Supplementary Material

A. Stability in Off-policy n-step TD Learning

In the context of off-policy n-step TD learning, we discuss the possible occurrence of unstable learning in general as well as
characterize a safety region in the policy space that guarantees stable learning.

A.1. Unstable Learning

Following the same notations as in the main paper, let state value functions be approximated by a linear function approxima-
tion O] ¢(S;) where ¢ are feature maps. For the n-step TD target, the value function update on 6, is
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To achieve stability as defined in Sutton et al. (2016), we need b; and A; to converge to unique fixed points b and A,
and we need the steady state updates to be stable regardless of the initial parameters 6, equivalently requiring A to be a
positive-definite matrix.
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where I is a diagonal matrix with diagnal entries I'; ; = ¢ = (S;). To see the derivation from Eq. 29 to Eq. 30, take one
term in the sum indexed by 7. We have
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Back to Eq. 31, the resulting matrix A = ®7 D, [I — P"T"] ® is not necessarily positive definite since the key matrix
D,, [T — P?T"] can be non-positive definite. For example, in the two-state MDP when n = 2, let the discount y = 0.99.
We know that the steady state distribution following the behavior policy is equal probability of being in either state, and the
target policy always goes right, i.e.
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Hence the key matrix is

(39)

0.5  —0.992/2
D, [I-+°P}] = [ 0 (1 —0.992)/2} '

It is not a positive definite matrix through checking multiplication on both sides by setting ® = (1,2)%.

A.2. Safety Guarantee

Recall that the key matrix of the TD(0) algorithm is given by D,, [I — P,I']. We now briefly summarize a few facts about
the key matrix from (Sutton et al., 2016). First, the diagonal entries of the key matrix are positive and the off-diagonal entries
are negative, so in order to show its positive definiteness it is enough to show that each row sum plus the corresponding
column sum is positive. The row sums are all positive because P is a stochastic matrix and values in I' are smaller than
1. Thus it only remains to show that the column sums are non-negative. The problem is that this is not true for a general
D., D, as was shown in (Sutton et al., 2016). We further showed that this is not true for general n-step TD learning
(App. A.1). Yet, we show next that for a distribution D, that is close enough to D the key matrix is still positive definite.
Intuitively, the implication of this result is that doing off-policy learning with D, ~ D), is stable. To show that, we need to
show that the column sums of the key matrix are all positive. We begin by lower bounding them as follows:
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It remains to show that Eq. (43) has only positive coordinates. The i-th coordinate is given by dX[I — T']; + (d, —
d,)T [I — P,T),, where the subscript i denotes the i-th column of a matrix. By Holder inequality, we have that:

di[I —T); + (dy — dx)" [I = P,T); > dL[I = T); — [|dy — dul|ool| [T — P;TY, |1 (44)

The first term in the last equation d [I — T'); is positive and does not depend on p. The second term has two contributions.
The first one, ||d,, — d||~ depends on p and 7 but it can become as small as we want in the limit that ;o — 7. The second
quantity, || [I — P.TI, ||; depends only on 7. This implies that for a fixed 7 there exists a y that is close enough to it such
that the key matrix is positive definite.

Note that we can repeat this analysis for n-step TD. In this case we need to show that the key matrix D,, [I — PPT"]is
positive definite (see Appendix A.l above for its derivation). All the derivation we did above for the TD(0) applies to the
n-step TD scenario by replacing P, with P". The only step which we need to justify is dZ [I — P*T"] = d% (I —T), but
to see this recall that dL P, = dL,sodl P" =dL P, P! =dlpPr—t=...=dL.

B. WETD Derivation
B.1. TD()\;) as mixed n-step TD target

Defining ); as in Eq. 8, we write out the off-policy TD(\;) learning target by adding the importance sampling correction to
Eq. (12.10) in (Sutton & Barto, 2018) for an arbitrarily large integer g
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In the sum of weighted TD errors from time ¢ to time (¢ + g — 1), the weight H;:t A; is zero if any of the values \; = 0,
and the TD return bootstraps at the first encounter of A; = 0. For simplicity, first consider when ¢ = 0, the n-step TD
corresponds to the truncated return where all terms in the sum are zero for ¢ > n, requiring A,, = 0. At ¢ = n, we have that
A2n, = 0 produces the n-step TD learning target. In general, this corresponds to A; = 0 whenever j is a multiple of n. To
check that this is the mixed update for any k-th sample in the trajectory,
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since t + n is the smallest number bigger than ¢ such that ¢ 4+ n is a multiple of n. Thus we recover the mixed n-step update
where each sample V' (S; 1) in the trajectory is updated with (n — k)-step TD error.

B.2. TD()\;) as mixed V-trace target

In Eq. 46 above, if we set \; = p;/p; as defined in Eq. 18, we recover the mixed V-trace target.
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C.NETD Derivation

In order to simplify notations in the computation below, we denote the NETD trace as F' by omitting the superscript (n).
Given the possibly unstable asymptotic updates shown in App. A.1, we can modify the updates with F; to ensure that the
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new limit matrix A is positive definite, i.e. to stabilize learning. The F;-modified parameter update is
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Eq. 51 is obtained from Eq. 50 by using the linearity of expectation over the learning updates on different states weighted
by their steady state visit frequencies. Eq. 52 is obtained from Eq. 51 since conditioned on the state S;, emphatic trace
F; computed with variables “from the past” is independent from the TD update using variables “in the future”. Since the
second expectation term in Eq. 52 does not depend on the time step ¢ but only depends on the state value s under the steady
state distribution, we take it out of the limit and for clarity, we re-index its time step with a new variable k. This becomes
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where F is a diagonal matrix with diagonal elements f(s) = d,,(s) lim;_,o E,,[F}|S; = s], which we assume exists. Eq. 55
reorganizes terms in Eq. 54 into their matrices notations and forms the telescoping sum as in Eq. 30.

Recall that the sufficient condition for a matrix to be positive definite from Sutton et al. (2016) is to have all positive diagonal
entries and all negative off-diagonal entries in the key matrix, and that its row sum plus column sum is positive. The key
matrix is F'(I — P*T"™) where F is a diagonal matrix with all positive entries on the diagonal, hence with discounts and
transition probabilities smaller than 1, the key matrix has positive diagonal entries and all negative entries on the off-diagonal.
The row sum is positive since P is a transition matrix with row sum equal to 1 and the discounts are smaller than 1. Hence
to make the key matrix F'(I — P?T™) into a positive definite matrix, we just need the columns sum to be positive. Let f be
the diagonal entries of F'. If we define
1

f=[1-(@)T] d,, (56)
where d,, is the vector of diagonal elements of D,,, then the column sum of the key matrix is
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which is an all positive vector. Therefore F' thus defined, the resulting key matrix is positive definite and the steady state
learning updates are stable.

In order to apply the emphatic trace to every update, we need to derive the follow-on trace (NETD) at every time step that
corresponds to the thus defined F' matrix. We show that this following trace gives the above defined F' matrix:

n
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i=1

Take the n = 2 for an example, i.e. Fy = V4 yi—1pt—1pt—2F1—o + 1, with Fy, Iy = 1. Recall for any state s,
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D. Emphatic traces for the V-trace target

Recall that V-trace was developed in (Espeholt et al., 2018) as a method to reduce the variance in importance sampling
based off policy policy evaluation. The motivation for V-trace was to correct small off-policy discrepancies that result from
parallelizing, i.e., the parameters of the actors lag behind the parameters of the learner. However, the analysis of V-trace was
only performed in the tabular MDP setting and not with function approximation. We now show that with linear function
approximation, V-trace suffers from the same stability issues as standard IS method, i.e., that the corresponding key matrix
is not positive definite. Recall that V-trace truncates the IS ratios in by some constant 5, such that 5, = min{p, p; }. Before
we begin we introduce some notation.

We denote the denominator in Eq. 6 by v(s) = >° .. 4 min(pu(a’|s),n(a’[s)). Using this notation, we have that the

importance sampling ratio between the true target V-trace policy 75 (Eq. 6) and the behaviour policy i is given by:
v _ m5(AdSy) _ _pe
P = UATs) = WS

D.1. WEVtrace
We define the emphatic trace for the V-trace update at n = 1 as:

FY = Fmpi_y +1,Vt>0. (69)
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where F|j = 1. To see why it stabilizes V-trace learning, we now examine the limit of the A matrix when using the truncated
importance sampling ratios p; as in V-trace together with the V-trace follow on trace (Eq. 69). We have that:

A= lim E[A] = lim E,Fd(S)pe [¢(S:) — Ye410(Se41)]" (70)
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plugging in the definition of p}. Just like the derivation from Eq. 52 to Eq. 53, we use the fact that given .S;, the emphatic
trace FY is independent of p}v(S;)d:(¢p+ — vdi41) and the expected value of the latter term does not depend on the time
step ¢ under the steady state distribution, so for clarity we change the time index to a new variable k. Thus we have

D2 () Jim B [F{1S: = S| [oi(S09(50) [$(Sk) = wear bS][ = o 73)
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In Eq. 74 we used the fact that v(s) is a function of the state only (and not the action), in Eq. 75 we replace the expectation
over 4 with an expectation over 75, and finally in Eq. 76 we let IN be a diagonal matrix with elements v(s) on the diagonal.

It is easy to see that without the emphatic trace F}’, the V-trace steady state key matrix is ND,, [I - Py, 1"] , Which is not

necessarily positive definite. Thus V-trace may suffer from instability issues with linear function approximation. Following
-1

(Sutton et al., 2016), we have that F'¥ = [I — Pg; 1"} D,, with F as defined in Eq. 9. Let’s check that the key matrix

NF"Y [I - Pr, I‘] is positive definite. First notice that the F'¥ and N are diagonal matrices with positive diagonal entries.

With transition probabilities smaller than 1, the key matrix must have positive diagonal entries and negative off-diagonal

entries. Moreover its row sum is an all positive vector. The column sum of the key matrix is

1"F'(I - P,,T)N = f"(I - P,,T)N (77)
—dl [1-P,T] ' (I-P,T)N (78)
=d/ N, (79)

which is an all positive vector. Hence F}’ stabilized learning. Finally, combined with the definition of A} in Eq. 18, now we
have the WEVtrace.

D.2. NEVtrace

We define the emphatic trace for the n-step V-trace update as:

n

FIY = T eeirpb ) F0° 4 1, (80)

=1
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where F(gn)’v, Fl(n)’v, Coy Fr(fi)l’v = 1. The A matrix for the emphatically modified V-trace update becomes
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-1
where f(")%(s) are diagonal entries of F("):* and F(")-v = [I — N"PEETLI‘"} D,,. Similar to before, this F():¥

makes the approximate key matrix F(")*(I — N "P;Lﬁl"”) positive definite. Recall that IV is a diagonal matrix with either
value 1 or some value in (0, 1) for states where the IS weights are clipped by p, and Eq. 85 is approximate by treating one of

the IN matrices as an identity matrix.

To see why this follows from the NEVtrace definition in Eq. 80, recall derivations for NETD trace in Eq. 60 for n = 2. Here

we have

F(s) = d“(s)}g& ]Eu[Ft(")’“ | ¢ = 5]
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Extending this to any other positive integer value of n, we conclude

n),v n Nany—
F"v = (I - N"PL"T")™'D,,.

87)
(88)
(89)

(90)

oD
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E. Hyperparameters

Architectures.

Table 3. Network architecture

Parameter

convolutions in block | (2, 2, 2, 2)
channels (64, 128, 128, 64)
kernel sizes (3,3,3,3)

kernel strides (1,1,1,1)

pool sizes (3,3,3,3)

pool strides 2,2,2,2)

frame stacking 4

head hiddens 512

activation Relu

Our DNN architecture is composed of a shared torso, which then splits to different heads. We have a head for the policy
and a head for the value function (multiplied by the number of auxiliary tasks). Each head is a two-layered MLP with 512
hidden units, where the output dimension corresponds to 1 for the vale function head. For the policy head, we have |.A|
outputs that correspond to softmax logits. We use ReLU activations on the outputs of all the layers besides the last layer. For
the policy head, we apply a softmax layer and use the entropy of this softmax distribution as a regularizer.

The torso of the network is composed from residual blocks. In each block there is a convolution layer, with stride, kernel
size, channels specified in Table 3, with an optional pooling layer following it. The convolution layer is followed by n -
layers of convolutions (specified by blocks), with a skip contention. The output of these layers is of the same size of the
input so they can be summed. The block convolutions have kernel size 3, stride 1.

Hyperparameters. Table 4 lists all the hyperparameters used by our agent. Most of the hyperparameters follow the reported
parameters from the IMPALA paper. For completeness, we list all of the exact values that we used below.

Table 4. Hyperparameters table
Parameter Value
total environment steps 200e6
optimizer RMSPROP
start learning rate 6-10~* (mixed), 2 - 10~* (fixed)
end learning rate 0
decay 0.99
eps 0.1
importance sampling clip 1
gradient norm clip 0.3 (mixed), 1 (fixed)
trajectory n 40 (mixed), 10 (fixed)
batch size (m) 18
discount + (main) 0(4.6) = .99
discount ! (1%* auxiliary) | o(4.4) ~ .988
discount 72 (2"¢ auxiliary) | o(4.2) ~ .985
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G. Diagnostic experiments

We include the full experiment results and additional implementation details on the diagnostic MDPs in this section.

G.1. Two-state MDP

In Fig. 9, the rightmost column shows three baselines: Off-policy TD(0), Clipped off-policy n-step TD where all IS weights
are clipped except for those directly on the TD error, i.e. unbiased V-trace by (Espeholt et al., 2018), and V-trace. All
three baselines diverged on this MDP. The emphatic algorithms all converged to the optimal fixed point § = 0, however,
notice that both emphatic TD (NETD/WETD) and emphatic V-trace (NEVtrace/WEVtrace) algorithms exhibited unstable
learning, with some runs experiencing large jumps in value error late in training. The clipped emphatic traces (IS clipped at
1) theoretically have a finite variance, and empirically enjoy a faster convergence and stable learning after initial fluctuations.

As we increase the bootstrap length to n = 5, the Off-policy 5-step TD baseline converged quickly while the other two
baselines Clipped off-policy n-step TD and V-trace exhibited higher variances (see Fig. 10). Similar to before, the clipped
traces (row 2) were effective in variance reduction and demonstrated fast convergence. In comparison, WETD exhibited
more variance in learning, NEVtrace converged slowly and NETD, WEVtrace were unstable late in training.

G.2. Collision Problem

We present the full results in Fig. 11 and Fig. 12. All algorithms achieved stable learning with their best learning rates from
hyperparameter sweeps. Emphatic algorithms consistently achieved the smallest mean RMSE averaged over 200 runs for all
values of n tested.

G.3. Baird’s counterexample

Baird’s counterexample (Fig. 13) is a simple MDP with has seven states and simple linear features that causes TD and other
methods to diverge. The features are designed to cause unnecessary generalization, even though the true value function is
perfectly representable. This over-parameterization combined with a large mismatch in the target and behavior policies
typically causes divergence. See (Sutton & Barto, 2018) for an extensive discussion and analysis of Baird’s counterexample.

Using the TD(0) learning update (Fig. 14), both emphatic traces (row 1) converged quickly, with occasional instability in
some runs. The clipped emphatic traces (row 2) exhibit slow learning, but exhibit a clear downward trend. The n-step TD
baselines and all methods with V-trace targets diverged. This is not surprising as Baird’s counterexample is considerably
harder than the two-state MDP—Sutton’s ETD()\) diverges on Baird’s counterexample, but converges on the two-state
MDP (Sutton et al., 2016). Using 5-step TD learning (Fig. 15) improves the performance of several methods. The WETD
algorithms performed poorly compared to NETD algorithms and the n-step TD baseline. We see the effect of IS clipping:
lowering variance of both WETD and NETD. Vtrace, NEVtrace, and WEVtrace all slowly diverged and WEVtrace exhibited
unstable learning late in training. Clipped emphatic methods and n-step TD all benefit from longer n-step targets, significantly
improving over their one-step variants in Fig 14. In this challenging MDP, one-step methods are not sufficient for fast and
stable learning.
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Figure 9. RMSE over time on the two-state MDP with v = 0.9 and n = 1. Each subplot shows fifty independent runs of each algorithm
using the best setting setting of o found in the hyperparameter sweep. Note the log scale on x-axis.



Emphatic Algorithms for Deep Reinforcement Learning

Root Mean Squared Error

Root Mean Squared Error

Root Mean Squared Error

=
o

=
o

10;

o N B~ O

NETD 10,

o N B~ O

o N B~ O

P

\\ 6
41
21
0

10- Clip-WETD 100_Clipp?d (ﬁff-policy TD(n)
8 )
61 |
4
2
0
NEVtrace 10- WEVtrace 100- V-tr?ﬂce
o |
61
4
21
1Q2 103 10* ) 103 )
time steps time steps time steps

Figure 10. Same experiment setup on the two-state MDP as Fig. 9 except n = 5. Note the log scale on x-axis.
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Figure 11. Learning curves comparison on the Collision Episodic MDP. The results are averaged over 200 independent runs with each
algorithms best hyper-parameter setting from the sweep. The three baselines produced the highest averaged RMSE errors. Emphatic
algorithms ETD, NETD and EVtrace, NEVtrace consistently produced the lowest RMSEs for all bootstrap values n, followed by the
clipped emphatic traces.
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Figure 12. Hyper-parameter sensitivity comparison on the Collision Episodic MDP. Each data point in the plot portrays the mean RMSE
averaged over 200 runs for varying learning rate o and the bootstrap length n. The emphatic algorithms achieved the lowest value error
with smaller learning rates than the baselines.

top level

Figure 13. Baird’s counterexample MDP. Solid lines indicate the target policy 7r(down|-) = 1, ending up in the bottom state. The behavior
policy p(upl|-) = 6/7, p(down|-) = 1/7. When action is “up”, the agent goes to a random state on the top level. When action is “down”,

the agent goes to the bottom state.
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Figure 14. Baird’s MDP, n = 1,y = 0.9, 200 indepdendent runs. Each algorithm was run with its best hyperparameter setting. Note the

log scale on x-axis.
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Figure 15. Baird’s MDP, n = 5,y = 0.9, 200 indepdendent runs. Each algorithm was run with its best hyperparameter setting. NETD
has a smaller variance than ETD algorithms. Clipping the IS in emphatic traces help reduce the variance. Note the log scale on x-axis.



