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Abstract

In applications such as natural language process-
ing or computer vision, one is given a large n×d
matrix A = (ai,j) and would like to compute a
matrix decomposition, e.g., a low rank approxi-
mation, of a function f(A) = (f(ai,j)) applied
entrywise to A. A very important special case is
the likelihood function f (A) = log (|aij |+ 1).
A natural way to do this would be to simply apply
f to each entry of A, and then compute the ma-
trix decomposition, but this requires storing all
of A as well as multiple passes over its entries.
Recent work of Liang et al. shows how to find a
rank-k factorization to f(A) for an n× n matrix
A using only n·poly(ε−1k log n) words of mem-
ory, with overall error 10‖f(A) − [f(A)]k‖2F +
poly(ε/k)‖f(A)‖21,2, where [f(A)]k is the best
rank-k approximation to f(A) and ‖f(A)‖21,2
is the square of the sum of Euclidean lengths
of rows of f(A). Their algorithm uses three
passes over the entries of A. The authors pose
the open question of obtaining an algorithm with
n·poly(ε−1k log n) words of memory using only
a single pass over the entries of A. In this paper
we resolve this open question, obtaining the first
single-pass algorithm for this problem and for the
same class of functions f studied by Liang et
al. Moreover, our error is ‖f(A)− [f(A)]k‖2F +
poly(ε/k)‖f(A)‖2F , where ‖f(A)‖2F is the sum
of squares of Euclidean lengths of rows of f(A).
Thus our error is significantly smaller, as it re-
moves the factor of 10 and also ‖f(A)‖2F ≤
‖f(A)‖21,2. We also give an algorithm for regres-
sion, pointing out an error in previous work, and
empirically validate our results.
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1. Introduction
There are numerous applications with matrices that are too
large to fit in main memory, such as matrices arising in ma-
chine learning, image clustering, natural language process-
ing, network analysis, and recommendation systems. This
makes it difficult to process such matrices, and one com-
mon way of doing so is to stream through the entries of
the matrix one at a time and maintain a short summary or
sketch that allows for further processing. In some of these
applications, such as network analysis or distributed rec-
ommendation systems, matters are further complicated be-
cause one would like to take the difference or sum of two
or more matrices over time.

A common goal in such applications is to compute a low
rank approximation to a large matrix A ∈ Rn×d. If the
rank of the low rank approximation is k, then one can ap-
proximate A as U · V , where U ∈ Rn×k and V ∈ Rk×d.
This results in a parameter reduction, as U and V only have
(n+d)k parameters in total, as compared to the nd param-
eters required of A. Since k � min(n, d), this parameter
reduction is significant. Not only does it result in much
smaller storage, when multiplying A by a vector x, it also
now only takes O((n + d)k) time instead of O(nd) time,
since one can first compute V · x and then U · (V · x).

A challenge in the above applications is that often wants
to compute a low rank approximation not to A, but to an
entrywise transformation to A by a function f . Namely,
if A = (ai,j), then we define f(A) = f(ai,j) where we
apply the function f to each entry of A. Common func-
tions f include f(x) = logc2(|x| + 1) or f(x) = |x|α
for 0 ≤ α ≤ 2. Indeed, for word embeddings in natu-
ral language processing (NLP), an essential subroutine is
to perform a low rank approximation of a matrix after ap-
plying the log-likelihood function to each entry, which cor-
responds to f(x) = log2(|x| + 1). Note that in NLP the
input matrices are often word co-occurrence count matri-
ces, which can be created e.g., from the entire Wikipedia
database. Thus, such matrices are huge, with millions of
rows and columns, and hard to store in memory. This ne-
cessitates models such as the streaming model for process-
ing such data.

We can indeed capture the above scenarios formally with
the streaming model of computation. In this model, there is
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a large underlying matrix A, and we see a long sequence
of updates to its coordinates in the form (i, j, δ) with δ
∈ {±1}, and representing the update Ai,j ← Ai,j + δ.
Each pass over the data stream is very expensive, and thus
one would like to minimize the number of such passes.
Also, one would like to use as little memory as possible
to compute a low rank approximation of the transformed
matrix f(A) in this model. In this paper we will consider
approximately optimal low rank approximations, mean-
ing factorizations U · V for which ‖U · V − f(A)‖2F ≤
‖[f(A)]k − f(A)‖2F + poly(ε/k)‖f(A)‖2F , where [f(A)]k
is the optimal rank-k matrix approximating f(A) in Frobe-
nius norm. Recall the Frobenius norm ‖B‖F of a matrix
B is defined to be (

∑
i,j B

2
i.j)

1/2, which is the entrywise
Euclidean norm of B.

Although there is a body of work in the streaming model
computing low rank approximations of matrices (Boutsidis
et al., 2016; Clarkson & Woodruff, 2009; Drineas et al.,
2012; Upadhyay, 2014; Woodruff, 2014), such methods
no longer apply in our setting due to the non-linearity of
the function f . Indeed, a number of existing methods are
based on dimensionality reduction, or sketching, whereby
one stores S ·A for a random matrix S with a small number
of rows. If there were no entrywise transformation applied
to A, then given an update Ai,j ← Ai,j + δ, one could sim-
ply update the sketch (S · A)j ← (S · A)j + Si · δ, where
(S ·A)j denotes the j-th column of S ·A and Si denotes the
i-th column of S. However, given an entrywise transforma-
tion f , which may be non-linear, and given that we may see
multiple updates to an entry of A, e.g., in the difference of
two datasets, it is not clear how to maintain S · f(A) in a
stream.

A natural question is: can we compute a low-rank approx-
imation to f(A) in the streaming model with a small num-
ber of passes, ideally one, and a small amount of memory,
ideally n · poly(k/ε) memory?

Motivated by the applications above, this question was
asked by Liang et al. (2020); see also earlier work which
studies entrywise low rank approximation in the distributed
model (Woodruff & Zhong, 2016). The work of Liang
et al. (2020) studies the function f(x) = log2(|x|+ 1) and
gives a three-pass algorithm for n×nmatricesA achieving
n · poly(ε−1k log n) memory and outputting factors U and
V with the following error guarantee:

‖U · V − f(A)‖2F ≤ 10 ‖[f(A)]k − f(A)‖2F
+ poly(ε/k) ‖f(A)‖21,2 ,

where for a matrix B, ‖B‖1,2 is the sum of the Euclidean
lengths of its columns. We note that this error guarantee
is considerably weaker than what we would like, as there
is a multiplicative factor 10 and an additive error that de-
pends on ‖f(A)‖1,2. Using the relationship between the

1-norm and the 2-norm, we have that ‖f(A)‖1,2 could be
as large as

√
n‖f(A)‖F , and so their additive error can be

a
√
n factor larger than what is desired. Also, although the

memory is of the desired order, the fact that the algorithm
requires 3 passes can significantly slow it down. Moreover,
when data is crawled from the internet, e.g. in applications
of network traffic, it may be impractical to store the entire
data set (Durme & Lall, 2009). Therefore, in these settings
it is impossible to make more than one pass over the data.
Liang et al. (2020) say “Whether there exists a one-pass
algorithm is still an open problem, and is left for future
work.”

1.1. Our Contributions

In this paper, we resolve this main open question of (Liang
et al., 2020), obtaining a one-pass algorithm achieving (n+
d) · poly(ε−1k log n) memory for outputting a low rank
approximation for the function f(x) = log2(|x| + 1), and
achieving the stronger error guarantee:

‖U · V − f(A)‖2F ≤ ‖[f(A)]k − f(A)‖2F
+ poly(ε/k) ‖f(A)‖2F .

We note that the poly(ε/k) factor in both the algorithm
of (Liang et al., 2020) and our algorithm can be made ar-
bitrarily small by increasing the memory by a poly(k/ε)
factor, and thus it suffices to consider error of the form
‖[f(A)]k − f(A)‖2F + ε‖f(A)‖2F . We also note that our
algorithm can be trivially adapted to rectangular matrices,
so for ease of notation, we focus on the case n = d.

At a conceptual level, the algorithm of (Liang et al., 2020)
uses one pass to obtain so-called approximate leverage
scores of f(A), then a second pass to sample columns of
f(A) according to these, and finally a third pass to do so-
called adaptive sampling. In contrast, we observe that one
can just do squared column norm sampling of f(A) to ob-
tain the above error guarantee, which is a common method
for low rank approximation to A. However, in one pass it
is not possible to sample actual columns of A or of f(A)
according to these probabilities, so we build a data struc-
ture to sample noisy columns by approximations to their
squared norms in a single pass. This is related to block
`2-sampling in a stream, see, e.g., (Mahabadi et al., 2020).
However, the situation here is complicated by the fact that
we must sample according to the sum of squares of f values
of entries in a column of A, rather than the squared length
of the column of A itself. The transformation function f ’s
nonlinearity makes many of the techniques considered in
(Mahabadi et al., 2020) inapplicable. To this end we build
new hashing and sub-sampling data structures, generaliz-
ing data structures for length or squared length sampling
from (Andoni et al., 2009; 2011; Levin et al., 2018), and
we give a novel analysis for sampling noisy columns of A
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proportional to the sum of squares of f values to their en-
tries.

Additionally, we empirically validate our algorithm on a
real-world data set, demonstrating significant advantages
over the algorithm of Liang et al. (2020) in practice.

Finally, we apply our new sampling techniques to the re-
gression problem, showing that our techniques are more
broadly applicable. Although Liang et al. (2020) claim a
result for regression, we point out an error in their analy-
sis1, showing that their algorithm obtains larger error than
claimed, and the error of our regression algorithm is con-
siderably smaller.

All omitted proofs can be found in the full version of this
paper, which is given in the supplementary material.

2. Preliminaries
Notation. We use [n] to denote the set {1, 2, . . . , n}. For
a vector x ∈ Rn, we denote by |x| the vector whose i-
th entry is |xi|. For a matrix A ∈ RN×N , let Ai,∗ be
the i-th row of A and A∗,j be the j-th column of A. We
also sometimes abbreviate Ai,∗ or A∗,i as Ai. We also de-
fine the norms ‖A‖p,q = (

∑
i ‖Ai,∗‖pq)1/p, of which the

Frobenius norm ‖A‖F = ‖A‖2,2 is a special case. Note
that ‖A‖p,q ≡ ‖A>‖q,p. We use σi(A) to denote the i-th
singular value of A and [A]k to denote the best rank-k ap-
proximation to A. For a function f , let f(A) denote the
entrywise-transformed matrix (f(A))ij = f(Aij).

Low-rank Approximation. Given a matrix M ∈ Rn×n,
an integer k ≤ n and an accuracy parameter ε > 0, our goal
is to output an n × k matrix L with orthonormal columns
for which ‖M − LL>M‖2F ≤ ‖M − [M ]k‖2F + ε‖M‖2F ,
where [M ]k = arg minrank(M ′)≤k ‖M − M ′‖2F . Thus,
LL> provides a rank-k matrix to project the columns ofM
onto. The rows of L>M can be thought of as the “latent
features” in applications, and the rank-k matrixLL>M can
be factored as L · (L>M), where L>M is a k × n matrix
and L is an n× k matrix.

Best Low-rank Approximation. Consider the singular
value decomposition G =

∑r
t=1 σtutv

>
t , where σ1 ≥

σ2 ≥ · · · ≥ σr > 0 are the nonzero singular values of G,
and {ut} and {vt} are orthonormal sets of column vectors
such that G>ut = σtvt and Gvt = σtut for each t ≤ r.
The vectors {ut} and {vt} are called the left and the right
singular values of G, respectively. By the Eckart-Young
theorem, for any rotationally invariant norm ‖ · ‖, the ma-
trix Dk that minimizes ‖G − Dk‖ among all matrices D
of rank at most k is given by Dk =

∑k
t=1Gvtv

>
t . This

implies that ‖G−Dk‖2F =
∑r
t=k+1 σ

2
t .

1We have confirmed this with the authors.

For a matrix A, we denote by ‖A‖2 its operator norm,
which is equal to its largest singular value.

Useful Inequalities. The first one is the matrix Bernstein
inequality.

Lemma 1 (Matrix Bernstein). Let X1, . . . , Xs be s inde-
pendent copies of a symmetric random matrix X ∈ Rd×d
with E(X) = 0, ‖X‖2 ≤ ρ and

∥∥E(X2)
∥∥
2
≤ σ2. Let

W = 1
s

∑s
i=1Xi. For any ε > 0, it holds that

Pr{‖W‖2 > ε} ≤ 2d · e−sε
2/(σ2+ρε/3).

Below we list a few useful inequalities regarding the func-
tion f(x) = log(1 + |x|).

Proposition 2. For x > 0, it holds that ln(1+x) > x/(1+
2x).

Proposition 3. It holds for all x, y ∈ R and all a ≥ 0
that f(x + y) ≤ f(x) + f(y) and f(ax) ≤ af(x). As a
consequence, for x, y ∈ Rn it holds that ‖f(x + y)‖22 ≤
(‖f(x)‖2 + ‖f(y)‖2)2.

Proposition 4. It holds for all x, y ≥ 0 that
f(
√
x2 + y2)2 ≤ f(x)2 + f(y)2.

Lemma 5. Let a1, . . . , am be real numbers and ε1, . . . , εm
be 4-wise independent random variables on the set {−1, 1}
(i.e., Rademacher random variables). It holds that

E f

(∑
i

εiai

)2

≤ C
∑
i

f(ai)
2.

where C > 0 is an absolute constant.

Lemma 6. For arbitrary vectors y, z ∈ Rn such that
‖f(y)‖22 ≥ ξ−2‖f(z)‖22 for some ξ ∈ (0, 1), it holds that
(1− 3ξ2/3)‖f(y)‖22 ≤ ‖f(y + z)‖22 ≤ (1 + 3ξ)‖f(y)‖22.

3. Algorithm
Our algorithm uses two important subroutines: a subsam-
pling data structure called an H-Sketch, and a sketch for
approximating the inner product of a transformed vector
and a raw vector called LogSum. The former is inspired
from a subsampling algorithm of (Levin et al., 2018) and is
meant to sample a noisy approximation to a column from
a distribution which is close to the desired distribution. In
fact, one can show that it is impossible to sample the actual
columns in a single pass, hence, we have to resort to noisy
approximations and show they suffice. The latter LogSum
sketch is the same as in (Liang et al., 2020), which approx-
imates the inner product 〈f(x), y〉 for vectors x, y. Exe-
cuting these sketches in parallel is highly non-trivial since
the subsampling algorithm of (Levin et al., 2018) samples
columns ofA according to their `2 norms, but here we must
sample them according to the squares of their `2 norms af-
ter applying f to each entry.
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Algorithm 1 Basic heavy hitter substructure
Input: A ∈ Rn×n, ν, φ
Output: a data structure H

1: w ← O(1/(φ2ν3))
2: Prepare a pairwise independent hash function h :

[n]→ [w]
3: Prepare 4-wise independent random signs {εi}ni=1

4: Prepare a hash table H with w buckets, where each
bucket stores a vector in Rn.

5: for each v ∈ [w] do
6: Hv ←

∑
i∈h−1(v) εiAi

7: end for
8: return H

Roughly speaking, the above combination gives us a small
set of poly(k/ε) noisy columns of f(A), sampled approxi-
mately from the squared `2 norm of each column of f(A),
after which we can appeal to squared column-norm sam-
pling results for low rank approximation in (Frieze et al.,
2004), which argue that if you then compute the top-k
left singular vectors of f(A), forming the columns of the
n × k matrix L, then LL>f(A) is a good rank-k approxi-
mation to f(A). The final output of the low-rank approxi-
mation will be two factors, L and L>f(A). The algorithm
in (Liang et al., 2020) first computes L by an involved al-
gorithm in three passes, and then computes L>f(A) in an-
other pass using LOGSUM sketches. Our algorithm fol-
lows the same outline but we shall demonstrate how to
compute L in only one pass, which is our sole focus for
low-rank approximation in this paper. Note that our ul-
timate goal, which we only achieve approximately, is to
sample columns of f(A) proportional to their squared `2
norms. This is a fundamentally different sampling scheme
from that of (Liang et al., 2020), which performs leverage
score sampling followed by adaptive sampling, which are
not amenable to a one-pass implementation.

3.1. H-Sketch

We first present a basic heavy hitter structure in Algo-
rithm 1, and a complete heavy hitter structure in Algo-
rithm 2 by repeating the basic structure R times. The com-
plete heavy hitter structure supports a query function. Be-
low we analyze the guarantee of this heavy hitter data struc-
ture.

Let M = ‖f(A)‖2F . We define Iε = {i ∈ [n] :
‖f(Ai)‖22 ≥ εM}, the set of the indices of the ε-heavy
columns. Let α be a small constant to be determined later.

Lemma 7. With probability at least 0.9, all columns in Iαφ
are isolated from each other under h.

Lemma 8. For each u ∈ [n], it holds with probability at

Algorithm 2 Complete heavy hitter structure D
Input: A ∈ Rn×n, ν, φ, δ
Output: a data structure H

1: R← O(log(n/δ))
2: for each r ∈ [R] do
3: Initialize a basic substructure H(r) (Algorithm 1)

with parameters ν and φ
4: end for

5: function QUERY(i)
6: for each r ∈ [R] do
7: vr ← H

(r)
hr(i)

. hr is the hash function in H(r)

8: end for
9: r∗ ← index r of the median of {‖f(vr)‖2}r∈[R]

10: return vr∗
11: end function

least 2/3 that∥∥∥∥∥∥f
 ∑
i 6∈(Iαφ∪{u})

1{h(i)=h(u)}εiAi

∥∥∥∥∥∥
2

2

≤ 3C
M

w
,

where C > 0 is an absolute constant.

Lemma 9. Suppose that ν ∈ (0, 0.05] and α = 0.3/C >
β, where C is the absolute constant in Lemma 8. With
probability at least 1 − δ, for all i ∈ [n], the output vr∗
of Algorithm 2 satisfies that

(a) (1 − ν)‖f(Ai)‖22 ≤ ‖f(vr∗)‖22 ≤ (1 + ν)‖f(Ai)‖22
for all i ∈ Iφ;

(b) ‖f(vr∗)‖22 ≤ 0.92φM for all i 6∈ Iαφ;

(c) ‖f(vr∗)‖22 ≤ (1 + ν3/2)2φM .

Proof. Fix u ∈ [n]. With probability at least 0.9 − 1/3 >
0.5, the events in Lemmata 7 and 8 happen. Condition on
those events.

From the proof of Lemma 8, we know that i ∈ Iφ do not
collide with other elements in Iαφ. Hence, it follows from
Lemma 6 (where ξ2 ≤ 3C/(φw) ≤ (ν/3)3) that

(1− ν) ‖f(Ai)‖22 ≤
∥∥f(Hh(i))

∥∥2
2
≤ (1 + ν) ‖f(Ai)‖22 ,

provided that w ≥ 34C/(φν3).

When i 6∈ Iαφ, we have

∥∥f(Hh(i))
∥∥2
2
≤ 3C

(
αφ+

1

w

)
M ≤ (0.9 + ν3/2)φM

≤ 0.92φM.
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Algorithm 3 Sampling using H-Sketch

Require: (i) An estimate M̂ such that M ≤ M̂ ≤ KM ;
(ii) a complete heavy hitter structure D0 of parame-
ters (O(1), O(ε3/(KL3)), 1/(L̂ + 1)); (iii) L̂ com-
plete heavy hitter structures (see Algorithm 1), de-
noted byD1, . . . ,DL̂, whereDj (j ∈ [L̂]) has parame-
ters (O(1), O(ε3/L3), 1/(L̂+ 1)) and is applied to the
columns of A downsampled at rate 2−j ;

1: L← log(Kn/ε), L̂← log n
2: ζ ← a random variable uniformly distributed in

[1/2, 1]
3: for j = 0, . . . , L̂ do
4: Λj ← top Θ(L3/ε3) heavy hitters from Dj
5: end for
6: j0 ← log(4Kε−3L3)
7: ζ ← uniform variable in [1/2, 1]
8: for j = 1, . . . , j0 do
9: Let λ(j)1 , . . . , λ

(j)
s be the elements in Λ0 contained

in [(1 + ε)ζ M̂2j , (2− ε)ζ
M̂
2j ]

10: M̃j ← |λ(j)1 |+ · · ·+ |λ
(j)
s |

11: end for
12: for j = j0 + 1, . . . , L do
13: Find the largest ` for which Λ` contains sj ele-

ments λ(j)1 , . . . , λ
(j)
sj in [(1 + ε)ζ M̂2j , (2 − ε)ζ M̂2j ] for

(1−
√

20ε)L2/ε2 ≤ sj ≤ 2(1 +
√

20ε)L2/ε2

14: if such an ` exists then
15: M̃j ← (|λ(j)1 |+ · · ·+ |λ

(j)
sj |)2`

16: Wj ← Λ`
17: else
18: M̃j ← 0
19: end if
20: end for
21: j∗ ← sample from [L] according to pdf Pr(j∗ =

j) = M̃j/
∑
j M̃j

22: i∗ ← sample from Wj∗ according to pdf Pr(i∗ =

i) = |λ(j)i |/M̃j

23: vj∗,i∗ ← vector returned by QUERY(i∗) on Dj∗
24: return vj∗,i∗

When i ∈ Iαφ \ Iφ, we have that Hi contains only i and
columns from [n] \ Iαφ. Hence by Proposition 3,

∥∥f(Hh(i))
∥∥2
2
≤

(
‖f(Ai)‖2 +

√
3C

w
M

)2

≤
(√

φM +
√
ν3φM

)2
≤ (1 + ν3/2)2φM,

provided that w ≥ 3C/(φν3).

Finally, repeating O(log(n/δ)) times and taking the me-
dian and a union bound over all n columns gives the

claimed result.

Next we analyze the sampling algorithm, presented in Al-
gorithm 3, which simulates sampling a column from A ac-
cording to the column norms. The following theorem is our
guarantee.
Theorem 10. Let ε > 0 be a constant small enough. Algo-
rithm 3 outputs vj∗,i∗ which satisfies that, with probability
at least 0.9, there exists u ∈ [n] such that

(1−O(ε)) ‖f(Au)‖22 ≤ ‖f(vj∗,i∗)‖22
≤ (1 +O(ε)) ‖f(Au)‖22 .

Furthermore, there exists an absolute constant c ∈ (0, 1/2]
such that

Pr{u = i} ≥ c
‖f(Ai)‖22
‖f(A)‖2F

for all i belonging to some set I ⊆ [n] such that∑
i∈I ‖f(Ai)‖22 ≥ (1− 6ε)M , provided that ε further sat-

isfies that ε ≤ c/C for some absolute constant C > 0.

Proof. The analysis of the algorithm is largely classical,
for which we define the following notions:

(1) Tj = ζM/2j ;

(2) Sj =
{
i ∈ [n] : ‖f(Ai)‖22 ∈ (Tj , 2Tj ]

}
is the j-th

level set of A;

(3) a level j ∈ [L] is important if |Sj | ≥ ε2j/L;

(4) J ⊆ [L] is the set of all important levels.

It follows from the argument in (Li et al., 2021), or an ar-
gument similar to (Andoni et al., 2009) that the columns
we miss contribute to only an O(ε)-fraction of the norm,
and for each level j ∈ {1, . . . , j0} ∪ J , each of the re-
covered columns λi (i ∈ [sj ]) corresponds to some u =
u(i) ∈ Sj and satisfies that (1 − O(ε))‖f(Aui)‖22 ≤ λi ≤
(1 +O(ε))‖f(Aui)‖22.

Next we prove the second part. For a fixed i ∈ [n], define
events

Ei = {i falls in a level j ∈ [j0] ∪ J }

and a set of “good” columns

I = {i : Pr{Ei} ≥ β}

for some constant β ≤ 1/2. Since all non-important levels
always contribute to at most a 2ε-fraction of M , it follows
that the bad columns contribute to at most a 2ε/(1 − β)-
fraction of M , that is,∑

i6∈I

‖f(Ai)‖22 ≤
2ε

1− β
·M.
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Next we define the event that

Fi = {Ei and ‖f(Ai)‖22 ∈ [(1 + ε)Tj , 2(1− ε)Tj ]},

then it holds for all i ∈ I that Pr{Fi} ≥ Pr{Ei} −O(ε) ≥
0.9β for ε sufficiently small.

Let Gj denote the event that the magnitude level j is cho-
sen, and j(i) is the index of the magnitude level containing
column i. Then for those i’s with j = j(i) ∈ [j0] ∪ J ,

Pr{Gj |Fi} =
(1±O(ε))M̃j

(1±O(ε))
∑
j M̃j

=
(1±O(ε))Mj

(1±O(ε))M

= (1±O(ε))
Mj

M

and

Pr{u = i | Gj ∩ Fi} =
λ
(j)
t

M̃j

=
1±O(ε)‖f(Ai)‖22

(1±O(ε))Mj

= (1±O(ε))
‖f(Ai)‖22
Mj

Hence

Pr{u = i} = Pr{u = i | Gj ∩ Fi}Pr{Gj |Fi}Pr{Fi}

≥ 0.9β(1−O(ε))
‖f(Ai)‖22

M
≥ 0.8β

‖f(Ai)‖22
M

,

provided that ε is sufficiently small.

Now we show how to obtain an overestimate M̂ for M .
We assume that all entries of A are integer multiples of
η = 1/poly(n) and are bounded by poly(n), which is
a common and necessary assumption for streaming algo-
rithms, otherwise storing a single number would take too
much space. Let f̃(x) = log2(1 + |ηx|), then ‖f(A)‖2F =∑
i,j f̃(η−1A), where η−1A has integer entries. Hence, we

can run the algorithm implied by Theorem 2 of (Braver-
man et al., 2016) on η−1A in parallel in order to obtain a
constant-factor estimate to ‖f(A)‖2F . To justify this appli-
cation of the theorem, we verify in Appendix B.3 that the
function f̃(|x|) is slow-jumping, slow-dropping and pre-
dictable on nonnegative integers as defined by (Braverman
et al., 2016).

Finally, we calculate the sketch length. The overall
sketch length is dominated by that of Algorithm 3. In
Algorithm 3, there are L̂ = O(ε−1 log n) heavy hit-
ter structures D1, . . . ,DL̂, each of which has a sketch
length of O(1/(φ2ν3) log(nL)) = poly(L, 1/ε, log n) =
poly(log n, 1/ε). There is an additional heavy hitter struc-
ture D0 of sketch length O(poly(K,L, 1/ε, log n)) =
poly(log n, 1/ε). Hence the overall sketch length is
poly(log n, 1/ε). Each cell of the sketch stores an n-
dimensional vector. We summarize this in the following
theorem.

Theorem 11. Suppose that A ∈ (ηZ)n×n with |Aij | ≤
poly(n) is given in a turnstile stream, where η =
1/ poly(n). There exists a randomized sketching algorithm
which maintains a sketch of n poly(ε−1 log n) space and
outputs a vector vj∗,i∗ ∈ Rn which satisfies the same guar-
antee as given in Theorem 10.

3.2. Low-Rank Approximation

Suppose that we have an approximate sampling of the rows
of f(A) so that we obtain a sample f(Ai) + Ei with prob-
ability pi satisfying

pi ≥ c
‖f(Ai)‖22
‖f(A)‖2F

(1)

for some absolute constant c ≤ 1. The pi’s are known to us
(if c = 1, then we do not need to know the pi).

The following is our main theorem in this section, which is
analogous to Theorem 2 of (Frieze et al., 2004).
Theorem 12. Let V denote the subspace spanned by s
samples drawn independently according to the distribu-
tion (1), where each sample has the form f(Ai) + Ei for
some i ∈ [n]. Suppose that ‖Ei‖2 ≤ γ‖f(Ai)‖2 for some
γ > 0. Then with probability at least 9/10, there exists an
orthonormal set of vectors y1, y2, . . . , yk in V such that∥∥∥∥∥∥f(A)− f(A)

k∑
j=1

yjy
>
j

∥∥∥∥∥∥
2

F

≤ min
D:rank(D)≤k

‖f(A)−D‖2F +
10k

sc
(1+γ)2 ‖f(A)‖2F .

The theorem shows that the subspace spanned by a sample
of columns chosen according to (1) contains an approxima-
tion to f(A) that is nearly the best possible. Note that if the
top k right singular vectors of S belong to this subspace,
then f(A)

∑k
t=1 vtv

>
t would provide the required approx-

imation to f(A) and we would be done.

Now, the difference between Theorem 10 and the assump-
tion (1) is that we do not have control over pi for an O(ε)-
fraction of the rows (in squared row norm contribution) in
Theorem 10. Let A′ be the submatrix of A after remov-
ing those rows, then ‖f(A)‖F ≤ (1 + O(ε))‖f(A′)‖F .
We can apply Theorem 12 to A′ and take more samples
such that we obtain s rows from A′ (which holds with
1 − exp(−Ω(s)) probability by a Chernoff bound). We
therefore have the following corollary.
Corollary 13. Let yi’s be as in Algorithm 4 and c and ε be
as in Theorem 10. It holds with probability at least 0.7 that∥∥∥∥∥∥f(A)− f(A)

∑
j

yjy
>
j

∥∥∥∥∥∥
2

F
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Algorithm 4 Rank-k Approximation
Input: A ∈ Rn×n, rank parameter k, number of samples s

1: Initialize s parallel instances of (modified) Algorithm 3
2: Let (h1, p̂1), . . . , (hq, p̂q) be the returned vectors and

the sampling probability from the s instances of (mod-
ified) Algorithm 3

3: F ← concatenated matrix
(

h1√
sp̂1

· · · hs
sp̂s

)
4: Compute the top k left singular vectors of F , forming
L ∈ Rn×k

5: return L

≤ min
D:rank(D)≤k

‖f(A)−D‖2F +

(
30k

sc
+ ε

)
‖f(A)‖2F .

Note that Algorithm 3 can be easily modified to return the
sampling probability of the sampled column, which is just
λ
(j)
i /

∑
j M̃j . However, for each sample, we may lose con-

trol of it with a small constant probability. To overcome
this, inspecting the proof of H-Sketch, we see that for
fixed stream downsampling and fixed ζ in Algorithm 3, re-
peating each heavy hitter structure O(log(L/δ)) times and
taking the median of each M̃j will lower the failure proba-
bility of estimating the contribution of each important level
to δ/(L + 1), allowing for a union bound over all levels.
Hence, with probability at least 1−δ, we can guarantee that
we obtain a (1 ± O(ε))-approximation to ‖(f(A))u‖22 and
thus a (1 ± O(ε))-approximation to ‖f(A)‖2F . Hence the
returned p̂u is a (1±O(ε))-approximation to the true row-
sampling probability pu = ‖(f(A))u‖22/‖f(A)‖2F . Differ-
ent runs of the sampling algorithm may produce different
values of p̂u for the same u but they are all (1 ± O(ε))-
approximations to pu. We can guarantee this for all our s
samples by setting δ = O(1/s), which allows for a union
bound over all s samples.

Therefore, at the cost of an extra O(log s) factor in space,
we can assume that p̂u = (1 ± O(ε))pu for all s samples.
The overall algorithm is presented in Algorithm 4.

The following main theorem follows from Corollary 13 and
the argument in (Frieze et al., 2004).

Theorem 14. Let s = O(k/ε) be the number of samples
and y1, . . . , yk be the output of Algorithm 4. It holds with
probability at least 0.7 that

∥∥f(A)− LL>f(A)
∥∥2
F

≤ min
D:rank(D)≤k

‖f(A)−D‖2F + ε ‖f(A)‖2F .

4. Experiments
To demonstrate the benefits of our algorithm empirically,
we conducted experiments on low-rank approximation

with a real NLP data set and used the function f (x) =
log (|x|+ 1).

The data we use is based on the Wikipedia data used
by Liang et al. (2020). The data matrix A′ ∈ Rn×n (n =
104) contains information about the correlation among the
n words. Its entries areA′i,j = pj log(Ni,jN/(NiNj)+1),
where Ni,j is the number of times words i and j co-occur
in a window size of 10, Ni is the number of times word i
appears and Ni’s are in a decreasing order, N =

∑
iNi

and pj = max{1, (Nj/N10)2} is a weighting factor which
adds larger weights to more frequent words. Since A′, and
thus f(A′), have almost the same column norms, we in-
stead consider A = A′ − 11>A′, where 1 is the vector of
all 1 entries.

We compare the accuracy and runtime with the previous
three-pass algorithm of Liang et al. (2020). The task is to
find L ∈ Rn×k with orthornormal columns to minimize the
error ratio

e(L) =

∥∥f(A)− LL>f(A)
∥∥
F

‖f(A)− UU>f(A)‖F
,

where U ∈ Rn×k has the top k left singular vectors of
f(A) as columns. The numerator ‖f(A) − LL>f(A)‖F
is the approximation error and the denominator ‖f(A) −
UU>f(A)‖F is the best approximation error, both in
Frobenius norm.

4.1. Algorithm Implementation

We present our empirical results for the one-pass algorithm
and a faster implementation of the two-pass algorithm in
Figure 1 and Figure 2. Both algorithms run in 0.1% of the
runtime of Liang et al. (2020)’s three-pass algorithm. The
one-pass algorithm is less accurate than the two-pass algo-
rithm when the space usage is small, which is not unex-
pected, because the second pass enables noiseless column
samples. Still, as discussed below, one-pass algorithms are
essential in certain internet NLP applications. Even our
two-pass algorithm has a considerable advantage over the
prior three-pass algorithm, by matching its accuracy in sig-
nificantly less time and one fewer pass.

For the two-pass algorithm, we sample the columns of A
using Algorithm 3 in the first pass and only recover the po-
sitions of the heavy columns in each magnitude level. Tak-
ing s samples will incurO(spoly(ε−1 log n)) heavy hitters
in total. In the second pass we obtain precise f(A) values
for our samples and thus noiseless column samples. Then
we calculate the sampling probability p̂u according to the
error-free column norms.

To reduce the runtime, we do not run s independent copies
of Algorithm 3 for s samples; instead, we take m samples
from each single run of Algorithm 3 and run s/m indepen-
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Figure 1. Error ratios of the one-pass, two-pass and three-pass al-
gorithms. The x-axis is the ratio between the space of the sketch
maintained by the tested algorithm and the space to store the input
matrix. The y-axis is the error ratio e(L). Solid dots denote the
mean of the error ratios over 10 independent trials and the vertical
bars denote the standard deviation of the one-pass and two-pass
algorithms.

dent copies of Algorithm 3. Hence the s samples we obtain
are not fully independent.

All experiments are conducted under MATLAB 2019b on
a laptop with a 2.20GHz CPU and 16GB RAM.

We set k = 10, m = 100 and plot the error ratios of our
algorithm in Figure 1. For each value of space usage, the
mean and standard deviation are reported from 10 indepen-
dent runs. In the same figure, we also plot the results of
the three-pass algorithm of Liang et al. (2020) at compara-
ble levels of space usage. Since the three-pass algorithm is
considerably slower, we run the three-pass algorithm only
once. Additionally we plot the runtimes of all algorithms
in Figure 2.

We can observe that even at the space usage of approxi-
mately 12% of the input data, the error ratio of our two-pass
algorithm is stably around 1.05. The one-pass algorithm is
less accurate than the one-pass algorithm when the space
usage is less than 20%, which is not unexpected, because
the second pass enables noiseless column samples. Over-
all, the error ratio of the one- and two-pass algorithms is
similar to that of the three-pass algorithm for space usage
level at least 0.2, while the runtime of both algorithms is at
most 0.1% of that of the three-pass algorithm, which is a
significant improvement.

5. Application to Linear Regression
In this section, we consider approximately solving the
linear regression problem using the H-Sketch from Sec-
tion 3.1.

We shall need to sample rows from the concatenated ma-
trix Q =

(
f(A) b

)
, where A ∈ Rn×d and b ∈ Rn are

given in a turnstile stream, and f(x) = ln(1 + |x|) is the
transformation function. This can still be achieved using
the same H-Sketch in Section 3.1, applied to the con-
catenated matrix

(
A b

)
, with the transformation function
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Figure 2. Runtimes of the one-pass, two-pass and three-pass al-
gorithms. The x-axis is the ratio between the space of the sketch
maintained by the tested algorithm and the space to store the input
matrix. The y-axis is the runtime in seconds. Solid dots denote
the mean of 10 independent trials of the one-pass and two-pass
algorithms. The standard deviations are all less than 1.5 seconds
and thus omitted.

f(x) (x ∈ Rd+1) replaced with g(x) =
(
f(x1:d) xd+1

)
,

where x1:d denotes the first d coordinate of x and xd+1 the
last coordinate of x. Then, using identical arguments in
Section 3.1 for the squared `2-norm on the first d coordi-
nates and a standard Count-Sketch argument for the last
coordinate, it is straightforward to show an analogous ver-
sion of Theorem 10 as below. We omit the identical proof.

Theorem 15. Let ε > 0, and let Hj0,i0 be the vector re-
turned by Algorithm 3. With probability at least 0.9, it
holds that there exists u ∈ [n] such that

(1−O(ε))
(
‖f(Au)‖22 + |bu|2

)
≤ ‖g(Hj0,i0)‖22

≤ (1 +O(ε))
(
‖f(Au)‖22 + |bu|2

)
.

Theorem 15 states that each sample is a noisy version of
the u-th row of Q. Let pu = ‖Qu‖22/‖Q‖2F be the true
sampling probability of the u-th row. As argued at the be-
ginning at Section 3.2, we may assume, at the cost of an
O(log s) factor in space, that every sample is good, i.e.,
the returned sampling probability p̂u satisfies that p̂u =
(1 ± O(ε))pu and the noise in each sample is at most an
O(ε)-fraction in its `2 norm.

Below we present our algorithm for linear regression in Al-
gorithm 5, assuming that every sample is good in the sense
that p̂u = (1 ± O(ε))pu and the noise in each sample is at
most an O(ε)-fraction in `2-norm. The guarantee is given
in Theorem 16 and the proof is deferred to Section D.

Theorem 16. Given matrix A ∈ Rn×d and vector b ∈ Rn,
let κ = κ(f(A)) be the condition number of the trans-
formed matrix. Let s = O(dκ

2

ε2 log d
δ ), then Algorithm 5

outputs a vector x̃ ∈ Rd, which, with probability at least
1− δ, satisfies∥∥∥M̃x̃− b̃

∥∥∥
2
≤ (1 + ε) min

x∈Rd
‖f(A)x− b‖2 + ∆,
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Algorithm 5 Linear Regression
Require: A ∈ Rn×d, number of samples s

1: Initialize s parallel instances of Algorithm 3
2: Run Algorithm 3 on the concatenated matrix(

f(A) b
)

to obtain s row samples h1, . . . , hs and the
corresponding sampling probabilities p̂1, . . . , p̂s

3: T ← vertical concatenation of h1√
sp̂1
, . . . , hs√

sp̂s

4: M̃ ← first d columns of T , b̃← last column of T
5: x̃← arg minx∈Rd ‖M̃x− b̃‖2

where

∆ = ε

(√
d+

‖b‖22
‖f(A)‖22

κ ‖b‖2 +
√
‖f(A)‖2F + ‖b‖22

)
.

The total space used by Algorithm 5 is Õ(d2κ2 log 1
δ ) ·

poly(log n, 1ε ).

Finally, we note an error in (Liang et al., 2020). Let
G = f(A) and S be a subspace embedding sketching ma-
trix of s = poly(d/ε) rows for the column space of G. In
their proof of the regression problem in Section E, the up-
per bound of C2 is wrong as it claims that ‖(S̃G)†‖2 ≤
C‖(SG)†‖2; a correct bound should be ‖(S̃G)†‖2 ≤
10ndκη‖(SG)†‖2, where η = maxi,j |(S̃G)i,j − (SG)i,j |
could be linear in

√
n by their LOGSUM guarantee. The

proof in (Liang et al., 2020) does not account for such
a dependence on n and κ. Correcting the proof would
yield a similar bound as ours but with an addtive error
∆ = n2κ3 poly( εd )‖b‖2, which depends polynomially on
n. Our additive error has no dependence on n but depends
on ‖b‖22/‖f(A)‖22 and has an additional additive term of
ε‖Q‖2, which is an artefact of sampling the rows of Q.
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