
Characterizing Structural Regularities of Labeled Data in Overparameterized Models

A. Experiment Details

The details on model architectures, data set information
and hyper-parameters used in the experiments for empirical
estimation of the C-score can be found in Table 2. We imple-
ment our experiment in Tensorflow (Abadi et al., 2015). The
holdout subroutine used in the empirical C-score estimation
is based on the estimator proposed in Feldman & Zhang
(2020), and listed in Algorithm 1. Most of the training
jobs for C-score estimation are run on single NVidia® Tesla
P100 GPUs. The ImageNet training jobs are run with 8 P100
GPUs using single-node multi-GPU data parallelization.

The experiments on learning speed are conducted with
ResNet-18 on CIFAR-10, trained for 200 epochs while batch
size is 32. For optimizer, we use the SGD with the initial
learning rate 0.1, momentum 0.9 (with Nesterov momen-
tum) and weight decay is 5e-4. The stage-wise constant
learning rate scheduler decrease the learning rate at the 60th,
90th, and 120th epoch with a decay factor of 0.2.

Algorithm 1 Estimation of ĈD̂,n

Require: Data set D̂ = (X, Y) with N examples
Require: n: number of instances used for training
Require: k: number of subset samples
Ensure: Ĉ 2 RN : (ĈD̂,n(x, y))(x,y)2D̂

Initialize binary mask matrix M 0k⇥N

Initialize 0-1 loss matrix L 0k⇥N

for i 2 (1, 2, . . . , k) do

Sample n random indices I from {1, . . . , N}

M [i, I] 1
Train f̂ from scratch with the subset X[I], Y [I]
L[i, :] 1[f̂(X) 6= Y]

end for

Initialize score estimation vector Ĉ 0N

for j 2 (1, 2, . . . , N) do

Q ¬M [:, j]
Ĉ[j] sum(¬L[:, Q])/sum(Q)

end for

B. Time and Space Complexity

The time complexity of the holdout procedure for empirical
estimation of the C-score is O(S(kT + E)). Here S is the
number of subset ratios, k is number of holdout for each
subset ratio, and T is the average training time for a neural
network. E is the time for computing the score given the
k-fold holdout training results, which involves elementwise
computation on a matrix of size k ⇥ N , and is negligible
comparing to the time for training neural networks. The
space complexity is the space for training a single neural
network times the number of parallel training jobs. The
space complexity for computing the scores is O(kN).

For kernel density estimation based scores, the most expen-
sive part is forming the pairwise distance matrix (and the
kernel matrix), which requires O(N2) space and O(N2d)
time, where d is the dimension of the input or hidden repre-
sentation spaces.

C. More Visualizations of Images Ranked by

C-score

Examples with high, middle and low C-scores from all the
10 classes of MNIST and CIFAR-10 are shown in Figure 11
and Figure 12, respectively. The results from the first 60 out
of the 100 classes on CIFAR-100 is depicted in Figure 13.
Figure 14 and Figure 15 show visualizations from ImageNet.
Please see (URL anonymized) for more visualizations.

D. C-Score Proxies based on Pairwise

Distances

In the experiments of pairwise distance based C-score prox-
ies, we use an RBF kernel K(x, x0) = exp(�kx�x0

k
2/h2),

where the bandwidth parameter h is adaptively chosen as
1/2 of the mean pairwise Euclidean distance across the data
set. For the local outlier factor (LOF) algorithm (Breunig
et al., 2000), we use the neighborhood size k = 3. See
Figure 16 for the behavior of LOF across a wide range of
neighborhood sizes.

D.1. Pairwise Distance Estimation with Gradient

Representations

Most modern neural networks are trained with first order
gradient descent based algorithms and variants. In each
iteration, the gradient of loss on a mini-batch of training
examples evaluated at the current network weights is com-
puted and used to update the current parameter. Let rt(·)
be the function that maps an input-label training pair (the
case of mini-batch size one) to the corresponding gradient
evaluated at the network weights of the t-th iteration. Then
this defines a gradient based representation on which we
can compute density based ranking scores. The intuition is
that in a gradient based learning algorithm, an example is
consistent with others if they all compute similar gradients.

Comparing to the hidden representations defined the outputs
of a neural network layer, the gradient based representations
induce a more natural way of incorporating the label infor-
mation. In the previous section, we reweight the neighbor
examples belonging to a different class by 0 or -1. For gradi-
ent based representations, no ad hoc reweighting is needed
as the gradient is computed on the loss that has already
takes the label into account. Similar inputs with different
labels automatically lead to dissimilar gradients. Moreover,
this could seamlessly handle labels and losses with rich

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

Table 2. Details for the experiments used in the empirical estimation of the C-score.

MNIST CIFAR-10 CIFAR-100 ImageNet

Architecture MLP(512,256,10) Inception† Inception† ResNet-50 (V2)
Optimizer SGD SGD SGD SGD
Momentum 0.9 0.9 0.9 0.9
Base Learning Rate 0.1 0.4 0.4 0.1⇥7
Learning Rate Scheduler ^(15%)?

^(15%)?
^(15%)? LinearRampupPiecewiseConstant??

Batch Size 256 512 512 128⇥7
Epochs 20 80 160 100
Data Augmentation · · · · · · Random Padded Cropping~ + Random Left-Right Flipping · · · · · ·

Image Size 28⇥28 32⇥32 32⇥32 224⇥224
Training Set Size 60,000 50,000 50,000 1,281,167
Number of Classes 10 10 100 1000

† A simplified Inception model suitable for small image sizes, defined as follows:
Inception :: Conv(3⇥3, 96) ! Stage1 ! Stage2 ! Stage3 ! GlobalMaxPool ! Linear.

Stage1 :: Block(32, 32) ! Block(32, 48) ! Conv(3⇥3, 160, Stride=2).
Stage2 :: Block(112, 48) ! Block(96, 64) ! Block(80, 80) ! Block (48, 96) ! Conv(3⇥3, 240, Stride=2).
Stage3 :: Block(176, 160) ! Block(176, 160).

Block(C1, C2) :: Concat(Conv(1⇥1, C1), Conv(3⇥3,C2)).
Conv :: Convolution ! BatchNormalization ! ReLU.

? ^(15%) learning rate scheduler linearly increase the learning rate from 0 to the base learning rate in the first 15% training
steps, and then from there linear decrease to 0 in the remaining training steps.

?? LinearRampupPiecewiseConstant learning rate scheduler linearly increase the learning rate from 0 to the base learning rate in
the first 15% training steps. Then the learning rate remains piecewise constant with a 10⇥ decay at 30%, 60% and 90% of the
training steps, respectively.

~ Random Padded Cropping pad 4 pixels of zeros to all the four sides of MNIST, CIFAR-10, CIFAR-100 images and (randomly)
crop back to the original image size. For ImageNet, a padding of 32 pixels is used for all four sides of the images.

Figure 11. Examples from MNIST. Each block shows a single class; the left, middle, and right columns of a block depict instances with
high, intermediate, and low C-scores, respectively.

Figure 12. Examples from CIFAR-10. Each block shows a single class; the left, middle, and right columns of a block depict instances
with high, intermediate, and low C-scores, respectively.

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

Figure 13. Examples from CIFAR-100. Each block shows a single class; the left, middle, and right columns of a block depict instances
with high, intermediate, and low C-scores, respectively. The first 60 (out of the 100) classes are shown.

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

Figure 14. Example images from ImageNet. For each class, the three columns show sampled images from the (C-score ranked) top 99%,
35%, and 1% percentiles, respectively. The bottom pane shows the histograms of the C-scores in each of the 5 classes.

Figure 15. Example images from ImageNet. For each class, the three columns show sampled images from the (C-score ranked) top 99%,
35%, and 1% percentiles, respectively. The bottom pane shows the histograms of the C-scores in each of the 5 classes.

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

(a) CIFAR-10 (b) CIFAR-100

Figure 16. The Spearman’s ⇢ correlation between the C-score and
the score based on LOF with different neighborhood sizes.

structures (e.g. image segmentation, machine translation)
where an effective reweighting scheme is hard to find. The
gradient based representation is closely related to recent
developments on Neural Tagent Kernels (NTK) (Jacot et al.,
2018). It is shown that when the network width goes to infin-
ity, the neural network training dynamics can be effectively
approximately via Taylor expansion at the initial network
weights. In other words, the algorithm is effectively learning
a linear model on the nonlinear representations defined by
r0(·). This feature map induces the NTK, and connects
deep learning to the literature of kernel machines.

Although NTK enjoys nice theoretical properties, it is chal-
lenging to perform density estimation on it. Even for the
more practical case of finite width neural networks, the gra-
dient representations are of extremely high dimensions as
modern neural networks general have parameters ranging
from millions to billions (e.g. Tan & Le, 2019; Radford
et al., 2019). As a result, both computation and memory
requirements are prohibitive if a naive density estimation is
to be computed on the gradient representations. We leave
as future work to explore efficient algorithms to practically
compute this score.

E. What Makes an Item Regular or

Irregular?

The notion of regularity is primarily coming from the statis-
tical consistency of the example with the rest of the popula-
tion, but less from the intrinsic structure of the example’s
contents. To illustrate this, we refer back to Figure 4b in
the main text, the distribution is uneven between high and
low C-score values. As a result, the high C-score groups
will have more examples than the low C-score groups. This
agrees with the intuition that regularity arises from high
probability masses.

To test whether an example with top-ranking C-score is
still highly regular after the density of its neighborhood is
reduced, we group the training examples according equal

sized bins on the value range of their C-score values. We
then subsample each group to contain an equal number
(⇠ 400) of examples. Then we run training on this new data
set and observe the learning speed in each (subsampled)
group. The result is shown in Figure 19, which is to be
compared with the results without group-size-equalizing in
Figure 10 in the main text. The following observations can
be made:

1. The learning curves for many of the groups start to
overlap with each other.

2. The lower ranked groups now learns faster. For exam-
ple, the lowest ranked group goes above 30% accuracy
near epoch 50. In the run without subsampling (Fig-
ure 10a in the main text), this groups is still below
20% accuracy at epoch 50. The model is now learning
with a much smaller data set. Since the lower ranked
examples are not highly consistent with the rest of the
population, this means there are fewer “other examples”
to compete with (i.e. those “other examples” will move
the weights towards a direction that is less preferable
for the lower ranked examples). As a result, the lower
ranked groups can now learn faster.

3. On the other hand, the higher ranked groups now learn
slower, which is clear from a direct comparison be-
tween Figure 10a in the main text and Figure 19 here.
This is because for highly regular examples, reducing
the data set size means removing consistent examples
— that is, there are now less “supporters” as oppose to
less “competitors” in the case of lower ranked groups.
As a result, the learn speed is now slower.

4. Even though the learning curves are now overlapping,
the highest ranked group and the lowest ranked group
are still clearly separated. The potential reason is that
while the lower ranked examples can be outliers in
many different ways, the highest ranked examples are
probably regular in a single (or very few) visual clus-
ters (see the top ranked examples in Figure 12). As
a result, the within group diversities of the highest
ranked groups are still much smaller than the lowest
ranked groups.

In summary, the regularity of an example arises from its con-
sistency relation with the rest of the population. A regular
example in isolation is no different to an outlier. Moreover,
it is also not merely an intrinsic property of the data distri-
bution, but is closely related to the model, loss function and
learning algorithms. For example, while a picture with a
red lake and a purple forest is likely be considered an out-
lier in the usual sense, for a model that only uses grayscale
information it could be highly regular.

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

Figure 17. Examples from CIFAR-10 (left 5 blocks) and CIFAR-100 (right 5 blocks). Each block shows a single class; the left, middle,
and right columns of a block depict instances with top, intermediate, and bottom ranking according to the relative local density score
Ĉ±L in the input space, respectively.

Figure 18. Examples from CIFAR-10 (left 5 blocks) and CIFAR-100 (right 5 blocks). Each block shows a single class; the left, middle,
and right columns of a block depict instances with top, intermediate, and bottom ranking according to the relative local density score
Ĉ±L

h in the latent representation space of a trained network, respectively.

Figure 19. Learning speed of group of examples ranked by C-
scores, with equal number (400) of examples in each group via
subsampling.

Figure 20. The correlation of C-scores estimated with varying num-
bers of models (the x-axis) and C-scores estimated with 1,000
independent models. The simulations are run with CIFAR-10, and
the error bars show standard deviation from 10 runs.

F. Sensitivity of C-scores to the Number of

Models

We used 2,000 models per subset ratio to evaluate C-scores
in our experiments to ensure that we get stable estimates.
In this section, we study the sensitivity of C-scores with
respect to the number of models and evaluate the possibility

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

to use fewer models in practice. Let C0�2k be the C-scores
estimated with the full 2,000 models per subset ratio. We
split the 2,000 models for each subset ratio into two halves,
and obtain two independent estimates C0�1k and C1k�2k.
Then for m 2 {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000},
we sample m random models from the first 1,000 split, and
estimate C-scores (denoted by Cm) based on those models.
We compute the Spearman’s ⇢ correlation between each
Cm and C1k�2k. The results are plotted in Figure 20. The
random sampling of m models is repeated 10 times for each
m and the error bars show the standard deviations. The
figure shows that a good correlation is found for as few as
m = 64 models. However, the integral C-score requires
training models for various subset ratios (9 different subset
ratios in our simulations), so the total number of models
needed is roughly 64 ⇥ 9. If we want to obtain a reliable
estimate of the C-score under a single fixed subset ratio,
we find that we need 512 models in order to get a > .95
correlation with C1k�2k. So it appears that whether we
are computing the integral C-score or the C-score for a
particular subset ratio, we need to train on the order of
500-600 models.

In the analysis above, we have used C1k�2k as the reference
scores to compute correlation to ensure no overlapping be-
tween the models used to compute different estimates. Note
C1k�2k itself is well correlated with the the full estimate
from 2,000 models, as demonstrated by the following corre-
lations: ⇢(C0�1k, C1k�2k) = 0.9996, ⇢(C0�1k, C0�2k) =
0.9999, and ⇢(C1k�2k, C0�2k) = 0.9999.

