
server sends A; - S to the coordinator. The coordinator
obtains U = AS as a column-wise concatenation of the
A;S. (Song et al., 2017) shows that AS achieves an O(v/k)
approximation to the optimal rank-k error, and this proto-
col only requires O(sdk) communication, O(1) rounds and
polynomial running time. However, while AS is a good left
factor, it does not correspond to an actual subset of columns
of A.

Obtaining a subset of columns that approximates A well
with respect to the p-norm in a distributed setting is non-
trivial. One approach due to (Song et al., 2017) is to take the
matrix AS described above, sample rows according to the
Lewis weights (Cohen & Peng, 2015) of AS to get a right
factor V', which is in the row span of A, and then use the
Lewis weights of V' to sample columns of A. Unfortunately,
this protocol only achieves a loose O(kB/ 2) approximation
to the optimal rank-k error (Song et al., 2017). Moreover,
it is not known how to do Lewis weight sampling in a dis-
tributed setting. Alternatively, one could first apply k-CSS,,
on A; to obtain factors U; and V; on each server, and then
send the coordinator all the U; and V;. The coordinator
then column-wise stacks the U;V; to obtain U - V' and se-
lects O(k) columns from U - V. Even though this protocol
applies to all p > 1, it achieves a loose O(k?) approxima-
tion to the optimal rank-% error and requires a prohibitive
O(n + d) communication cost'. One could instead try to
just communicate the matrices U; to the coordinator, which
results in much less communication, but this no longer gives
a good approximation. Indeed, while each U; serves as a
good approximation locally, there may be columns that are
locally not important, but become globally important when
all of the matrices A; are put together. What is really needed
here is a small strong coreset C; for each A; so that if one
concatenates all of the C; to obtain C, any good column
subset of the coreset C corresponds to a good column subset
for A.

1.6. Greedy %£-CSS and Empirical Evaluations

We also propose an offline, greedy algorithm to select
columns in the ¢, » norm, Vp € [1, 2) (see Section 6), which
can be used as an alternative subroutine in both of our algo-
rithms, and show the provable additive error guarantees for
this algorithm. Similar error guarantees were known for the
Frobenius norm (Altschuler et al., 2016), though nothing
was known for the ¢, » norm. We implement both of our

"'We give this protocol and the analysis in the supplementary.
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streaming and distributed algorithms in the ¢; norm and ex-
periment with real-world text document and genetic analysis
applications. We compare the O(1)-approximate bi-criteria
k-CSS1 2 (denoted regular CSS; 2) and the greedy k-CSS; o
as subroutines of our streaming and distributed algorithms,
and show that greedy £-CSS; > yields an improvement in
practice. Furthermore, we compare our O(1)-approximate
k-CSS 2 subroutine against one k-CSS; algorithm as active
learning algorithms on a noisy image classification task to
show that the ¢ norm loss is indeed more robust for k-CSS
to non-Gaussian noise.

Note that regular CSS, » gives a stronger multiplicative
O(1) approximation to the optimal rank-k error, while
greedy CSS,, o gives an additive approximation to the error
from the best column subset. However, in practice, we ob-
serve that greedy CSS; » gives lower approximation error
than regular CSS; > in the £; norm, though it can require
significantly longer running time than regular CSS; . An
additional advantage of greedy CSS,, - is that it is simpler
and easier to implement.

1.7. Technical Novelty
We highlight several novel techniques and contributions:

* Non-standard Net Argument: To apply dimension-
ality reduction techniques via p-stable random vari-
ables to reduce the final approximation error, on the
lower bound side, we need to show that p-stable ran-
dom variables do not reduce the approximation error
(i.e. no contraction), with respect to all possible col-
umn subsets of A, with high probability, in Lemma 2.
While the net arguments are widely used, our proof
of Lemma 2 is non-standard: we union bound over
all possible subspaces defined on subsets of size O(k).
This is more similar to the Restricted Isometry Property
(RIP), which is novel in this context, but we only need
a one-sided RIP since we only require no contraction;
on the upper bound side, we just argue with constant
probability the single optimal column subset and its
corresponding right factor do not dilate much.

* Strong Coresets for CSS: Strong coresets for the £, »
norm have not been used for entrywise £, norm column
subset selection, or even for £, low rank approximation,
for p # 2. This is perhaps because strong coresets for
subspace approximation, i.e., coresets that work for
all query subspaces simultaneously, are not known to
exist for sums of p-th powers of £,,-distances for p # 2;
our work provides a workaround to this. By switching
to the Euclidean norm in a low-dimensional space we
can use strong coresets for the £, o norm with a small
distortion.

* Greedy ¢, 2-norm CSS: We give the first provable
guarantees for greedy £, 2-norm column subset selec-

tion. We show that the techniques used to derive
guarantees for greedy CSS in the Frobenius norm
from (Altschuler et al., 2016) can be extended to the
¢, 2 norms, Vp € [1,2). A priori, it is not clear this
should work, since for example, £ 2 norm low rank ap-
proximation is NP-hard (Clarkson & Woodruff, 2015)
while Frobenius norm low rank approximation can be
solved in polynomial time.

2. Problem Setting

Definition 2.1 (Column-Update Streaming Model (Song
et al., 2017)). Let A1, Ao, -, A,y be a set of columns
from the input matrix A € R%*". In the column-update
model, each column of A will occur in the stream exactly
once, but the columns can be in an arbitrary order. An
algorithm in this model is only allowed a single pass over
the columns. At the end of the stream, the algorithm stores
some information about A. The space of the algorithm is
the total number of words required to store this information
during the stream. Here, each word is O(log nd) bits.

Definition 2.2 (Column Partition Distributed Model (Song
et al., 2017)). There are s servers, the ¢-th of which
holds matrix A; € R?X" as the input. Suppose n =
>:_, n;, and the global data matrix is denoted by A =
[A1, As, ..., Ag]. A is column-partitioned and distributed
across s machines. Furthermore, there is a coordinator. The
model only allows communication between the servers and
the coordinator. The communication cost in this model is
the total number of words transferred between machines
and the coordinator. Each word is O(log snd) bits.

Definition 2.3 (/,» norm). For matrix A € R,
[Allp2 = 5 | Asj[|5)1/P, where A,; denotes the j-
th column.

Definition 2.4 (p-Stable Distribution and Random Vari-
ables). Let X1,..., X, be random variables drawn i.i.d.
from some distribution D. D is called p-stable if for an ar-
bitrary vector v € RY, (v, X) = ||v]|,Z for some Z drawn
from D, where X = [ X1, ..., X4]T. Dis called a p-stable
distribution — these exist for p € (0,2]. Though there
is no closed form expression for the p-stable distribution
in general except for a few values of p, we can efficiently
generate a single p-stable random variable in O(1) time
using the following method due to (Chambers et al., 1976):
if 0 € [-Z,Z] and r € [0, 1] are sampled uniformly at

T 202
random, then, j;:l(ff )9 (Cosgigll;p )))PTP follows a p-stable

distribution.

3. Preliminaries

In this section, we introduce the dimensionality reduction
techniques we make use of: strong coresets for £, o-norm
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low-rank approximation and oblivious sketching using p-
stable random matrices. We begin with a standard relation-
ship between the £, norm and the ¢, » norm:

Lemma 1. For a matrix A € RY>"™ and p € [1,2),
1_1
[Allp,2 < lA]lp < d? ™2 [|A][p,2.

3.1. Dimensionality Reduction in the £, norm

To reduce the row dimension d, we left-multiply A by an
oblivious sketching matrix S with i.i.d. p-stable entries so
that our approximation error only increases by an 0 (kif %)
factor instead of an O(d - %) factor when we switch to the
¢p,.2 norm. The following lemma shows that for all column
subsets Ap and right factors V, the approximation error
when using these to fit A does not shrink after multiplying
by S (i.e., this holds simultaneously for all Ay and V):

Lemma 2 (Sketched Error Lower Bound). Let A € R%*"
and k € N. Let t = k - poly(log(nd)), and let S € R** be
a matrix whose entries are i.i.d. standard p-stable random
variables, rescaled by O(1 /t%) Then, with probability
1—o0(1), forall T C [n] with |T| = k - poly(log k) and for
all vV e RITIxn

A7V = Allp < [[SATV — SA],

We also recall the following upper bound for oblivious
sketching from (Song et al., 2017) for a fixed subset of
columns Ar and a fixed V.

Lemma 3 (Sketched Error Upper Bound (Lemma E.11 of
(Song et al., 2017))). Let A € R>*" and k € N. Lett = k-
poly(log(nd)), and let S € R**? be a matrix whose entries
are i.i.d. standard p-stable random variables, rescaled by
o1 /t%) Then, for a fixed subset T C [n] of columns
with |T| = k - poly(log k) and a fixed V € RITI*" with
probability 1 — o(1), we have

min | SA7V — SA,, < min O(log!/” (nd)) | ArV — All

3.2. Strong Coresets in the 7, ; Norm

As mentioned above, strong coresets for £,, 5-norm low-rank
approximation are reweighted column subsets which pre-
serve the £, o-norm approximation error incurred by any
rank-£ projection. Our construction of strong coresets fol-
lows (Sohler & Woodruff, 2018), which is based on Lewis
weights (Cohen & Peng, 2015) sampling. Note that (Sohler
& Woodruff, 2018) only states such strong coresets hold
with constant probability. But in our applications, we need
to union bound over multiple constructions of strong core-
sets, so need a lower failure probability. The only reason
the coresets of (Sohler & Woodruff, 2018) hold only with
constant probability is because they rely on the sampling

result of (Cohen & Peng, 2015), which is stated for constant
probability. However, the results of (Cohen & Peng, 2015)
are a somewhat arbitrary instantiation of the failure prob-
abilities of the earlier £,-Lewis weights sampling results
in (Bourgain et al., 1989) in the functional analysis liter-
ature. That work performs £,,-Lewis weight sampling and
we show how to obtain failure probability § with a log(1/4)
dependence in Section B.1 of the supplementary material.

Lemma 4 (Strong Coresets in £, 2 norm (Sohler &
Woodruff, 2018)). Let A € R, k € N p €
[1,2), and €,6 € (0,1). Then, in O(nd) time, one
can find a sampling and reweighting matrix T with
O(Zpoly(log(d/e),10g(1/6))) columns, such that, with
probability 1 — 4, for all rank-k matrices U,

min UV = AT,z = (1£¢) min UV — A2
where AT is called a strong coreset of A.

3.3. O(1)-approximate Bi-criteria k-CSS,, -

We introduce an O(1)-approximation bi-criteria algorithm,
which is a modification of the algorithm from (Clarkson &
Woodruff, 2015). The number of output columns is O(k)
instead of O(k?) since we use ¢, Lewis weights instead
of ¢, leverage scores. Details are in the supplementary
material.

Theorem 1 (Bicriteria O(1)-Approximation Algorithm for
k-CSSp2). Let A € R¥™ and k € N. There is an algo-
rithm with (nnz(A)+d?)-k-poly(log k) runtime that outputs
a rescaled subset of columns U € RI*OW) of A and a right
factor V€ ROFIX™ for which V- = miny |[UV — Al|,.2,
such that with probability 1 — o(1),

UV = Alp2 <O(1) - min [[Ax — Al

rank-k Ay

4. A Streaming Algorithm for £-CSS,

Our one-pass streaming algorithm (Algorithm 1) is based
on the Merge-and-Reduce framework. The n columns of
the input matrix A are partitioned into [n/r] batches of
length r = k - poly(log nd). See the supplementary mate-
rial for an illustration. These [n/r] batches can be viewed
as the leaves of a binary tree and are considered to be at
level O of the tree. A merge operation (Algorithm 2) is
used as a subroutine of Algorithm 1 — it computes a strong
coreset of two sets of columns corresponding to the two
children nodes. Each node in the binary tree represents a set
of columns. Starting from level 0, every pair of neighbor-
ing batches of columns will be merged, until there is only
one coreset of columns left at the root, i.e. level log(n/k).
During the stream, the nodes are greedily merged. The
streaming algorithm constructs strong coresets and merges
the sketched columns SA,; (list C), while keeping a list
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Algorithm 1 A one-pass streaming algorithm for bi-criteria
k-CSS,, in the column-update streaming model.

Input: A matrix A € R**™ whose columns arrive one
atatime, p € [1,2), rank k € N and batch size r.
Output: A subset of O(k) columns A;.
Generate a dense p-stable sketching matrix S €
Rkpoly(log(nd))xd.
A list of strong coresets and the level number C' < {}.
A list of columns corresponding to the list of strong core-
sets and the level number D + {}.
A list of sketched columns M «+ {}.
A list of columns L «+ {}.
for Each column A, ; seen in the data stream do
M+ MU SA*j
L+~ LU A*]‘
if length of M ==r then
C+ CU(M,0),D+<~DUL
C, D + Recursive Merge(C, D) {// Algorithm 2}
M« {},L{}
end if
end for
C+ CU(M,0),D+<~DUL
C, D + Recursive Merge(C, D) {// Algorithm 2}
Apply k-CSS,, > on the single strong coreset left in C' to
obtain the indices I of the subset of selected columns with
size O(k x poly(log k)). Recover the original columns
of A by mapping indices I to columns in D to get the
subset of columns A;.

of corresponding columns A,; (list D) at the same time,
in order to recover the original columns of A as the final
output.

Theorem 2 (A One-pass Streaming Algorithm for k-CSS)).
In the column-update streaming model, let A € R4*™ be
the data matrix whose columns arrive one at each time
in a data stream. Given p € [1,2) and a desired rank
k € N, Algorithm I outputs a subset of columns A; €
R&<kpoly(108(k) jn O(nnz( A)k + nk + k3) time, such that
with probability 1 — o(1),

min

AV —A
oo A [

min [ 4V — A, < O(/%)
Moreover, Algorithm 1 only needs to process all columns of
A once and uses O(dk) space throughout the stream.

Proof. We give a brief sketch of the proof (the full proof
is in the supplementary). We first need Lemma 5 below to
show how the approximation error propagates through each
level induced by the merge operator. It gives the approxi-
mation error of a strong coreset Cy computed at level [ with
respect to the union of all sets of columns represented as the
leaves of the subtree rooted at C.

Algorithm 2 Recursive Merge

Input: A list C of strong coresets and their correspond-
ing level numbers. A list D of (unsketched) columns of
A corresponding to the sketched columns in C'.
Output: New C, where the list of strong coresets is
greedily merged, and the corresponding new D.
if length of C' == 1 then
Return C, D.
else
Let (C_3,1_2),(C_1,1_1) be the second to last and
last sets of columns C'_o, C'_; with their corresponding
level [_o,1_; from list C'.
if _o ==1[_; then
Remove (C_q,1_2),(C_1,1_1) from C.
Remove the corresponding D_o, D_; from D.
Compute a strong coreset Cy of (i.e., select columns
from) C_5 U C_;1. Record the indices I of the
columns selected in CY.
Map indices I to columns in D_o U D_; to form a
new subset of columns Dy.
C+ CU(Cy,l-1+1),D <+ DU D,.
Recursive Merge(C, D).
else
Return C, D.
end if
end if

Lemma S (Approximation Error from Merging). Let Cy
be the strong coreset of size O(k) (See Lemma 4) at level |
constructed from a union of its two children C_1 U C_o,
with 7% -poly(log(nd/v)) columns, where v € (0,1). Then

with probability 1 — #, for all rank-k matrices U,

min [UV —Coll2 = (1) min | UV = (C1UC )3

Let M be the union of all sets of sketched columns
represented as the leaves of the subtree rooted at Cy (and
assume the subtree has size q). Then with probability
1 — %, for all rank-k matrices U,

min || UV = Collp2 = (1% 7)! min UV — M]3

If at the leaves (level 0), we construct (1 + =)-
approximate coresets for the input columns from the stream,
the final single coreset left at the root level (level log(n/k))
will be a (1 £ €)-approximate coreset for all columns of
SA. The k-CSS,, 2 algorithm that selects O(kpoly(log k))
columns from this coreset gives an O(1)-approximation by
Theorem 1. By Lemmas 1, 2 and 3, the final approxima-
tion error of this algorithm is dominated by the one from
the relaxation to the £, » norm, which leads to an overall

O(k/P=1/2) approximation factor. Note that the space com-



Streaming and Distributed Algorithms for Robust Column Subset Selection

plexity is O(dk) since each coreset has O(k) columns and
we only keep coresets for at most O(log n) of the nodes of
the tree, at a single time. The running time is dominated
by the O(n/k) merging operators throughout the stream
and the £-CSS,, o algorithm. A detailed analysis is in the
supplementary. O

5. A Distributed Protocol for £-CSS,

Theorem 3 (A One-round Protocol for Distributed k-CSS,,).
In the column partition model, let A € RY%"™ be the data
matrix whose columns are partitioned across s servers and
suppose server i holds a subset of columns A; € R¥>™,
where n.= 3, ni- Then, given p € [1,2) and a desired
rank k € N, Algorithm 3 outputs a subset of columns Ay €
Réxkpobyog(k)) jn O(nnz( A)k + kd + k3) time, such that
with probability 1 — o(1),

min |[A;V —All, < O(kYP~Y2)  min
\% LC[n],|L|=k

ALV —All,
Moreover, Algorithm 3 uses one round of communication
and O(sdk) words of communication.

The analysis of the protocol is similar to the analysis of our
streaming algorithm (Section 4). We give a detailed analysis
in the supplementary.

6. Greedy £-CSS, »

We propose a greedy algorithm for k-CSS,, » (Algorithm 4).
In each iteration, the algorithm samples a subset Ag of
O(% log(})) columns from the input matrix A € R%*" and
picks the column among A¢ that reduces the approximation
error the most. We give the first provable guarantees for this
algorithm below, the proof of which is in the supplementary.
2 We also empirically compare this algorithm to the k-
CSS,, » algorithm mentioned above, in Section 7.

Theorem 4 (Greedy k-CSS;3). Let p € [1,2). Let
A € R¥*™ be the data matrix and k € N be the desired
rank. Let Ay be the best possible subset of k columns,
ie, AL = argminy, miny |ALV — Al|,2. Let o be
the minimum non-zero singular value of the matrix B of
normalized columns of Ay, (i.e., the j-th column of B
is Bij = (AL)+j/||[(AL)+jll2). Let T C [n] be the sub-
set of output column indices selected by Algorithm 4, for
€,6 € (0,1), for |T| = Q(—%), with probability 1 — 0§,

po?e

Efmin | A7V — Allp2] < min | ALV = Allz + €l ]2

The overall running time is O(+ % log(%) - (p;fj% +

ndk poe
po2e? ))

The analysis is based on the analysis by (Altschuler et al.,
2016) of greedy k-CSS..

Algorithm 3 A one-round protocol for bi-criteria k-CSS,,
in the column partition model
Initial State:
Server i holds matrix A; € R¥*™, Vi € [s].
Coordinator:

Generate a dense p-stable sketching matrix S €
RE poly(log(nd)) xd

Send S to all servers.

Server i:

Compute S A;.

Let the number of samples in the coreset be t = O(k -
poly(log(nd))). Construct a coreset of SA; under the
£p,.2 norm by applying a sampling matrix D; of size n; x ¢
and a diagonal reweighting matrix W; of size ¢ x ¢.

Let T; = D;W,. Send SA;T; along with A;D; to the
coordinator.

Coordinator:

Column-wise stack SA;T;
[SATy,SAsTs, ..., SAT].
Apply k-CSS,, 2 on SAT to obtain the indices I of the
subset of selected columns with size O(k - poly(log k)).
Since D;’s are sampling matrices, the coordinator can
recover the original columns of A by mapping indices
to AiDi’S.

Denote the final selected subset of columns by A;. Send
Ay to all servers.

Server i:

Solve miny, ||A;V; — A;||, to obtain the right factor V;.
Ay and V will be factors of a rank-k - poly(log k) fac-
torization of A, where V is the (implicit) column-wise
concatenation of the V;.

to obtain SAT =

7. Experiments®
7.1. Streaming and Distributed k-CSS;

7.1 Streaming and Distributed k-CSS;

We implement both of our streaming and distributed k-CSS;
algorithms, with subroutines regular k-CSS; > (Section 3.3)
and greedy k-CSS; » (Section 6). Given a target rank k, we
set the number of output columns to be k. We compare
against a commonly used baseline for low-rank approxi-
mation (Song et al., 2019a; Chierichetti et al., 2017), SVD
(rank-k singular value decomposition), and a uniform ran-
dom baseline. In the streaming setting, the uniform baseline
first collects k columns from the data stream and on each of
the following input columns, it decides whether to keep or
discard the new column with equal probability. If it keeps
the new columns, it will pick one existing column to replace
uniformly at random. In the distributed setting, the uniform
baseline simply uniformly at random selects k& columns.

3The source code is available at:

https://github.com/1 1hifish/robust_css.
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Algorithm 4 Greedy k-CSS,, ».

Input: The data matrix A € R?*", A desiredrank k € N
and p € [1,2). The number of columns to be selected
r < n. Failure probability § € (0,1).
Output: A subset of 7 columns Ar.
Indices of selected columns 7"+ {}.
fori =1tordo
C <+ Sample % log(5) indices from {1,2,...,n}\ T
uniformly at random.
Column index j* < argmin;cc(miny [|Ary;V —
A‘ p,2)
T+ TUjg*"
end for
Map indices T to get the selected columns Ar.

We apply the proposed algorithms on one synthetic data
to show when SVD (and hence all the existing k-CSS,
algorithms) fails to find a good subset of columns in the
¢1 norm. We also apply the proposed algorithms to two
real-world applications, where k-CSS, was previously used
to analyze the most representative set of words among a
text corpus or the most informative genes from genetic se-
quences, e.g. (Mahoney & Drineas, 2009; Boutsidis et al.,
2008a).

Datasets. 1) Synthetic has a matrix A of size (k+n) x
(k + n) with rank k and a fixed number n, where the top
left k x k submatrix is the identity matrix multiplied by
n?, and the bottom right n X n submatrix has all 1’s. The
optimal k columns consist of one of the last n columns
along with k — 1 of the first k£ columns, incurring an error
of n2 in the ¢; norm. SVD, however, will not cover any of
the last n columns, and thus will get an ¢; error of n?. We
set n. = 1000 in the experiments. 2) TechTC* contains 139
documents processed in a bag-of-words representation with
a dictionary of 18446 words, which naturally results in a
sparse matrix. 3) Gene’ contains 5000 different RNA-Seq
gene expressions from 400 cancer patients, which gives a
dense data matrix with > 85% non-zero entries.

Setup. For an input data matrix A € R we set the
number of rows of our 1-stable (Cauchy) sketching matrix
to be 0.5d in both settings. In the streaming setting, we set
the batch size to be 5k and maintain a list of coresets of size
2k. In the distributed setting, we set the number of servers to
be 5 and each server sends the coordinator a coreset of size
2k. For each of our experimetnts, we conduct 10 random
runs and report the mean ¢, error ratio W and

the mean time (in seconds) to obtain A; along with one

*nttp://gabrilovich.com/resources/data/
techtc/techtc300/techtc300.html

Shttps://archive.ics.uci.edu/ml/datasets/
genetexpressiontcancer+RNA-Seq

standard deviation, where A; is the output set of columns.
Note that the input columns of the data matrix are randomly
permuted in the streaming setting for each run.

Implementation Details. Our algorithms are implemented
with Python Ray®, a high-level framework for parallel and
distributed computing, and are thus highly scalable. All
the experiments are conducted on AWS EC2 c5a.8xlarge
machines with 32 vCPUs and 64GB EBS memory.

Results.  The results for the streaming setting and the
distributed setting are presented in Figure 1 and Figure 2
respectively. We note that SVD works in neither stream-
ing nor distributed settings and thus the running time of
SVD is not directly comparable to the other algorithms.
The performance of SVD and uniform is highly dependent
on the actual data and does not have worst case guaran-
tees, while the performance of our algorithm is stable and
gives relatively low ¢; error ratio across different datasets.
greedy k-CSS; » gives lower error ratio compared to reg-
ular k-CSS; > as one would expect, but the time it takes
significantly increases as the number of output columns in-
creases, especially in the distributed setting, while regular
k-CSS; » takes comparable time to the uniform random
baseline in most settings and is thus more scalable.
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Figure 1. Streaming results.

*https://docs.ray.io/en/master/
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Figure 2. Distributed results.

7.2. Robustness of the /; norm

7.2 Robustness of the £ norm

We further highlight the robustness of the ¢; norm loss to
non-Gaussian noise compared to the Frobenius norm loss
for k-CSS on an image classification task. k-CSS was pre-
viously used as an active learning algorithm to select the
most representative samples to acquire training labels in
supervised learning, when acquiring such labels is expen-
sive (Shen et al., 2011; Kaushal et al., 2018).

We apply one Frobenius norm k-CSS, algorithm (Boutsidis
et al., 2008a), our regular k-CSS; > algorithm (Section 3.3)
and a random baseline to select a subset of k training sam-
ples to train a linear regression model to classify images
from the COIL207 dataset. COTL20 contains a total of
1440 images. Each image has 32 x 32 pixels with 256 gray
levels per pixel. We randomly split the dataset into 80%
training set (1152 samples) and 20% testing set (288 sam-
ples). We then mask 40% of the pixels of each training
sample with a uniformly random noise value in [0, 256).
We conduct 20 random runs and report the average Mean
Squared Error (MSE) and one standard deviation for each
algorithm on the testing set.

7http: //www.cs.columbia.edu/CAVE/
software/softlib/coil-20.php

Algorithm | o hdom %-CSS, %-CSS; 5
k samples ,
300 16202204 | 17.64£207 | 1509 £2.55
300 15.04£2.17 | 17.02£3.50 | 15.41 + 2.44
400 1427 1.68 | 1640 £4.04 | 1384 £ 1.55
500 1403133 | 1450185 | 1353 £ 1.16
600 1445+ 1.91 | 15.56 £3.19 | 13.68 = 1.40

Table 1. Image classification results: average MSE and one std.

The results are summarized in Table 1. k-CSS; o gives a
slightly lower average MSE score and a lower variance, com-
pared to k-CSSs and the random baseline on noisy training
data. This suggests that the £; norm loss is more robust
compared to the Frobenius norm loss for £-CSS, which
agrees with previous observations from other algorithms
and applications.

8. Conclusion

In this work, we give the first one-pass streaming algo-
rithm for k-CSS, (1 < p < 2) in the column-update
model and the first one-round distributed protocol in the
column-partition model. Both of our algorithms achieve
O(k'/P=1/2)-approximation to the optimal column subset.
The streaming algorithm uses nearly optimal space com-
plexity of O(kd), and the distributed protocol uses nearly
optimal O(sdk) communication cost. We introduce novel
analysis techniques for k-CSS. To achieve a good approx-
imation factor, we use dense p-stable sketching and work
with the £, » norm, which enables us to use an efficient
construction of strong coresets and an O(1)-approximation
bi-criteria k-CSS,, > algorithm as a subroutine of our algo-
rithms. We further propose a greedy alternative for £-CSS,, 2
and show the first additive error upper bound. Our experi-
mental results confirm that our algorithms give stable low ¢/,
error in both distributed and streaming settings. We further
demonstrate the robustness of the /1 norm loss for £-CSS.
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