The Emergence of Individuality

A. Mathematical Formulation

Let € and ¢ denote the parameters of the joint policies and the probabilistic classifier, respectively. Then, the whole learning
process corresponds to the following bi-level optimization:
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where J is the RL objective with intrinsic reward, £ is the loss function of the probabilistic classifier, and ¢ is an implicit
function of 6. Therefore, to solve this optimization, we can iteratively update 0 by
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which is obtained by the implicit function theorem. In practice, the second-order term is neglected due to high computational
complexity, without incurring significant performance drop, such as in meta-learning and GANs. Therefore, we can solve
the bi-level optimization by the first-order approximation with iterative updates:
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B. Hyperparameters

The hyperparameters of EOI and the baselines in each scenario are summarized in Table 1. Since QMIX and MAAC are
off-policy algorithms with replay buffer, we do not need to maintain the buffer B but build the training data from the replay
buffer D. For EDTI, ROMA, and HC, we use their default settings.

Table 1. Hyperparameters

Hyperparameter Pac-man  Windy Maze Firefighters Battle 10_vs_10
runs with different seeds 5 10 5 5 5
horizon (T°) 30 15 20 100 100
discount (vy) 0.98 0.96 0.995
replay buffer size 2 x 10* 1 x 10*
actor learning rate 1x1073 - 3x107*
critic learning rate 1x1074 - 1x107*
QMIX learning rate 1x1074 -
# MLP units (128,128)
batch size 128
MLP activation ReLU
optimizer Adam
¢ learning rate 1x1073 1x107% 1x107*
o in QMIX 0.05 0.02 -
ain MAAC 0.2 - 0.04
b1 0.04 0.05 0.05
2 0.1 0.05 0.05
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