
Optimal Streaming Algorithms for Multi-Armed Bandits

Tianyuan Jin 1 Keke Huang 1 Jing Tang 2 Xiaokui Xiao 1

Abstract
This paper studies two variants of the best arm
identification (BAI) problem under the streaming
model, where we have a stream of n arms with
reward distributions supported on [0, 1] with un-
known means. The arms in the stream are arriving
one by one, and the algorithm cannot access an
arm unless it is stored in a limited size memory.

We first study the streaming ε-top-k arms identifi-
cation problem, which asks for k arms whose
reward means are lower than that of the k-th
best arm by at most ε with probability at least
1 − δ. For general ε ∈ (0, 1), the existing solu-
tion for this problem assumes k = 1 and achieves
the optimal sample complexity O(nε2 log 1

δ) using
O(log∗(n)) 1 memory and a single pass of the
stream. We propose an algorithm that works for
any k and achieves the optimal sample complex-
ity O(nε2 log k

δ) using a single-arm memory and a
single pass of the stream.

Second, we study the streaming BAI problem,
where the objective is to identify the arm with the
maximum reward mean with at least 1− δ prob-
ability, using a single-arm memory and as few
passes of the input stream as possible. We present
a single-arm-memory algorithm that achieves a
near instance-dependent optimal sample complex-
ity within O(log ∆−1

2) passes, where ∆2 is the
gap between the mean of the best arm and that of
the second best arm.

1. Introduction
Best arm identification (BAI) is a classic decision problem
with numerous applications such as medical trials (Thomp-

1School of Computing, National University of Singapore, Sin-
gapore 2Data Science and Analytics Thrust, The Hong Kong Uni-
versity of Science and Technology, Guangzhou, China. Correspon-
dence to: Xiaokui Xiao <xkxiao@nus.edu.sg>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1log∗(n) equals the number of times that we need to apply the
logarithm function on n before the results is no more than 1.

son, 1933), online advertisement (Bertsimas & Mersereau,
2007), and crowdsourcing (Zhou et al., 2014). It typically
considers a bandit with a set of arms, each of which has a
reward distribution with an unknown mean. The objective
is to identify the best arm with the maximum reward mean.

Due to applications with massive data, the BAI problem has
been recently studied under the streaming model in the liter-
ature (Assadi & Wang, 2020; Falahatgar et al., 2020; Maiti
et al., 2020), where only a limited size of memory is avail-
able for storing arms. In addition, BAI under the streaming
model also avoids a large amount of time/money on switch-
ing alternatives and thus finds numerous applications. For
example, in recruitment, employers aim to select the most
qualified employee among all candidates with high proba-
bility. For this purpose, they could query each candidate
with sufficient number of questions to acquire an accurate
evaluation with confidence. The more questions they ask,
the more confidence they have on the candidate’s evaluation.
Once the interview ends, usually, the candidate will not be
asked for further evaluation. In manufacturing, switching
alternatives might require reassembling the production line,
which could incur excessive costs.

Motivated by above observations, in this paper, we study
two problems, i.e., streaming ε-top-k arms identification
(ε-KAI) and streaming BAI.

(Problem 1) Streaming ε-KAI. In streaming ε-KAI, we
have a stream of n arms, such that each armi is associated
with an unknown reward distribution supported on [0, 1]
with an unknown mean µarmi

. The arms in the stream are
arriving one by one, and we can pull an arm only when it is
stored in the memory. Given parameters ε, δ ∈ (0, 1), the
task is to identify k arms whose reward means are lower
than that of the k-th best arm by at most ε with probability
at least 1− δ. The ultimate goal in this paper is to minimize
the sample complexity using a single-arm memory and a
single pass over the stream.

(Problem 2) Streaming BAI. In streaming BAI, the task
is to identify the optimal arm with the largest mean with
probability at least 1−δ, using a single-arm memory, assum-
ing that there exists a unique optimal arm. Streaming BAI
can be regarded as a special case of ε-KAI with ε = 0 and
k = 1, Again, we aim to minimize the sample complexity
using a single-arm memory and as few passes of the input

Optimal Streaming Algorithms for Multi-Armed Bandits

stream as possible.

1.1. State of the Art

Streaming ε-BAI. The ε-BAI problem under the stream-
ing model is pioneered by Assadi & Wang (2020), for
which a single-pass streaming algorithm is proposed that
can achieve the optimal sample complexity of O(nε2 log 1

δ)
using O(log∗(n)) memory. When ε ≤ ∆2, they further
devise a single-pass algorithm using memory for pulling 2
arms (i.e., the current arriving arm in the stream, and the
candidate arm currently stored) while achieving the same
sample complexity, where ∆i is the difference between the
expected rewards of k-th best and the i-th best arms for
any i > k and k = 1 for ε-BAI. Maiti et al. (2020) reveal
that if the arms arrive in a random order, the requirement of
ε ≤ ∆2 can be discarded experimentally. However, if the
arms arrive in some specific sequences, the correctness of
the algorithm is not guaranteed. Moreover, both algorithms
may revisit a candidate arm tested previously based on the
sample outcomes of other arriving arms, which are often
undesirable in practice. For example, during an interview
process, an employer cannot repeatedly test a candidate
based on the outcomes of other applicants, since a candidate
is usually waiting at home for the final result after attending
an interview. Falahatgar et al. (2020) propose an algorithm
that tests each arm in a strictly first-in-first-out (FIFO) order
but still assumes a random-order arrival of the arms.

Streaming ε-KAI. To the best of our knowledge, the work
by Assadi & Wang (2020) is the only one that studies the
general streaming ε-KAI problem. Under the assumption
that ε ≤ ∆k+1, Assadi & Wang (2020) propose an algo-
rithm that achieves the optimal sample complexity using
O(k) memory. Again, their algorithm suffers from two ma-
jor deficiencies that it (i) does not test each arm in a FIFO
order and (ii) requires ∆k+1 to be known in advance, which
are unrealistic in many practical applications.

1.2. Our Contributions

As our main result, we address the aforementioned short-
comings of existing algorithms for the general streaming
ε-KAI problem and also study the streaming BAI problem
which aims to identify the best arm strictly. The results are
summarized in Table 1.

Streaming ε-KAI. We propose a single-pass algorithm for
ε-KAI that achieves the optimal sample complexity using
a single-arm memory, i.e., we pull an arm only at the time
that it arrives and never revisit it after we pull other arms.2

Our solution significantly improves upon the algorithms by

2Note that we ignore the memory cost of storing the IDs of
arms; otherwise, any algorithm for ε-KAI requires Ω(k) memory
for recording the IDs of the arms to be returned.

Assadi & Wang (2020) in the way that (i) it does not rely on
any assumption on ε, and (ii) it requires only a single-arm
memory for the general ε-KAI problem.

Streaming BAI. We present an algorithm for streaming BAI
that optimizes the sample complexity. Given any constant
δ, it achieves a near instance-dependent optimal sample
complexity of O

(∑n
i=2

1
∆2

i
log
(

1
δ log 1

∆i

))
using a single-

arm memory and O(log 1
∆2

) passes in expectation.

2. Single-Arm Memory Algorithm for ε-BAI
In this section, we present our solution for the streaming
ε-BAI problem, i.e., ε-KAI with k = 1. We then extend our
solution to address the ε-KAI problem for the general case
of k in Section 3.

2.1. High Level Overview

Let armo be the selected arm, and armi be the i-th arm in the
stream where i ∈ {1, 2, . . . , n}. Let µarm and µ̂arm be arm’s
true mean and estimated mean respectively, and arm∗ be
the best arm. In the first step, we initialize armo with arm1.
When armi arrives, we compare armi with armo and decide
whether armi should be the new armo. In particular, our
algorithm mainly consists of the following two operations.

1. Sampling. We pull each arrived arm Θ(1
ε2 log 1

δ) times
to estimate its true mean. This number of pull is sufficient
to ensure that µ̂arm∗ approaches µarm∗ within O(ε) with
high probability3, i.e., |µ̂arm∗ − µarm∗ | ≤ O(ε).

2. Comparison. We replace armo with armi if µ̂armi
≥

µ̂armo + α, where α = Θ(ε) is a random variable follow-
ing a predefined distribution.

Our algorithm maintains the following property.
Property 1. Whenever we update armo, we always ensure
that |µ̂armo − µarmo | ≤ O(ε).

Based on the above two operations and Property 1, we
could prove that |µarmo(T) − µarm∗ | ≤ O(ε) holds where
armo(T) is the final returned arm. The basic idea is as
follows. Operation one ensures that |µ̂arm∗ − µarm∗ | ≤
O(ε). Operation two guarantees that µ̂armo(T) ≥ µ̂arm∗ +
α if armo(T) is not arm∗. In the meantime, |µ̂armo(T) −
µarmo(T)| ≤ O(ε) holds according to Property 1. As a
consequence, |µarmo(T) − µarm∗ | ≤ O(ε) is established.

As indicated above, the correctness of our algorithm lies in
Property 1. When each armi is pulled Θ(1

ε2 log cj2

δ) times,
we have |µ̂armi − µarmi | ≤ O(ε) with probability at least
1− δ

cj2 according to Hoeffding bound, where j is the number
of arms that current armo beats and c is a constant. Then
by union bound, Property 1 holds with probability at least

3We omit with high probability in the following for expression
simplicity.

Optimal Streaming Algorithms for Multi-Armed Bandits

Problem Algorithm Requirement Memory #passes

ε-BAI

Assadi & Wang (2020) No O(log∗(n)) 1
Assadi & Wang (2020) ε ≤ ∆2 2 1
Falahatgar et al. (2020) Random-order arrival 1 1
This paper (Algorithm 1) No 1 1

ε-KAI Assadi & Wang (2020) ε ≤ ∆k+1 O(k) 1
This paper (Algorithm 2) No 1 1

BAI This paper (Algorithm 3) No 1 O(log ∆−1
2)

Table 1. Comparisons of streaming algorithms for ε-KAI with the optimal sample complexity of O(n
ε2

log k
δ
) and BAI with sample

complexity of O
(∑n

i=2
1

∆2
i

log
(

1
δ

log 1
∆i

))
.

Algorithm 1: Streaming ε-BAI
Input: ε, δ, and a stream of n arms.
Output: The index of an arm.

1 initialize armo ← arm1 and j ← 1;
2 pull armo s1 times;
3 foreach arriving armi (i > 1) do
4 set α as ε

4 with probability 1
log j+1 , and as ε

2 with
other probability 1− 1

log j+1 ;
5 `← 1;
6 while true do
7 pull armi for s` − s`−1 times;
8 if µ̂armi

≥ µ̂armo + α and s` > τj then
9 armo ← armi;

10 j ← 1;
11 break;

12 else if µ̂armi < µ̂armo + α then
13 j ← j + 1;
14 break;

15 else
16 `← `+ 1;

17 return the index of armo;

1−
∑∞
j=1

δ
cj2 ≥ 1− δ.

In what follows, we highlight how our algorithm achieves
the optimal sample complexity when Property 1 is main-
tained. As mentioned, each armi would be pulled
Θ(1

ε2 log j2

δ) times before it could replace current armo.
However, for arms with relatively small means, pulling such
number of times is inefficient since we could identify and
remove them with less pulls. In this regard, we pull armi
through multiple rounds. In the `-th round, it is pulled
Θ(2`

ε2 log 1
δ) times. This round loop terminates immediately

once either the number of pulls reaches Θ(1
ε2 log j2

δ) or we
are able to decide armi is not the best arm and then eliminate
it.

Another aspect to optimize sample complexity lies in the
design of α. Actually, this part is the main hardness of
our algorithm. One conventional method is to set a fixed
value to α. However, this would lead to suboptimal sample
complexity. To explain, suppose we set α = ε

2 . If some
armi has µarmi = µ̂armo + ε

2 , it is inappropriate to bound
the probability Pr(µ̂armi

≥ µ̂armo + ε
2) according to Ho-

effding inequality. To fix this, a straightforward method
is to bound the number of pulls of armi by Θ(1

ε2 log(j
2

δ)).
However, when j grows to Θ(n), this method would in-
cur the total sample complexity of O

(
n
ε2 log n

δ

)
, which is

suboptimial. To bypass this intractable issue, we leverage
the power of randomization. That is, we set α = ε

4 with
probability 1

log j+1 and α = ε
2 with probability 1− 1

log j+1 .
We elaborate the details later.

The proof of the optimal sample complexity is highly non-
trivial and is also one of our main technical contributions.
We refer readers to Appendix A for details.

2.2. The Algorithm

We first introduce two parameters used in our algorithm.

{s`}∞`=1 : s` =
16

ε2
· log

(
C

δ

)
· 2`, and s0 = 0, (1)

{τj}∞j=1 : τj :=
32

ε2
· log

(
C · j2

δ

)
, (2)

where ` indicates the `-th round and C ≥ 100 is a universal
constant.

Algorithm 1 presents the pseudo-code of our algorithm. In
the beginning, we initialize armo = arm1 with the first arm
arm1, and then pull armo s1 times to obtain its estimated
mean µ̂armo . In what follows, for each arrived armi in the
stream, we sample α from the distribution defined as

Pr
(
α =

ε

4

)
=

1

log j + 1
and Pr

(
α =

ε

2

)
= 1− 1

log j + 1
,

where j is the number of arms beaten by armo. Next, armi
is compared with armo in multiple rounds. In the `-th round,

Optimal Streaming Algorithms for Multi-Armed Bandits

armi will be pulled s` − s`−1 times to obtain its estimated
mean µ̂armi . If both conditions µ̂armi ≥ µ̂armo + α and
s` > τj hold, (i) armo is replaced by armi, (ii) j is reset to
1, and (iii) current round terminates. Otherwise, we would
check whether the condition µ̂armi

< µ̂armo + α meets. If
it is true, armi will be removed immediately. Meanwhile,
j is increased by 1 and the round ends. If none of the two
events on round termination happen, we increase index `
by 1 and then enter the next round. The above procedure is
repeated for each arriving arm until all arms in the stream
have been scrutinized. Eventually, we return the index of
the final armo.

2.3. The Analysis

We say that an arm is ε-best arm if its mean is smaller than
that of the best arm arm∗ by at most ε, i.e., µarm∗−µarm ≤ ε.
We formalize our main result for ε-BAI problem as follows.

Theorem 1. Given a stream of n arms, approximation pa-
rameter ε and confidence parameter δ in (0, 1), Algorithm 1
finds the ε-best arm with probability at least 1 − δ using
expected O(nε2 log 1

δ) pulls and a single-arm memory.

Let best arm change be the event that armo is replaced
by another arm, and armo(t) denote the resulting arm af-
ter best arm change happens exactly t times (Note that
armo(1) = arm1). We denote armo(T) as the final returned
armo. In what follows, we focus on the correctness proof
of Algorithm 1, i.e., µarmo(T) ≥ µarm∗ − ε holds with prob-
ability at least 1 − δ. The proof consists of two parts. In
the first part, we establish the relation between all armo and
arm∗ in Lemma 1. In the second part, we then complete the
correctness proof based on the result of Lemma 1.

Proposition 1 (Hoeffding Inequality). Let X1, . . . , Xm be
m independent random variables with support in [0, 1]. De-
fine X :=

∑m
i=1Xi. Then, for x > 0,

Pr(X − E[X] > x) ≤ 2 · exp

(
− 2x2

m

)
.

Lemma 1. For any ε, δ ∈ (0, 1), it holds in Algorithm 1
that

Pr

(⋂
t≥1

{{
µ̂armo(t) < µarm∗ − 5ε

8

}
⋃{

µarmo(t) ≥ µarm∗ − ε
}})

≥ 1− 3δ

4
.

The proof for Lemma 1 is conducted in three steps. In Step
I, for one specific armo, we prove that its estimated mean
differs from its true mean by at most Θ(ε). In Step II, we
extend this result for all armo in general (Property 1) and
bound the failure probability within δ. In Step III, we then
derive Lemma 1 based on the results in previous steps.

Proof of Lemma 1. We prove the lemma by three steps.

Step I. For t = 1, Algorithm 1 pulls armo(1) s1 times.
From Proposition 1, for r ∈ N+, we have

Pr

(
|µ̂armo(1) − µarmo(1)| ≥

rε

8

)
≤ 2 exp

(
− s1r

2ε2

32

)
= 2 exp

(
− r2 log

(
C

δ

))
=

2δr
2

Cr2
≤ 2δ

Cr
. (3)

Let Qt,p be the p-th passed arm after t-th best arm change,
and s(p) := s` such that s`−1 < τp ≤ s`. For ease of
analysis, we design a virtual sampling process for a better
illustration. Notably, if Qt,p is pulled less than τp times
when Algorithm 1 ends, we pull Qt,p again to s(p) times (a
virtual process). Therefore, for all p ≥ 1,Qt,p will be pulled
s(p) times to obtain its estimated mean, denoted as µ̂′Qt,p

. If
armo(t+ 1) = Qt,p, then µ̂′Qt,p

= µ̂Qt,p
holds according

to the definition. Let F o(t) be the union of history till the
t-th best arm change. Then, conditioned on any F o(t), we
have {

|µ̂Qt,p
− µQt,p

| ≥ rε

8
, armo(t+ 1) = Qt,p

}
⊆
{
|µ̂′Qt,p

− µQt,p | ≥
rε

8

}
. (4)

Based on equation (4), for all p ≥ 1, we have

Pr

(
|µ̂armo(t+1) − µarmo(t+1)| ≥

rε

8

∣∣∣∣ F o(t))
=

∞∑
p=1

Pr

({
|µ̂Qt,p − µQt,p | ≥

rε

8

}
⋂{

armo(t+ 1) = Qt,p

} ∣∣∣∣ F o(t))

≤
∞∑
p=1

Pr

(
|µ̂′Qt,p

− µQt,p
| ≥ rε

8

∣∣∣∣ F o(t))

≤
∞∑
p=1

2 exp

(
− τpr

2ε2

32

)
≤
∞∑
p=1

2δ

p2 · Cr

≤ 4δ

Cr
. (5)

Step II. Next we extend the above result for all µarmo(t). Let

Sr(t) =

{
µarmo(q) :µarmo(q) ∈

(
µarm∗ − rε

8
,

µarm∗ − (r − 1)ε

8

]
, and q ∈ [t]

}
,

where r is an integer and r ≥ 1. Let rt be the index asso-
ciated with µarmo(t) such that µarmo(t) ∈ Srt(T). Let Et be

Optimal Streaming Algorithms for Multi-Armed Bandits

the event{
|µ̂armo(t) − µarmo(t)| ≤

(rt − 8)ε

8
, rt ≥ 9

}
⋂{

|µ̂armo(t) − µarmo(t)| ≤
rtε

8
, rt < 9

}
.

Let Ect be the complement of Et. As indicated from (5), for
rt ≥ 9, we have

Pr(Ect | ∩t−1
q=1Eq)

= Pr

(
|µ̂armo(t) − µarmo(t)| ≥

(rt − 8)ε

8

∣∣∣∣ t−1⋂
q=1

Eq

)
(6)

≤ 4δ

Crt−8
. (7)

Similarly, for rt < 9, we have

Pr(Ect | ∩t−1
q=1Eq)

= Pr

(
|µ̂armo(t) − µarmo(t)| ≥

rtε

8

∣∣∣∣ t−1⋂
q=1

Eq

)
(8)

≤ 4δ

Crt
. (9)

Define event E =
⋂T
t=1Et. Therefore, by chain rule we

have

Pr(E) =

T∏
t=1

Pr
(
Et | ∩t−1

q=1Eq
)
. (10)

Conditioned on ∩tq=1Eq, we will prove that the number of
arms in Sr(t) is at most r+ 2. Conditioned on ∩tq=1Eq and
armo(t) ∈ Sr(t), we have

µ̂armo(t) ≤ µarmo(t) +
rε

8

≤ µarm∗ +
rε

8
− (r − 1)ε

8

= µarm∗ +
ε

8
, (11)

and

µ̂armo(t) ≥ µarmo(t) −
rε

8

≥ µarm∗ − rε

8
− rε

8

= µarm∗ − rε

4
, (12)

where the second inequalities of (11) and (12) are from the
definition of Sr(t), respectively. Let U = µarm∗ + ε

8 and
L = µarm∗ − rε

4 . On the one hand, conditioned on ∩tq=1Eq ,∑
ti:armo(ti)∈Sr(t)

µ̂armo(ti) − µ̂armo(ti−1) ≤ U − L.

On the other hand, since α ≥ ε
4 , the update rule in Al-

gorithm 1 indicates µ̂armo(t) ≥ µ̂armo(t−1) + ε
4 . Thus, we

have ∑
ti:armo(ti)∈Sr(t)

µ̂armo(ti) − µ̂armo(ti−1) ≥
(|Sr(t)| − 1)ε

4
.

Hence, conditioned on event ∩tq=1Eq , we have

(|Sr(t)| − 1)ε

4
≤ U − L =

rε

4
+
ε

8
. (13)

Therefore if ∩tq=1Eq holds, we get |Sr(t)| ≤ r + 2. Apply-
ing union bound, we have

Pr(E) =

T∏
t=1

Pr
(
Et | ∩t−1

q=1Eq
)

=

∞∏
r=1

∏
t:armo(t)∈Sr(T)

Pr
(
Et | ∩t−1

q=1Eq
)

=

8∏
r=1

∏
t:armo(t)∈Sr(T)

Pr
(
Et | ∩t−1

q=1Eq
)

·
∞∏
r=9

∏
t:armo(t)∈Sr(T)

Pr
(
Et | ∩t−1

q=1Eq
)

≥
8∏
r=1

(
1− 4(r + 2)δ

Cr

) ∞∏
r=9

(
1− 4(r + 2)δ

Cr−8

)

≥ 1−
8∑
r=1

4(r + 2)δ

Cr
−
∞∑
r=9

4(r + 2)δ

Cr−8

≥ 1− 3δ

4
. (14)

where first and second inequalities are due to Weierstrass
product inequality and the last inequality is due to C ≥ 100.

Step III. Based on the definition of Et and Sr(t), we have

E ⊆
{⋂
t≥1

{{
|µ̂armo(t) − µarmo(t)| ≤

(rt − 8)ε

8

}
⋃{

µarmo(t) ≥ µarm∗ − ε
}}}

⊆
{⋂
t≥1

{{
µ̂armo(t) < µarm∗ − 5ε

8

}
⋃{

µarmo(t) ≥ µarm∗ − ε
}}}

, (15)

where the second formula follows since if |µ̂armo(t) −
µarmo(t)| ≤ (rt−8)ε

8 , we have

µ̂armo(t) ≤ µarmo(t) +
(rt − 8)ε

8

≤ µarm∗ − (rt − 1)ε

8
+

(rt − 8)ε

8
< µarm∗ − 5ε

8
. (16)

Optimal Streaming Algorithms for Multi-Armed Bandits

This completes the proof.

Based on Lemma 1, we are then ready to accomplish the
correctness of Algorithm 1.

Proof of Correctness of Algorithm 1. Since α ≤ ε
2 , from

Algorithm 1, there exists an armo(t) such that

µ̂arm∗ − ε

2
≤ µ̂armo(t). (17)

From Proposition 1, we know

Pr

(
µ̂arm∗ ≥ µarm∗ − ε

8

)
≥ 1− 2 exp

(
− s1ε

2

8

)
≥ 1− δ

4
. (18)

Since α ≥ 0, from Algorithm 1, we have

µ̂armo(t) ≤ µ̂armo(T). (19)

Combining (17) (18) (19) together, we have

Pr

(
µ̂armo(T) ≥ µarm∗ − 5ε

8

)
≥ 1− δ

4
. (20)

From Lemma 1, we obtain

Pr

({
µ̂armo(T) < µarm∗ − 5ε

8

}
⋃{

µarmo(T) ≥ µarm∗ − ε
})
≥ 1− 3δ

4
. (21)

Let

A =

{
µ̂armo(T) < µarm∗ − 5ε

8

}
,

and B =

{
µarmo(T) ≥ µarm∗ − ε

}
.

Then from (20), Pr(A) ≤ δ
4 . Therefore Pr(B) ≥ Pr(A ∪

B)− Pr(A) ≥ 1− δ, which completes the proof.

Due to the space constraint, we provide a sketch of proof
for the optimal sample complexity, and we refer interested
readers to Appendix A for details.

Proof of Sample Complexity of Algorithm 1 (Sketch). The
key idea is to bound the total expected number of pulls
during the life cycle of each selected armo, i.e., the period
from armo replacing its predecessor to armo being replaced
by its successor. Given current armo, we divide the arriving
arms during the life cycle of armo into two sets, i.e.,

S1 :=
{

armi : µarmi ≤ µ̂armo +
3ε

8

}
,

and S2 :=
{

armi : µarmi
> µ̂armo +

3ε

8

}
.

We show that (i) for each armi ∈ S1, the expected number
of pulls of armi is O

(
1
ε2 log 1

δ

)
, and (ii) the total expected

number of pulls of all arms in S2 is O(τj |S2|) where |S2|
is O(polylog(j)) with high probability. Consequently, the
total expected number of pulls for j arriving arms during
the life cycle of armo is O

(
j
ε2 log 1

δ

)
. In the following, we

provide some intuitive analyses and the formal analysis is
far more challenging and interested readers are referred to
the appendix for more details.

Case I. Consider armi ∈ S1 with µarmi
≤ µ̂armo + 3ε

8 .
By Hoeffding inequality, after Θ(1

ε2 log 1
δ) pulls of armi,

µ̂armi ≤ µarmi + ε
8 holds with high probability. Thus,

µ̂armi
≤ µ̂armo + ε

2 . If α = ε
2 , armi will be dropped. On

the other hand, if α = ε
4 , armi will be pulled at most 2τj

times. As a result, the expected number of pulls of armi is
O
(

1
ε2 log 1

δ · (1−
1

log j+1) +
2τj

log j+1

)
= O

(
1
ε2 log 1

δ

)
.

Case II. Consider armi ∈ S2 with µarmi > µ̂armo + 3ε
8 .

Again, by Hoeffding inequality, after Θ(1
ε2 log 1

δ) pulls of
armi, µ̂armi

≥ µarmi
− ε

8 holds with high probability. Thus,
µ̂armi

> µ̂armo + ε
4 . If α = ε

4 , armi will replace armo and
the life of armo ends. When |S2| = Θ(polylog(j)), α = ε

4
will happen at least once with high probability.

Putting it together, we have the total expected number of
pulls for all the j arms O

(
j · 1

ε2 log 1
δ + polylog(j) · τj

)
=

O
(
j
ε2 log 1

δ

)
, since j = Ω(polylog(j)).

3. Single-Arm-Memory Algorithm for ε-KAI
In this section, we extend ε-BAI into its general version, i.e.,
ε-KAI that aims to find the ε-top-k arms using a single-arm
memory. That is, we aim to find k arms such that each of
which has the mean no smaller than µarm∗(k) − ε, where
arm∗(k) is the k-th largest value in {µarm1

, . . . , µarmn
}.

3.1. High Level Overview

First, we maintain the first k arms in a set4, denoted as A.
Let topo be the arm inA with the minimum estimated mean.
When the following armi arrives in the stream, we compare
µ̂armi

with µ̂topo to update topo. Similarly, we perform the
following two operations.

1. Sampling. We pull armi Θ(1
ε2 log k

δ) times to get µ̂armi
.

2. Comparison. We replace topo with armi if µ̂armi ≥
µ̂topo + α holds, where α = Θ(ε) follows the same
setting in Algorithm 1.

In addition, our algorithm retains the following property.
Property 2. For each arm in A, |µ̂arm − µarm| ≤ O(ε).

Let topo(T) be the arm with the minimum estimated mean
in the final returned set A . Following the similar logic flow

4We store the IDs of these k arms and ignore the memory cost.

Optimal Streaming Algorithms for Multi-Armed Bandits

in section 2.1, the two operations and Property 2 guarantee
that |µtopo(T)−µarm∗(k)| ≤ O(ε) with high probability. The
main idea is as follows. By applying union bound for the k
arms {arm∗(1), . . . , arm∗(k)}, operation one ensures that
for all s ∈ [k], |µ̂arm∗(s) − µarm∗(s)| ≤ O(ε). As operation
two indicates, µ̂topo(T) is the k-th largest estimated mean
among those of arms in A, which means there are at most
k−1 values in {µ̂arm∗(1), · · · , µ̂arm∗(k)} larger than µ̂topo(T)

by Θ(ε). Therefore, based on operation one and operation
two, we have µ̂topo(T) − µ̂arm∗(k) ≤ O(ε). Meanwhile,
|µ̂topo(T) − µtopo(T)| ≤ O(ε) holds according to Property 2.
In consequence, we acquire |µtopo(T) − µarm∗(k)| ≤ O(ε)
and the k arms in A are ε-top-k arms with high probability.

How to implement the two operations and Property 2 within
optimal number of pulls remains the main challenge in ε-
KAI. However, techniques adopted in ε-BAI could basically
tackle this issue. Hence we omit the details here.

3.2. The Algorithm

First we define the following two parameters of our algo-
rithm.

{s`}∞`=1 : s` =
16

ε2
· log

(
C · k
δ

)
· 2`, and s0 = 0;

{τj}∞j=1 : τj :=
32

ε2
· log

(
C · k · j2

δ

)
,

where C ≥ 100 is a universal constant.

Algorithm 2 presents the pseudo-code for ε-KAI. As noticed,
Algorithm 2 is tailored based on Algorithm 1 to identify the
ε-top-k arms. Specifically, to initialize A, we pull the first
k arrived arms s1 times, and store them in A. topo denotes
the arm with the minimum estimated mean in A. Then,
we compare each arriving armi with topo through multiple
rounds. This part is conducted similarly as the procedure
of Algorithm 1 in section 2.2. Eventually, the indexes of
ε-top-k arms in A are returned.

Our main result is formalized in the following theorem.
Theorem 2. Given a stream of n arms, approximation pa-
rameter ε and confidence parameter δ in (0, 1), Algorithm 2
finds ε-top-k arms with probability at least 1 − δ using
expected O(nε2 · log (kδ)) pulls and a single-arm memory.

Theorem 2 summarizes the main results of Algorithm 2.
Detailed proofs are in Appendix B.

Compared with Assadi & Wang (2020), our algorithm 2
is fundamentally different. Assadi & Wang (2020) require
the assumption, e.g., ∆k+1 < ε and does not test each
arm in FIFO order, which leads to O(k) memory costs.
In comparison, our algorithm does not make any explicit
assumption and uses a single-arm memory.

Remark: This paper adopts the wildly used Explore-k met-

Algorithm 2: Streaming ε-KAI
Input: k, ε, δ, and a stream of n arms.
Output: The indexes of k arms.

1 initialize: j ← 1, i← 1, A = ∅;
2 for each arriving armi (i ≤ k) do
3 pull armi s1 times to obtain µ̂armi

;
4 insert armi to A;

5 topo ← arg minarm∈A µ̂arm;
6 for each arriving armi (i > k) do
7 set α as ε

4 with probability 1
log j+1 , and as ε

2 with
other probability 1− 1

log j+1 ;
8 `← 1;
9 while true do

10 pull armi for s` − s`−1 times;
11 if µ̂armi

≥ µ̂topo + α and s` > τj then
12 topo ← armi;
13 insert armi into A and update topo;
14 j ← 1;
15 break;

16 else if µ̂armi < µ̂topo + α then
17 j ← j + 1;
18 break;

19 else
20 `← `+ 1;

21 return the indexes of the arms in A;

ric (Kalyanakrishnan & Stone, 2010) which asks for k arms
whose reward means are lower than that of the k-th best
arm by at most ε. By using the similar technique (Cao et al.,
2015; Jin et al., 2019), our algorithm can return the top-k
arms such that the mean of i-th returned arm is at most ε
lower than that of the i-th best arm.

4. Streaming BAI
Previous sections study the problems with instance indepen-
dent sample complexity. However, for particular problem
instances, the sample complexity could be highly optimized.
In this section, we consider the streaming BAI problem and
investigate the instance dependent sample complexity.

4.1. The Algorithm

Algorithm 3 presents the pseudo-code to address the stream-
ing BAI problem. Notice that our algorithm borrows the ex-
isting Exponential-Gap-Eliminaion algorithm (Karnin et al.,
2013; Chen et al., 2017c) as a framework. We substitute
the selection component in this framework for Algorithm
1 (Line 4 in Algorithm 3), which is the major modifica-
tion. Algorithm 3 runs in multiple rounds. Suboptimal

Optimal Streaming Algorithms for Multi-Armed Bandits

arms in the stream are eliminated round by round until only
one arm remains. In the r-th round, we maintain a set Sr
of the total n arms in the stream, and ε-BAI algorithm is
adopted as a subroutine to return an ε-best arm armor from
Sr. We then compute its estimated mean Ir by pulling armor
for 2

ε2r
log(1

δr
) times. At the r-th round, we set the addi-

tional budget Br = 6|Sr|
ε2r

log
(

40
δr

)
. If Br > 0, for each

arriving armi in Sr \ {armor}, we pull it in multiple itera-
tions. At the `-th iteration, we pull it 2`

ε2r
log(40h2

δr
) times

to get its estimated mean p̂`i(r). Budget Br is decreased
by 2`

ε2r
log(40h2

δr
) and si is increased by 2`

ε2r
log(40

δr
) accord-

ingly. If p̂`i(r) < Ir − εr holds (εr = 2−r/4), we remove
armi from Sr and consider the next arm in the stream till
the number of pulls exceeds 2

ε2r
log
(

40h2

δr

)
. If Br ≤ 0, we

pull it 2
ε2r

log(40h2

δr
) times to get its estimated mean p̂i(r).

If p̂i(r) < Ir − εr holds, armi is removed from Sr. We
continue to check following arriving arms till the end of the
stream. This procedure is repeated until Sr contains only
one arm whose index is returned as our final output. Notice
that for each round, the stream is only visited O(1) times.

Our main result for Algorithm 3 is formalized in the follow-
ing theorem.

Theorem 3. Given a stream of n arms and confidence pa-
rameter δ ∈ (0, 1), Algorithm 3 identifies the optimal arm
with probability at least 1−δ, in which case it takes expected
O
(∑n

i=2
1

∆2
i

log
(

1
δ log 1

∆i

))
arm pulls and O(log ∆−1

2)

passes using a single-arm memory.

Here, we present some high level ideas why O(log ∆−1
2)

passes would suffice for the correctness of Algorithm 3. We
consider εr in the following two cases.

Case 1. εr ∈ (∆2/3, 1]. In each round, Algorithm 3 costs
at most 2 passes. Therefore, the number of total passes is
O(log ∆−1

2).

Case 2. εr ≤ ∆2/3. According to Theorem 1, armor is
an εr-best arm. From Hoeffding bound, we have Ir ≥
µarmo

r
− εr

2 . Besides, the budget Br ensures that with high
probability µ̂armi ≤ µarmi + εr

2 (see the proofs for details).
Therefore,

Ir − µ̂armi ≥ µarmo
r
− εr

2
− µ̂armi ≥ µarmo

r
− εr − µarmi

≥ µarm∗ − µarmi
− 2εr ≥ εr,

which indicates that with high probability, all suboptimal
arms will be eliminated in the current round when εr ≤
∆2/3. Therefore, it takes O(1) passes in such case. The
detail proofs are in Appendix C.

Note that previous BAI algorithms (Karnin et al., 2013; Jin
et al., 2019) run in R rounds. In each round, the number of
pulls of each arm is fixed. As a comparison, one can convert

Algorithm 3: ID-BAI
Input: Parameter δ and a stream of arms.
Output: The index of an arm.

1 Initialize r ← 1, Sr = {arm1, arm2, · · · , armn};
2 while |Sr| > 1 do
3 εr ← 2−r/4, δr ← δ/(40 · r2), h← 1;
4 armor ← ε-BAI(εr, δr, Sr);
5 pull armor

2
ε2r

log(1
δr

) times and let Ir be the
estimated mean;

6 Br ← 6|Sr|
ε2r

log
(

40
δr

)
;

7 for each arriving armi ∈ Sr \ {armor} do
8 if Br > 0 then
9 si ← 0, `← 1;

10 while si ≤ 2
ε2r

log(40h2

δr
) do

11 pull armi for 2`

ε2r
log(40

δr
) times, and let

p̂`i(r) be the estimated mean;
12 Br ← Br − 2`

ε2r
log(40

δr
);

13 si ← si + 2`

ε2r
log(40

δr
);

14 if p̂`i(r) < Ir − εr then
15 remove armi from Sr;
16 h← h+ 1;
17 break;

18 `← `+ 1;

19 else
20 pull armi for 2

ε2r
log(40

δr
) times, and let p̂i(r)

be the estimated mean;
21 if p̂i(r) < Ir − εr then
22 remove armi from Sr;

23 r ← r + 1;

24 return the index of the arm in Sr;

those algorithms into streaming algorithms in R passes. In
this regard, the previous best known algorithm (Jin et al.,
2019) will run in log∗(n) · log(1/∆2) passes, which is infe-
rior to our log(1/∆2) passes. For sample complexity, our
algorithm achieves the optimal instance-dependent sample
complexity up to a log log(1/∆2) term, compared with the
lower bound in Chen et al. (2017c).

5. Additional Related Work
We review the related work, excluding those (Assadi &
Wang, 2020; Maiti et al., 2020; Falahatgar et al., 2020)
discussed in Section 1.1. The problem of best arm identifi-
cation is mostly considered in a non-streaming setting in the
literature. Normally, two types of sample complexity are
considered: instance-dependent complexity and instance-

Optimal Streaming Algorithms for Multi-Armed Bandits

independent complexity.

Instance-independent arm selection. Existing work
(Even-Dar et al., 2002; Kalyanakrishnan & Stone, 2010;
Cao et al., 2015; Jin et al., 2019) achieves the optimal worst
sample complexity Ω(nε2 log k

δ), matching the lower bound
in (Kalyanakrishnan et al., 2012). In addition, the recent
work (Hassidim et al., 2020) shows that the complexity of
identifying an ε-best arm can be reduced to n

2ε2 log 1
δ . How-

ever, all these algorithms require Θ(n) memory, which is
inferior to ours. Recently, Assadi & Wang (2020) show
that one can modify an r-round algorithm to an r-memory
algorithm. In this way, the previous best known algorithm
can be modified to a O(log∗(n)) memory algorithm, which
is also inferior to ours.

Instance-dependent arm selection. The instance-
dependent sample complexity is closely tied to the bandit
instance and is superior to the instance-independent com-
plexity for ‘easy’ bandit instances. Existing work (Karnin
et al., 2013; Jamieson et al., 2014; Chen et al., 2017c;b;
Jin et al., 2019; Tao et al., 2019; Chen et al., 2017a) fo-
cuses on achieving the optimal instance-dependent sam-
ple complexity. The algorithm in (Karnin et al., 2013;
Jamieson et al., 2014) achieves the sample complexity
O
(∑n

i=2
1

∆2
i

log
(

1
δ log 1

∆i

))
. Furthermore, Jamieson et al.

(2014) prove a lower bound such that for some instances the
BAI problem needs at least Ω

(∑n
i=2

1
∆2

i
log
(

1
δ log 1

∆i

))
samples. Recently, Chen et al. (2017c) propose an instance-
wise lower bound and almost optimal upper bound for the
BAI problem. In another line of the work, Garivier & Kauf-
mann (2016) present a constant optimal algorithm under the
assumption δ → 0.

Regret Minimization in Streaming Model. (Liau et al.,
2018; Chaudhuri & Kalyanakrishnan, 2019) study the
streaming bandits for regret minimization. Both algorithms
consume O(1) memory and visit the stream multiple passes.
Since we achieve different objectives , their regret bound
is not directly comparable to our sample complexity bound.
It is interesting to see whether our algorithm can help to
improve their results.

6. Conclusion
We study the streaming ε-top-k arms identification (ε-KAI)
problem and the streaming BAI problem. For ε-KAI, we pro-
pose the first algorithm that applies to any k and achieves
the optimal sample complexity using a single-arm mem-
ory without any explicit assumptions. For streaming BAI,
we present a single-arm memory algorithm that achieves a
near instance-dependent optimal sample complexity within
O(log ∆−1

2) passes.

Acknowledgement
We would like to thank Pan Xu for helpful discussions. This
work is supported by the Ministry of Education, Singapore,
under Tier-2 Grant R-252-000-A70-112, and by the National
Research Foundation, Singapore under its AI Singapore
Programme (AISG Award No: AISG-PhD/2021-01-004[T]).
The views and conclusions contained in this paper are those
of the authors and should not be interpreted as representing
any funding agencies.

References
Assadi, S. and Wang, C. Exploration with limited memory:

streaming algorithms for coin tossing, noisy comparisons,
and multi-armed bandits. In Proc. STOC, pp. 1237–1250,
2020.

Bertsimas, D. and Mersereau, A. J. A learning approach for
interactive marketing to a customer segment. Operations
Research, 55(6):1120–1135, 2007.

Cao, W., Li, J., Tao, Y., and Li, Z. On top-k selection in
multi-armed bandits and hidden bipartite graphs. In Proc.
NeurIPS, pp. 1036–1044, 2015.

Chaudhuri, A. R. and Kalyanakrishnan, S. Regret minimisa-
tion in multi-armed bandits using bounded arm memory.
In Proc. AAAI, pp. 10085–10092, 2019.

Chen, J., Chen, X., Zhang, Q., and Zhou, Y. Adaptive
multiple-arm identification. In International Conference
on Machine Learning, pp. 722–730. PMLR, 2017a.

Chen, L., Li, J., and Qiao, M. Nearly instance optimal
sample complexity bounds for top-k arm selection. In
Proc. AISTATS, pp. 101–110, 2017b.

Chen, L., Li, J., and Qiao, M. Towards instance optimal
bounds for best arm identification. In Proc. COLT, pp.
535–592, 2017c.

Even-Dar, E., Mannor, S., and Mansour, Y. Pac bounds for
multi-armed bandit and markov decision processes. In
Proc. COLT, pp. 255–270, 2002.

Falahatgar, M., Orlitsky, A., and Pichapati, V. Optimal
sequential maximization one interview is enough! In
Proc. ICML, pp. 2975–2984, 2020.

Garivier, A. and Kaufmann, E. Optimal best arm identifica-
tion with fixed confidence. In Proc. COLT, pp. 998–1027,
2016.

Hassidim, A., Kupfer, R., and Singer, Y. An optimal elimina-
tion algorithm for learning a best arm. In Proc. NeurIPS,
2020.

Optimal Streaming Algorithms for Multi-Armed Bandits

Jamieson, K., Malloy, M., Nowak, R., and Bubeck, S.
lil’UCB: An optimal exploration algorithm for multi-
armed bandits. In Proc. COLT, pp. 423–439, 2014.

Jin, T., Shi, J., Xiao, X., and Chen, E. Efficient pure ex-
ploration in adaptive round model. In Proc. NeurIPS, pp.
6605–6614, 2019.

Kalyanakrishnan, S. and Stone, P. Efficient selection of
multiple bandit arms: theory and practice. In Proc. ICML,
pp. 511–518, 2010.

Kalyanakrishnan, S., Tewari, A., Auer, P., and Stone, P. Pac
subset selection in stochastic multi-armed bandits. In
Proc. ICML, pp. 655–662, 2012.

Karnin, Z., Koren, T., and Somekh, O. Almost optimal
exploration in multi-armed bandits. In Proc. ICML, pp.
1238–1246, 2013.

Liau, D., Song, Z., Price, E., and Yang, G. Stochastic multi-
armed bandits in constant space. In Proc. AISTATS, pp.
386–394, 2018.

Maiti, A., Patil, V., and Khan, A. Streaming algorithms
for stochastic multi-armed bandits. arXiv preprint
arXiv:2012.05142, 2020.

Tao, C., Zhang, Q., and Zhou, Y. Collaborative learning
with limited interaction: Tight bounds for distributed
exploration in multi-armed bandits. In Proc. IEEE FOCS,
pp. 126–146, 2019.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3/4):285–294, 1933.

Zhou, Y., Chen, X., and Li, J. Optimal pac multiple arm
identification with applications to crowdsourcing. In Proc.
ICML, pp. 217–225, 2014.

