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Appendix

A. Proofs
A.1. Proofs for Section 2

Proof of Theorem 1. Consider the distribution where there are two connected components, one for X+ and one for X−, each
with mixture probability p = 1

2 . Thus, Assumption 1 holds and we are choose to free the other parameters of the distribution
in any way that satisfies Assumption 2 and 3 (e.g. a mixture of uniform density functions satisfies these assumptions). Now
note that with probability 1

2 , the final point that is label queried by the passive learner will be positive and, thus, the passive
algorithm will need to query all of the points with probability 1

2 in order to retrieve all positive points. In such an event, the
excess query cost is at least 1

2 · n.

A.2. Proofs for Section 3

Much of our technical results require the following uniform high-probability guarantee that balls of sufficient probability
mass contain an example:

Lemma 3. Let 0 < δ < 1 and F be some distribution over RD and X be a sample of size n drawn i.i.d. from F . There
exists universal constant C0 such that the following holds with probability at least 1− δ uniformly over all balls B ∈ RD:

F(B) ≥ C0 ·D · log(2/δ) log n

n
⇒ |B ∩X| > 0.

Proof. This follows by Lemma 7 of Chaudhuri & Dasgupta (2010).

The following result bounds the volume of the ε-neighborhood around X+, which will be used later to bound the excess
number of points queried around X+. The result says that the volume of the ε-neighboorhood around X+ (and not including
X+) is linear in ε.

Lemma 4. Suppose Assumption 2 holds. Then there exists constants r1, C ′+ > 0 depending only on X+ such that for all
0 < ε < r1, we have

Vol(B(X+, ε)\X+) ≤ C ′+ · ε,

where B(X+, ε) := {x ∈ RD : infx′∈X+
|x− x′| ≤ ε}.

Proof of Lemma 4. This follows from Gorin (1983). To see this, the equation on page 159 of Gorin (1983) states that if M
and N are respectively d-dimensional and (d+ k)-dimensional compact smooth Riemannian manifolds and f : M → N is
a smooth isometric embedding, then we have

Vol(B(f(M), ε)) = Vk · εk · Vol(M) +O(εk+1),

where Vk is the volume of a k-dimensional ball. Here, we take M = X+ and N = B(X+, r1) for some r1 > 0. Then, we
have k = 0 and taking f to be the identity function, we have

Vol(B(X+, ε)) = Vol(X+) +O(ε),

and the result follows immediately.

Proof of Theorem 2. By Hoeffding’s inequality, out of the initial m examples that Algorithm 1 label queries, we have with

probability at least 1− δ/2 that at least p−
√

1
2m · log(2/δ) fraction of them are positively labeled, since the example being

positive follows a Bernoulli distribution with probability p. Then by the condition on m, we have that at least p/2 fraction
of the points are positively labeled.

Take

ε =

(
2 · C0 ·D · log(4/δ) log(p ·m/2)

p2 · λ0 · C+ · vD ·m

)1/D

, M0 = max

{
2 · C0 ·D(log(p · /2) + 1)

p2 · λ0 · C+ · vD ·min{r0, r1}D
, 2e

}
,
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where vD is the volume of a unit ball in RD. Then, we have that the condition onm andM0 guarantees that ε < min{r0, r1}.

Let x ∈ X+. We have that the probability mass of positive examples in B(x, ε) w.r.t. P is:

p · P+(B(x, ε)) ≥ p · λ0 · Vol(B(x, ε) ∩ X+)

≥ p · λ0 · C+ · Vol(B(x, ε))

≥ p · λ0 · C+ · vD · εD

≥ 2 · C0 ·D log(4/δ) log(p ·m/2)

p ·m
.

Then by Lemma 3, we have with probability at least 1− δ/2 that all the positive examples in X are within ε of one of the
positive examples among the initially sampled m examples. Therefore, Algorithm 1 retrieves all of the positive examples.

Now we bound the expected regret:

E[Coffline] ≤ (1− p) ·m+ n · (1− p) · P−(B(X+, ε)\X+)

≤ (1− p) ·m+ n · (1− p) · λ1 · C ′+ · ε.

The result follows.

Proof of Theorem 3. Let P+ be the uniform distribution on the unit hypercube [0, 1]D and P− be the uniform distribution
on [−1, 2]D. In the initial sampling phase of Algorithm 1, at most m of the examples will be positively labeled. Let
X̂+ = X ∩

(
∪x∈X0,+

B(x, ε)
)
, the set of points that Algorithm 1 labeled. Then, Theorem 3b in (Cuevas et al., 1997) shows

that for n sufficiently large, with probability at least 1/4, we have

dH(X̂+,X+) ≥ 1

4

(
logm

m

)1/D

for any ε > 0, where dH(A,B) := max{supx∈A d(x,B), supx∈B d(x,A)} is the Hausdorff distance. Therefore, we have
(in the case of taking ε→ 0):

dH(X0,+,X+) ≥ 1

4

(
logm

m

)1/D

.

Since X0,+ ⊆ X+, it follows that dH(X0,+,X+) = supx∈X+
d(x,X0,+). Therefore, we need ε ≥ 1

4

(
logm
m

)1/D
in order

for Algorithm 1 to recover all of the positive examples. Thus, the expected regret is at least (for some C > 0)

E[Coffline] ≥ (1− p) ·m+ C ·
(

logm

m

)1/D

· n,

as desired.

A.3. Proofs for Section 4

Proof of Lemma 1. By Hoeffding’s inequality, out of the initial m examples that Algorithm 2 label queries, we have with

probability at least 1− δ/2 that at least p−
√

1
2m · log(2/δ) are fraction of them are positively labeled, since the example

being positive follows a Bernoulli distribution with probability p. Then by the condition on m, we have that at least p/2
fraction of the points are positively labeled and thus we have at least mp/2 positive examples.

Then, we have that out of these mp/2 examples, the probability that none of them are in X+,i for each i ∈ [c] is at most

(1− P+(X+,i))
mp/2 ≤ (1− q)mp/2 ≤ δ

2c
.

The result follows by union bound.
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Proof of Lemma 2. Let x, x′ ∈ X+,i. There exists a path x = x1 → x2 → . . .→ xq = x′ in X+,i such that ||xj−xj+1|| ≤
ε/3. We also have that the probability mass of positive examples in B(xj , ε/3) w.r.t. P is:

p · P+(B(xj , ε/2)) ≥ p · C+ · λ0 · vD · (ε/3)D ≥ C0 ·D log(2/δ) · log n

n
.

Therefore by Lemma 3, there exists x′j ∈ B(xj , ε/3) ∩X+, where X+ are the positive examples in X . Hence, by triangle
inequality, there exists path x = x′1 → x′2 → ... → x′q = x′ all in X+ where ||x′j − x′j+1|| ≤ ||x′j − xj || + ||xj −
xj+1||+ ||xj+1 − x′j+1|| ≤ ε implying that X+,i ∩X+ is connected in the ε-neighborhood graph of X+. The result follows
immediately.

Finally, we combine these two results to show the final excess query cost guarantee for Algorithm 2.

Proof of Theorem 4. Take

N0 =
3D · C0 ·D

min{r0, r1}D · p · C+ · λ0 · vD
.

By Lemma 1, there exists at least one positive example in the initial m samples from each connected component of X+.
Define

ε := 3

(
C0 ·D log(4/δ) · log n

p · C+ · λ0 · vD · n

)1/D

.

We have that the condition on n implies that ε ≤ min{r0, r1}. By Lemma 2, we have that all of the positive examples of
each connected component of X+ are in the same CC of the ε-neighborhood graph of the positive examples. Therefore,
when the algorithm terminates, the set of examples it will select from will be contained in B(X+, ε).

Therefore, we have

E[Cexp-commit] ≤ (1− p) ·m+ C ′+ · ε · n ≤ (1− p) ·m+ C · ((log(4/δ) · log n)
1/D · n(D−1)/D,

for some C depending on P , as desired.

B. Additional Experiment Plots
In Table 3, we show the full results for the Letters dataset for the area under curve metrics. We see that in all cases, our
method outperforms outright. In Table 4, we show the full results for CelebA. We see that our method is competitive for 32
out of the 40 tasks.
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Dataset Label O O-LS A-LS O-RS A-RS O-IF A-IF O-RC A-RC EC (Ours)

Letters

A 91.14 52.52 52.49 84.81 89.02 59.52 84.69 64.27 86.87 97.12
B 83.41 52.73 52.57 75.95 82.41 56.13 75.89 61.38 80.18 93.76
C 84.48 56.19 56.08 75.92 83.78 55.78 78.68 59.21 81.92 94.2
D 83.51 52.57 52.45 76.14 82.23 56.09 76.03 61.51 78.83 93.73
E 78.6 52.85 52.99 74.84 81.41 55.77 73.7 60.17 77.27 89.5
F 83.63 53.4 53.41 78.72 83.16 57.44 77.83 64.69 80.88 94.0
G 82.23 52.72 52.67 75.76 81.88 58.15 74.58 63.45 79.79 92.35
H 69.07 52.4 52.63 61.19 69.51 53.95 64.15 52.03 66.94 81.78
I 84.26 52.37 52.59 73.96 80.72 55.95 77.56 59.11 83.83 93.89
J 84.24 54.45 54.35 75.16 81.72 56.22 77.06 58.58 81.61 94.28
K 72.7 52.57 52.62 65.15 72.03 55.46 68.12 51.45 74.38 89.4
L 80.98 52.59 52.67 72.74 79.87 55.44 77.73 59.16 78.57 93.18
M 81.83 54.41 54.25 77.48 83.23 59.55 78.61 60.62 81.67 93.07
N 75.15 52.67 52.68 68.58 75.31 55.37 69.43 55.85 73.74 89.8
O 87.71 52.51 52.62 80.88 86.08 57.88 78.08 67.62 82.71 94.69
P 84.76 52.7 52.7 79.24 84.47 57.63 79.18 64.81 83.19 93.47
Q 82.25 53.22 53.08 74.97 80.09 55.71 74.66 60.49 79.55 92.18
R 82.68 52.59 52.48 76.72 82.47 56.32 75.3 61.37 79.26 92.77
S 76.51 52.83 52.91 70.42 75.85 55.24 72.01 59.66 75.84 89.27
T 83.47 55.32 55.35 76.38 82.95 56.87 79.06 62.87 81.96 93.34
U 78.05 52.91 53.05 73.72 81.28 55.86 72.81 58.56 76.41 92.7
V 89.82 54.61 54.59 82.3 87.65 59.74 82.18 61.01 85.18 96.19
W 90.15 55.25 55.29 84.57 89.11 59.37 82.04 63.1 86.65 96.79
X 80.18 52.63 52.6 74.84 80.68 55.92 73.04 62.48 78.1 92.93
Y 81.73 54.65 54.7 72.3 79.67 57.49 76.38 53.48 79.33 92.46
Z 83.78 54.6 54.54 76.89 84.18 56.46 78.56 60.14 82.64 93.35

Table 3. Letters: Area under curve metric.
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Label O O-LS A-LS O-RS A-RS O-IF A-IF O-RC A-RC EC (Ours)
5-o-Clock-Shadow 20.17 15.54 15.55 17.31 18.28 17.89 18.85 20.25 22.49 23.85
Arched-Eyebrows 19.29 15.52 15.51 17.54 17.69 18.34 18.65 19.87 19.76 20.93

Attractive 18.4 19.19 18.32 18.6 18.7 18.86 18.89 18.03 17.93 18.61
Bags-Under-Eyes 17.06 15.5 15.51 16.58 17.54 17.26 17.11 17.3 16.33 16.97

Bangs 20.88 15.52 15.52 20.6 19.97 20.49 21.43 22.12 19.9 22.08
Bald 18.52 15.48 15.49 16.6 16.98 15.48 17.92 NA NA 28.34

Big-Lips 15.81 15.51 15.5 15.44 14.91 15.26 15.46 15.61 15.68 16.35
Big-Nose 16.58 15.53 15.53 15.92 16.58 15.95 16.23 16.88 16.12 17.23

Black-Hair 22.87 15.49 15.5 20.8 19.43 21.35 22.52 21.23 20.5 24.6
Blond-Hair 36.36 15.67 15.67 31.41 34.64 35.92 37.84 37.31 39.24 41.72

Blurry 16.75 15.44 15.48 16.38 16.06 16.48 16.66 16.66 16.81 17.79
Brown-Hair 20.88 15.48 15.48 18.82 20.45 20.64 21.34 20.94 20.77 21.57

Bushy-Eyebrows 19.11 15.49 15.49 17.87 18.12 18.18 18.7 18.88 19.2 21.3
Chubby 16.77 15.51 15.5 15.98 16.2 15.83 16.15 16.51 19.01 18.63

Double-Chin 18.05 15.53 15.52 16.73 17.31 16.17 17.28 16.66 22.57 22.3
Eyeglasses 16.48 15.51 15.5 16.14 17.12 16.48 16.78 17.74 15.88 15.44

Goatee 17.57 15.49 15.51 16.86 16.69 16.22 16.93 16.98 17.98 19.81
Gray-Hair 23.19 15.53 15.55 19.55 21.77 17.01 23.12 20.84 32.86 31.66

Heavy-Makeup 21.42 15.85 15.58 20.49 20.5 21.24 21.94 21.29 20.4 22.45
High-Cheekbones 19.17 15.38 15.17 18.59 18.79 18.91 18.89 19.78 18.77 20.07

Male 18.64 15.49 15.57 20.09 19.36 19.14 18.8 18.43 16.5 19.24
Mouth-Slightly-Open 17.37 15.66 15.56 17.43 17.34 17.42 17.16 17.79 17.2 17.77

Mustache 17.16 15.5 15.48 16.77 16.46 15.98 16.99 16.64 17.05 18.13
Narrow-Eyes 15.48 15.49 15.5 15.66 15.95 15.78 15.78 15.68 15.36 14.83

No-Beard 15.82 16.38 16.37 15.79 15.93 16.0 15.99 16.08 15.98 15.83
Oval-Face 18.02 15.5 15.5 16.76 17.11 17.18 17.37 18.56 18.37 19.22
Pale-Skin 18.15 15.45 15.48 19.89 19.15 16.95 20.95 18.75 17.94 19.55

Pointy-Nose 18.55 15.49 15.49 17.03 17.22 17.23 17.75 18.69 18.8 19.97
Receding-Hairline 18.5 15.5 15.5 17.09 17.47 16.67 17.55 18.61 22.2 22.38

Rosy-Cheeks 23.96 15.5 15.51 19.77 22.49 18.5 22.3 22.45 32.64 34.69
Sideburns 18.32 15.51 15.52 17.23 17.19 16.9 17.39 17.41 19.36 21.77
Smiling 19.46 16.01 15.52 18.97 19.05 19.31 19.15 19.89 18.81 20.15

Straight-Hair 16.1 15.5 15.5 15.97 16.25 15.91 16.02 16.24 16.13 16.29
Wavy-Hair 21.0 15.52 15.52 20.18 20.09 20.56 20.97 21.13 20.42 21.88

Wearing-Earrings 18.75 15.47 15.47 16.93 17.87 17.75 18.37 19.28 20.0 20.62
Wearing-Hat 18.32 15.48 15.49 18.33 18.27 17.44 19.95 20.12 15.16 16.82

Wearing-Lipstick 20.42 19.0 17.34 19.64 19.65 20.49 20.8 20.21 19.51 21.06
Wearing-Necklace 18.99 15.48 15.49 16.72 17.85 17.54 18.15 19.44 21.28 21.48
Wearing-Necktie 19.56 15.52 15.51 17.51 18.13 16.53 18.36 18.45 23.79 24.46

Young 15.51 16.22 16.21 15.54 15.63 15.55 15.55 15.56 15.51 15.57

Table 4. CelebA: Area under curve metric. We note that for Bald, there were no results for the Robust Covariance metrics. This is because
due to the low rate of positive examples, it was not possible to tune Robust Covariance’s hyper-parameters via cross-validation on the
initial sample.


