Single Pass Entrywise-Transformed Low Rank Approximation

A. Omitted Proofs of Useful Inequalities
A.1. Proof of Proposition 2
Proof. Let h(xz) = (1 4 2x) In(1 + =) — x. Since h(0) = 0, it suffices to show that h'(x) > 0. We calculate that

B (z) = ljx +2In(1 + 2).

Since h’(0) = 0, it suffices to show that A" (x) > 0. This can be readily verified by calculating that

3422
' (z) = —= . O
(x) e >0

A.2. Proof of Proposition 4

Proof. Let f(z,y) = In®(1 + ) + In*(1 + y) — In*(1 4+ /22 + 32). It suffices to show that f(z,y) > 0. The inequality
is clearly true when x = 0 or y = 0. Note that

af _, <1og(1+x) aln(l /2% 1) >

Oz 1+ 22+ y2 + /22 + 2
of _, <1og(1—|—y) Cyln(1+ /a2 1P )
oy

]_+y x2+y2+ /$2+y2

Assuming x,y > 0, 0f /0x = 0f /0y = 0 implies that

log(1+x)  log(1l+x)
z(l+z)  yl+y)

It is easy to verify that log(1 + x))/(z(1 + x)) is decreasing w.r.t. = (checking the derivative and using Proposition 4), so
we must have x = y. Now, let

o _of )_2111(14-33) V2In(1 4+ v/2x)
x)_ax(x’x T 14z 1442

We shall show that h(z) > 0 for all # > 0. This will imply that f(x, y) has no local minimum or maximum when z,y > 0
and so it is easy to see that f(z,y) attains the minimum at its boundary = 0 or y = 0, yielding that f(x,y) > 0 for all
z,y > 0.

To see that A(x) > 0, let
In(1+ ax)
9(a) = a(l +ax)’
We calculate
ax — (14 2az)In(1 + ax)
a2(1 + az)? ’

g'(a) =

It follows from Proposition 2 that g’(a) < 0. Hence g(a) is decreasing w.r.t. @ and g(v/2) < g(1), which is exactly
%h(w) > 0. O
A.3. Proof of Lemma 5

Proof. Tt is clear that the base of the logarithm does not matter and we assume that the base is e. Let Z = ). €;a; and
0= 0a? ThenEZ? =02 and E|Z| < (E|Z]*)'/? = 0. Let g(x) = In(1 4+ z) and

‘Z‘7 |Z|Z€717 07 |Z‘26717
Zy = . Zy = .
0, otherwise, |Z|, otherwise.
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Then |Z| = Z1 + Z5 and
Eg(1Z))* = E(9(Z1 + Z2))* < E(9(Z1) + 9(Z2))* < E2(9(Z1)* + 9(Z2)*),

where the first inequality follows from Proposition 3. For the first term, we define h(z) = g(z) - 1(;>¢_1}. Then h(z)? is
concave on [0, c0). Hence

Eg(21)* = Eh(Z1)? = ER(|Z])? < h(E|Z))? < h(0)? < g(0)>.

Next we upper bound the second term. The first case is 0 < e — 1. Since E Z* < 304, it holds that Pr{Zy > to} <
Pr{|Z| > to} < 3/t. Then

Eg(Z2)* <Eg(e —1)g(Z)
=Eg(Z2)

= /Oe g(x)Pr{Zy > z}dx

(e—1)/o
O'/ g(to) Pr{Zy > to}dt
0

(e=1)/o
02/ g(t)Pr{Zy > to}dt (by Proposition 3)
0

1 (e—1)/o t
< o2 (/O g(t)dt+3/1 gfjdt)

S 6'10'2
< Ci(e —1)%g(0)?,

where C7 > 0 is an absolute constant and the last inequality follows from the fact that g(z) > x/(e — 1) on [0, e — 1]. The
second case is o > e — 1. In this case,
Eg(Z:)° <1< g(0)*.

Therefore, we conclude that

Eg(|Z])* <2(1+4 Ci(e —1)*)g(0)* = Cag Za? < CQZg(\aW

where the last inequality follows from Proposition 4. O

A.4. Proof of Lemma 6

Proof. We first prove the upper bound.

£+ 2)ll3 = nyﬂrzz
<Z (y:) + f(z)]>  (Proposition 3)
—nyz +Zfzz +Z2fyz
<Zf +§22fyz +2\/Zf% \/Zfzﬂ (Cauchy-Schwarz)

< (E+2+1)fWl3
<(1+39)[IfW)ll5- (since & < 1)
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Next we prove the lower bound. Let I = {i : y;2; <0}, Jy = {i € I : |yi| < |z|tand Jo = {i € I : |z < |yi] <
(712} for some ¢ < 1 to be determined. Then

IFw+2)5=> fli+z)"+ > fwi+z)>+ Y. fwi+z)>+Y fi+2z)

i€ i€Js ieI\(J1UJ2) igl

> > fli+z) Y fw)

iGI\(ehng) il
When i € I\ (J1 U J3), we have |z;| < (|y;|. It then follows that

log(lyi + zi| + 1) > log((1 = Qlyil +1) = (1 = () log(|ys| + 1),

log(1+(1—¢€)z) .

where, for the last inequality, one can easily verify that h(x) = loz(172) 18 increasing on [0,00) and lim,_,o+ he(z) =

1 — €. Hence

DStz =(0-0" 3 S+ W)= -0 3 )

i€I\(J1UJ2) igl i€ J1UJs

Now, note that

ST rw)? <Y fE2 < IFEIE < W)

i€Jy i€J1

and (using Proposition 3)

ST rw)? <Y FED? < CAIFRIE < €O IF W)

i€J2 i€J1

It follows that

> S+ 2”2 (=02 (Wl - € 17wl - €% 1FW)l)

=(1-0*1- =YW -
Choosing ¢ = (£2/(1 — £2))'/3 maximizes the right-hand side, yielding
£+ 2)ll3 > (1= 383) | f(w)ll3 - m
B. Omitted Proofs from Section 3.1

B.1. Proof of Lemma 7

Proof. Note that [I,4] < 1/(cg). Thus, there exists a collision with probability at most

1 (1/(ag) 1
w( 2 > = 2w 2 < 0.1,

provided that w > 1/(0.2 - a2¢?) = 5/(a?¢?). O

B.2. Proof of Lemma 8
Proof. Letv = h(u). Since h is pairwise independent, Pr{h(i) = v} = 1/w for all ¢ # w. Let

Zo= 3 lpw=nllf (43
i€ (IaoU{u})
then
s M
EZ, < Y Elgpa= /(A < Pt
273 S
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It follows from Lemma 5 that

2

E L teo=madi | SEC YT (= A9,
e iZ€lng 9 iZlng
~CEZ,
h
<o
w

where we used the fact that f(0) = 0 and 13—} € {0, 1} in the second step (the equality). The result follows from
Markov’s inequality. O

B.3. Obtaining an Overestimate M

In this subsection we verify that g(x) = ln2(1 + nx) is slow-jumping, slow-dropping, and predictable, where the three
properties are defined in (Braverman et al., 2016).

To show that g is slow-jumping, we shall verify that for any o > 0, g(y) < [£]*T*2*g(x) for all # < y, whenever y
is sufficiently large. (i) When = > y/2, it suffices to show that g(y) < x%g(x). Since g(z) is increasing, it reduces to
showing g(y) < (y/2)“g(y/2). This clearly holds for all large y because one can easily check that In(1+y) < 2In(1+ %)
when y > 0. (ii) When & < y/2, we shall show that g(y) < (¥ — 1)?**z%g(z), i.e., g(y) < (25)*(y — x)*g(z). Since
x < y/2, we have y — x > y/2 and thus it suffices to show that g(y) < %(%)Q(%)O‘g(x), and for large y that % < %f),
which can be easily verified. This concludes the proof that g is slow-jumping. '

To show that g is slow-dropping, we shall verify that for any o > 0 it holds that g(y) > g(x)/x® for all z < y whenever y
is sufficiently large. This holds obviously because g(x) is increasing.

To show that g is predictable, we shall verify that for any « € (0, 1) and subpolynomial e(), it holds that g(y) > =7 g(z)
for all sufficiently large = and all y € [1,2177] such that g(x + y) > (1 + €(x))g(x). This holds automatically because
9(2z)/g(x) — 1 as & — oo and thus for any given ¢(x),when z is sufficiently large, it would not hold that g(z + y) >
(1+€(x))g(z) fory € [1, z].

C. Omitted Proofs from Section 3.2
C.1. Proof of Theorem 12

Proof. For notational convenience, let G = f(A). Let S be a random sample of s rows chosen from a distribution that
satisfies (1). We can write the i-th sample as G; 4+ E; for some error vector F;. Consider the singular value decomposition
of G =Y, oyuv, .

For each t, we define a random vector

1 Ut )4
w=13" i gy

Sies Pi
Note that S in general consists of sampled columns of f(A) with noise. The vectors w; are clearly in the subspace generated
by S. We first compute E w;. We can view w; as the average of s i.i.d. random variables X, ..., X, where each X; has
the following distribution:

X; = @(Gi + E;) with probability p;, i=1,2,...n.

Pi

Taking expectations,

n
i=1

Hence
Ew, =EX; = o, +u, E
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and
IIE X, ||2 = ot —|—2<atvt ,ut )+ Hut EH2 < at + 2<Utvt LUy E) + ||E||2

We also calculate that

E|X,|? = (“t)g G+ Ei|? - ps
H J”Q_Z p ” i+ 1||2'pz

K2

u
<§:t (IGilly + 1 Ei]l,)?

W

2 IG y o
< e
E: nGm ?

a+w

IGII%

where we used the assumption (1) in the third line and the fact that ||u;||2 = 1 in the last line. It follows that

2

2 1 1 2
EW%:EEZszgzwwm LY EXEX)
j 9 J J#t
14 s—1
< W gy 4 S (02 4afond o By + 1213)

and thus

E Hwt OV H2 =E Hwt||§ <Ewt7atvt > + Ut

14+

( ’V) ”GHF +Ut +2<Utvt ) Uy E> + ||E||2 - 2Ut — 2(uy {E, OtV >+Ut 2)
u+w

e

If w; were exactly equal to o;v, (instead of just in expectation), we would have

k k
G E v, =G g w, wy,
t=1 t=1

which would be sufficient to prove the theorem. We wish to carry this out approximately. To this end, define g, = J%th

fort = 1,2,...,s and let Vi = span(¢1,92,...,9s) C V. Let y1,¥2,...,Yn be an orthonormal basis of R"™ with
Vi = span(y1, ya, - - -, Y1), where [ = dim (V7). Let

1 k
B = Z GytytT and B = Zthy)tT.
t=1 t=1
The matrix B will be our candidate approximation to G in the span of S. We shall bound its error using B. Note that for

any i < k and j > [, we have (¢;) "y; = 0. Thus,

I6 - Bl =3 HG By

- 3 Jon]; -

HG By

R R

Also,

IG ~ B% =
i=1

2 k 9 n
- B) ‘2 = Z |osv;” — wil|, + Z o?
i=1

i=k+1
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Taking expectations and using (2), we obtain that

i k(1
> o2 B e @)

i=k+1

Note that B is of rank at most k and Dy, is the best rank-k approximation to G. We have

112 9 -
le=B| z16-Duli= > oF

i=k+1
Thus |G — B||% — |G — Di||% is a non-negative random variable. It follows from (4) that
Nt 10k(1 + )2 1
ProllG=B| ~IG- Dl = ——"|c =
{lo - B[ - 16 - pul = o <
The result follows from (3) and the fact that ||E||§, < ||GH2F O

C.2. Proof of Corollary 13

Proof. First, it follows from a Chernoff bound and a union bound that we can guarantee with probability at least 0.9 that all
samples have the form f(A;) + E; with small || E;||2. Then, it follows from another Chernoff bound that with probability
at least 0.9, it holds that there are s/2 samples from A’. We apply Theorem 12 to A’ and s/2 and obtain that

2

30k
AV wil || < min P = DI+ S A

F

Suppose that A” is the submatrix of A which consists of the rows of A that are not in A’. Then f(A) is the (interlacing)

concatenation of f(A’) and f(A”). Since || f(A”)||% < €||f(A)||% and y1, . . ., yx, remains valid if we add more samples,
2
(4D uw)
J F
2 2
= | F(A) = F(A D wswf | +|| (A7) = f(A) Zy]yj
J F F
30k 2 2
< D — A"
< im0 = DI+ I + A
30k 2
D%+ (— A%
< omin l7() - ||F+(SC ) IS

The overall failure probability combines that of Theorem 10, Theorem 12 and the events at the beginning of this proof.

For the second result, take s = O(k/¢) and rescale €. O

D. Proof of Theorem 16

By Theorem 10, for every i € [s], there exists j(i) such that h; = (f(A);(),bji)) + Fjq). where F; =
a new matrix S such that in the i-th row of S, .S; j(

E;
N We define
) = \/ﬁ and the other entries are zero. By Theorem 15, we have
that the row-sampling probability we use is a (1 + O(¢)) approximation to the true sampling probability. Therefore, we

define matrix S such that in the i-th row of S St G = L and the other entries are zero, and matrix F is such that

V/ 8Pj(i)
F, = ﬁ Then, we find that S (f(4) b)+ F=T.
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Proof. For notational convenience, we let G = f(A) with singular value decomposition G = UV T. We shall show that
Hld — SU SU H is small, for which we first show HId — (SU)T(SU) ||2 is small.

Let X; =1; — YiTYl- and Y; =
the ¢-th trial. Since

m where Uy is the ¢-th row of U, which means that the j(i)-th row of M is chosen in

n U Ut n .
E(Xi):Id*E(YiTYi):Id* pt——:fd— Ulu, =o,
VPt \/Pt ; !

we can apply Lemma 1 to X1, ..., X, for which we need to upper bound || X;||2 and || E(X2)| 2.
We first bound || X;]|2.

U Uil 1T: 13 o 4+ 02 dm
Xill, ==Y, Yy, <1+ 1202 <1 4 2 1G12 <14 A7 T% g Y
H lH2 || v H2 Di ||G ||2 H ||F 003 c
where 0y > --- > o4 are the singular values of G, and in the penultimate inequality we use the fact that |G|, =

|UZVT|, = IU:]l, > a||Uill,-
Next, we bound ||]E(X12)||2 Observe that

E(X? +Ia) = La+EB(Iy =Y, Vo) (Ia = YY) = Lo+ E(Ia — 2Y; Vi + YV, ViV, TY))

2
U
=21, - E(Y,"Y)) + E(Y;"Y; |Yi|2) = E (”“?”2%) ,

(i)
2
U. .
E M)@TK— E HUH22 IG5 "
s e 1Gil2

It follows immediately from the triangle inequality that

and thus

IBCX? + La)ll, =

2

Ji(m)
C

2

d 2
< [EG? + L)l + ally < = + 1.

ExE, <

Invoking Lemma 1, for

ISy ISy Ty S sy
—SZXZ—Id SZY; Y; = I, — (SU)T(SU),

i=1 i=1

and p = 0% = 1 + dk?/c, we have that

2 2
Pr {HId - (SU)T(SU)H2 > e} < 2dexp <_02j—f)e/3> < 2dexp (_2;/{;/c> <é

by our choice of s. Equivalently, with probability at least 1 — 4, it holds that || I; — (SU) T (SU)||, < e, which implies that
|SGz|l, = (1 % €) ||Gzl|, for all z € RY. We condition on this event in the rest of the proof.

Second, we show that the error between||I; — (SU)T (SU)||, and HId - (S'U)T(S'U)H2 is small.
1= SOV, < [lta = ST)TSD), + |[(S0)T(SV) = (50)T (D)
<e+ H(SU)T(SU) - (SU)T(SU)H2 .

5 5 s UjlyUja s Uiy Ui sU)T(SU
Observe that (SU) " (SU) = 377_, %)H =2in1 (1iO((l))s(p;(i) = { 11)0((5) > and thus

(SU)T(SU)—(SU)T(SU)H = 0(e) || (sU)T(sO), -
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We have proved that || I; — (SU) T (SU)||, < €, so we have HId - (S”U)T(S”U)H2 < e4+0(€)(14¢€) = O(e). By rescaling

¢/, we can assume that HId - (S’U)T(S’U)H2 <e.

Now consider the subspace spanned by the columns of M together with b. For any vector y = Gz — b, S'yH =
2
(1 £ €) |ly|l5- Recall that we have defined F; = %, where F; and E; are the corresponding i-th row of F and F. Let

F'® be the first d columns of £ and F() be the last column of F'. Hence, the original linear regression problem can be
written as min H(S“G + FWyz — (Sb+ F(2))H2.

Note that & = arg min, ||(SG + FM)z — (Sb+ F(Q))H2 satisfies
min|($G + FO)3 - (3b + F<2>)H2 < [5G+ FD)ar — (S0 + F<2>)H2
€T

<

S(Ga* — b)H2 + Hﬁ‘(l)x* - F’(z)HQ
* - 12
< W+ )1Ga* = blly + | B y/lla* 3 + 1.

where the third inequality holds because Sisa subspace embedding for the column space of G together with b and
¥ = argmingcpa |G — b||,.

Now, consider the upper bound on Hﬁ'H . Since
2

2 2
Al IEE _ o IG5 + b

A — 2 2
2 b sc((|Gilly + [bi]")

2
.
(G + 1613) < (IG5 + 1b13)

and
10l

||$*||2 = ||GTb||2 = Umin(G)7

we have that

min|(5G + POz — $b+ FO)| < 0+ lew — vl + || 2] a1

. v [ _lIel;
<1+ [IGa" = blly + = IGIE + bl - | 22 =5 + 1
% Y 2 2 ||bH§
< WG = bllp+ 7 { VIGIE+ Il + a2 5rbl )
2

By our assumption, ¢ = 1—O(e) and v = O(e). Rescaling € gives the claimed bound, completing the proof of Theorem 16.
O




