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Abstract

We prove new upper and lower bounds for sample
complexity of finding an e-optimal policy of an
infinite-horizon average-reward Markov decision
process (MDP) given access to a generative model.
When the mixing time of the probability transi-
tion matrix of all policies is at most ¢,,;x, we pro-
vide an algorithm that solves the problem using
O(tmixe~3) (oblivious) samples per state-action
pair. Further, we provide a lower bound showing
that a linear dependence on t,,;x is necessary in
the worst case for any algorithm which computes
oblivious samples. We obtain our results by es-
tablishing connections between infinite-horizon
average-reward MDPs and discounted MDPs of
possible further utility.

1. Introduction

In this paper we consider the fundamental problem of com-
puting an approximately optimal policy in a Markov de-
cision process (MDP) given by a generative model. We
consider a standard MDP model with a known set of states
and actions. If an agent chooses an action at a given state,
a known reward is immediately given to the agent and the
agent probabilistically transitions to a new state by an (un-
known) fixed distribution (as a function of the state-action
pair). Given access to a generative model (Kakade et al.,
2003), i.e. an oracle which when queried by a state-action
pair returns an independent sample from the distribution
over next states, our goal is to find a policy, i.e. a choice of
action per state, that approximately maximizes a measure
of (cumulative) reward over time, e.g. discounted reward,
average reward, etc.

Solving MDPs with a generative model is a fundamental
problem in learning theory and a classic model for decision
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making under uncertainty and reinforcement learning (Puter-
man, 2014; Sutton & Barto, 2018). It is a prominent theoret-
ical test-bed for learning algorithms and has been studied ex-
tensively over past 20 years (Kakade et al., 2003). Multiple
algorithms have been proposed for the problem (Puterman,
2014) and there has been extensive research on improving
the sample complexity for finding an approximately optimal
policy (Wang, 2017a; Sidford et al., 2018a; Wainwright,
2019; Agarwal et al., 2020).

In certain settings, the sample complexity of the problem is
settled. For example, consider discounted MDPs (DMDPs)
where the goal is to minimize the y-discounted reward, i.e.
the sum of the rewards where the reward at step ¢ > 0 is
discounted by 7 € [0,1). For a DMDP with Ay total
state-action pairs, it is known that Q(A /(1 — 7)3¢2) !
samples are necessary to find an e-optimal policy (Azar
et al., 2013; Feng et al., 2019) and there are algorithms
which solve the problem with near-optimal O(Ay/(1 —
v)3€2) samples (Sidford et al., 2018a; Agarwal et al., 2020;
Li et al., 2020) for certain ranges of €. Similarly, in the
case of finite-horizon MDPs, again optimal sample and
query complexities are known (Sidford et al., 2018a) for
sufficiently small e.

Another popular class of MDPs are infinite-horizon average-
reward MDPs (AMDPs) (Mahadevan, 1996). Here the re-
ward function (also known as the gain for AMDPs) is the
infinite-horizon average reward and it is assumed that for
any given policy the transition matrix it induces has a mix-
ing time bounded by t.,;x > 0. AMDPs arise naturally
in controlling computer systems and communication net-
works, where a controller makes frequent decisions, and for
inventory systems with frequent restocking decisions (Put-
erman, 2014). However, despite advancements in the the-
ory of DMDPs and multiple proposed algorithms (Wang,
2017b; Jin & Sidford, 2020), the optimal sample complexity
of AMDPs has resisted similar characterization.The best

"Many results in literature instead consider MDPs where at
each state there are a fixed A actions and use |S|A to denote
the total number of state-action pair in their result. These results
typically generalize to non-uniform action set among states, and
thus we replace this total number of state-action pair with Ao
throughout.
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known sample complexity is O(Aoit2,;, /€2) (Jin & Sid-
ford, 2020) and there is no known lower-bound.

In comparison to existing near-optimal DMDP methods for
generative models (Kakade et al., 2003), recent methods
for provably solving AMDPs suffer from two additional
limitations. First, they work with randomized policies, i.e.
ones which choose a distribution over actions in every state.
Correspondingly, these methods require stronger condition
of mixing bound on all randomized policies.Second, they
use dynamic samples from the model, as opposed to the case
for DMDPs where the sampling process can be completely
oblivious, i.e. a fixed number of samples can be generated
per state-action pair.

In this paper we make progress on these problems. First
we provide a new method that finds an e-optimal deter-
ministic stationary policy using O(A¢ottmix/€>) oblivious
samples, thereby overcoming these limitations of previous
methods. Further, we provide a lower bound showing that
Q(Atottmix/€?) oblivious samples are necessary. Conse-
quently, we resolves the question of optimal dependence on
tmix for oblivious sampling methods. We achieve these re-
sults by establishing a connection between infinite-horizon
average-reward MDPs and discounted MDPs which may be
of utility for further research in this area.

1.1. Problem Setup

We define a Markov decision process (MDP) as a tuple
M = (S, A, P, r) with the following interpretations:

* state space S - a finite discrete set of states with size
|S| that the process transits on. In particular, s € S
denotes a single state.

« total action space A - the union of all actions that an
agent can take at any state s € S, i.e. A = UgesAs,
where A; is the action space at state s (and the A are
disjoint). We denote the total number of state-action
pairs as Aot = D g |Asl-

* transition probability matrix P € R“*S - When choos-
ing action a, € A, at state s € S the next state is cho-
sen from the distribution ps o, = P((s,as),) € AS.
We assume that P is unknown but can be queried by
a generative model which when queried at any state
action pair (s, as) outputs an independent sample from
the distribution p, q, .

» reward vector r € [0,1]* - the reward at any state
s when playing action a, is denoted as 75, . As is
common practice we assume the reward doesn’t depend
on the state it transits to (Sidford et al., 2018a), and is
bounded in [0, 1] (by uniform rescaling).

Given MDP M at any state s € S an agent can take action
as € A, after which it receives instant reward r, ,_ and
transits to some other state s with probability ps 4 (s’). A
(deterministic stationary) policy of an MDP is a mapping
m:S — A, ie. it maps each state s € S to a fixed action
7w(s) € As. A randomized stationary policy of an MDP
is a mapping 7 : S — A, ie. it maps a state s € S
to a fixed distribution over actions 7(s) € A“:. Under
a given fixed policy 7 and initial distribution over states
q € A®, the MDP generates a sample path {(s1,a;) €
(S x A), (s2,a2) € (§ x.A),- -} where a; is chosen from
m(s;) and s;41 is chosen from each ps, ,,. Following its
sample path, it receives the (cumulative) reward V" defined
as

Vo, =E™ |> 4" 'reals1~aq|,  ~7-DMDPs;
t>1
Vg = Jim ZET D reads~ AMDP
a = AT PseacS1~ Q1 S,
t>1
(D

given q as the initial distribution over states. We consider
discount factor v < 1 for DMDPs, and an average reward
for AMDPs. For brevity, under a policy m we use P™ &
RS*S to denote the transition matrix of the underlying
Markov chain where P™ (s, s') = >, 4 7s(as)Ps.a.(5')s
and r™ € [0,1]° is the reward vector where r™(s) =
Zas cA. 7s(as)Ts,q,. We define ™ to denote the stationary
distribution of a transition matrix P™ under policy , i.e.
V™) TP =",

Our goal in solving an MDP is to find an optimal policy 7*,
that maximizes the cumulative reward. We say (stationary)
policy 7 is e-optimal, if VJ > VI " — ¢, for any initial
distribution q € AS. In this paper our main goal is to
characterize the number of samples that need to be collected
for each state-action pair (in the worst case) to find an e-
optimal policy for AMDPs. We further restrict our attention
to mixing AMDPs, which we define as those satisfying the
following assumption.

Assumption A. An AMDP instance is mixing if for any
policy m, there exists a stationary distribution v™ so that
for any initial distribution q € AS, the induced Markov
chain has mixing time bounded by t.,;x < 0o, where tyix

is defined as

e = m fangmin { ma [Pt =) < 1.
4 t>1 qEAS

This is a natural and widely used regularity assump-
tion (Wang, 2017b; Jin & Sidford, 2020) for AMDPs to
ensure the existence of cumulative reward of AMDPs in (1).
Under Assumption A one can show that V™ = (™, r™),
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where v is the stationary distribution over states S under
the given policy . Thus, V™ exists independent of q for
arbitrary policy 7, allowing us to omit the subscript q for
brevity. We remark that the assumption we use is weaker
than the ones in Wang (2017b); Jin & Sidford (2020), as
we only assume mixing bounds for deterministic stationary
policies, not the randomized ones.

1.2. Results

The main result of the paper is the following upper and
lower bounds for finding an e-optimal policy for mixing
AMDPs assuming a generative model access.

Theorem 1. There exists an algorithm that, given a mix-
ing AMDP with Ao state-action pairs and mixing time
bounded by t,ix and accuracy parameter € € (0, 1), finds
an e-optimal deterministic policy with probability 1 — § with
O(Ator 10g(Asor/€0)tmix/€3) oblivious samples.

The prior state-of-the-art sample complexity for this prob-
lem is O(A¢oit2,;, /€2) due to the primal-dual method (Jin
& Sidford, 2020). Our method compares favorably in the
following settings:

* tmix > w(l/€): In certain large-scale settings, &mix
may be large and increase with dimension and whereas
e € (0,1) need not. In such settings, the improved
dependence on t,,;x achieved by our method, at the
expense of larger dependence on 1/¢, may be desirable.

* one only has access to oblivious samples: Our method
is the first one that uses oblivious instead of dynamic
samples, which can be easier to access and cheaper to
collect. Note this also implies our method has O(1)
depth and is desirable for parallel computing, improv-
ing the prior parallel method for this model in Tiapkin
etal. (2021).

* one only has mixing condition on deterministic sta-
tionary policies: Our mixing condition is weaker than
the standard mixing condition considered in prior
work (Wang, 2017b; Jin & Sidford, 2020), which re-
quires a tyix < 0o mixing time bound for all random-
ized stationary policies.

We show that our upper bound on sample complexity for
mixing AMDPs is tight up to logarithmic and poly-e factors,
by proving the lower bound on oblivious samples formally
as follows.

Theorem 2. There are constants €y, o9 € (0,1/2) such
that for all € € (0, o) and any algorithm K, which on input
mixing AMDP (S, A, P, r) given by a generative model out-
puts a policy T satisfying V™ > V™ —ewith probability at
least 1 — 8o, K makes at least Q(Aqortmix/€2) deterministic
oblivious queries to the generative model on some instance
with Ao total states and mixing time at most toix.

1.3. Approach

Both our algorithm design and lower bound construction
leverage ideas from research on the complexity of solv-
ing DMDPs (Azar et al., 2013; Sidford et al., 2018a; Li
et al., 2020). AMDPs are the limiting case for DMDPs with
v — 1 and this connection has been leveraged previously to
prove that Bellman equations are optimality conditions for
AMDPs, obtain value iteration methods for AMDPs (Put-
erman, 2014), and efficiently compute stationary distribu-
tions (Cohen et al., 2016). However, to the best of our
knowledge, quantitative application of this connection has
not been performed prior for a finite vy in studying the sam-
ple complexity of AMDPs given by a generative model. We
obtain our main theorems by bridging this gap and showing
how to transfer between AMDPS and DMDPs with bounded
losses in the value.

To obtain our upper bound, we prove a key fact relating
AMDPs and DMDPs given the same MDP tuple M =
(S, A,P,r). In Lemma 2 we show that for any initial dis-
tribution q, the cumulative rewards as defined in (1) satisfy
VT — (1 =)Vg,| < O((1 = v)tmix) - This fact follows
from carefully examining the matrix expressions of V'™
for AMDP and (1 — )V, for DMDP. It also utilizes the
algebraic implications of the mixing property of transition
matrices P™. In prior work, Cohen et al. (2016) used such al-
gebraic techniques on mixing properties of directed graphs;
and Jin & Sidford (2020) used it on MDP analysis. With
that lemma, we show that a v = 1 — ©(€/tix)-discounted
MDP well approximates an AMDP in terms of their (approx-
imately) optimal policy, without incurring an error larger
than order of €. Also, we show that it suffices to solve
the corresponding DMDP to accuracy € = ¢/(1 — 7). By
plugging in the sample complexity of most recent DMDP
solvers (Li et al., 2020), we thus obtain a sample complexity

of
~ Atot choiceof e ¥ Atot
O<(1—7)352> O<(1—v)62>

choice of 5 (Atot trnix )

€3

For our lower bound, we modify the hard DMDP instances
considered in (Azar et al., 2013). In these instances we add
to most state-action pairs a small probability of O(1/tmix)
to “restart” the Markov chain, leading to an AMDP with £ i«
mixing bound under the modified transition probabilities.
In the class of hard instances, each state i € X! transits
to a different state i%il,al) when the agent takes a different
action a' € A;n = [K], and there is one action among
these that contributes to a larger cumulative reward than
all the rest. We show to find an e-optimal policy for the
constructed AMDP, one needs to identify the correct actions
for at least a constant fraction of the states i* € X!, which
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each requires Q( Kty /€2) samples over all actions in A1,
giving the desired Q(Aottmix/€2) sample lower bound.

1.4. Previous Work

The study of sample complexities for finding approximately
optimal policies for MDPs dates back to the proposal of gen-
erative models in 2000s (Kakade et al., 2003). Ever since,
the area has seen vast progress in terms of understanding
the hardness of solving different types of MDPs (Azar et al.,
2013) and in designing efficient algorithms with improved
sample complexities. Here we briefly survey advances in the
complexity of computing approximately optimal policies
for three typical types of MDPs given by a generative model
(see Table 1 for a summary of these relevant prior results in
each setup).”

DMDPs.  Azar et al. (2013) and Feng et al. (2019) prove a
lower bound of Q(A.:/(1—7)3€?) for y-discounted MDPs.
On the upper bound side, Azar et al. (2013) also obtain a (-
value-iteration algorithm with a (sub-)optimal sample com-
plexity of either O(A¢or/(1—7)5€2) or O(Ator/(1—7)3€?)
for e € (0,1/4/(1 —~)|S|). Later, a sequence of work
(Sidford et al., 2018b;a) provide a variance-reduced (Q-
)value iteration that has near-optimal sample complexity
and runtime of O(A¢/(1 — v)3€?) for € € (0,1). Their
method incorporates variance reduction in estimating the
value iteration step, and performs a fine-grained analysis of
the error growth through the iterative process using a tight
variance bound of Markov decision processes. Similarly,
Wainwright (2019) shows that variance reduction can be
applied to Q-learning and obtain a method with compet-
ing sample complexity guarantees for the same range of
accuracy € € (0,1). From a more statistical and less algo-
rithmic perspective, another work of Agarwal et al. (2020)
shows that O(Aet /(1 — 7v)3€?) samples suffice to build an
empirical MDP such that the optimal policy of it yields a
near-optimal policy for the original MDP. Their work also
utilizes the fine-grained variance bound using Berstein in-
equality and extends the near-optimal sample complexity
dependence toall e € (0,1/+/1 — ). Recent work (Lietal.,
2020) fully settled the sample complexity for DMDPs for all
€,i.e. e € (0,1/(1 —~)), with a perturbed empirical MDP
construction. We leverage this result crucially to obtain our
results in Section 2.

Finite-horizon MDPs. For finite-horizon MDPs, cumu-
lative reward is measured as the sum of the rewards ob-
tained within first H steps for a given finite horizon H > 0.
To the best of our knowledge, the only near-optimal al-

2 Another typical setting (outside the scope of this work) for
studying these MDPs is to design efficient algorithms to minimize
the regret compared with the optimal policy (Kearns & Singh,
2002; Ortner & Auer, 2007; Ortner, 2020).

gorithm given for finite-horizon MDP is in Sidford et al.
(2018b). There, the authors show how to apply the near-
optimal variance-reduced value iteration method to MDPs
with finite horizon of length H. They formally prove an
upper bound of O(A;H?/€?) in sample complexity, for
€ € (0,1). Through reduction to DMDP lower bounds, they
also obtain a lower bound of Q(A s H?/€2).

AMDPs. Average-reward MDPs with bounded mixing
time are another fundamental class of MDPs (Kearns &
Singh, 2002; Ortner & Auer, 2007), though less studied
in terms of sample complexity. The first sample complex-
ity bounds in the setting of a generative model is Wang
(2017b), which applies a primal-dual method for the mini-
max problem related to the linear programming formulation,
and proves an upper bound of O(72At2 . /€*) where T
denotes an upper bound on the ergodicity of all stationary
distribution under arbitrary policies, i.e. there exists some
distribution q € AS satisfying \/1/7-q < v™ < /7-q
for all policies 7 and its induced stationary distribution v™.
Recently, Jin & Sidford (2020) design a similar primal-
dual stochastic mirror descent and improve the bound
to O(Agoit?;, /€?), removing the ergodicity assumption
through an improved analysis of the optimality conditions
of the minimax problem. In contrast to value iteration,
Q-learning, and sample-based methods for DMDPs, both
known efficient methods for AMDPs use a linear program-
ming formulation, dynamic sampling, a stronger mixing
condition, and only compute randomized stationary policies.
On the hardness side, there is no known lower bound for
AMDPs with bounded mixing time.

1.5. Notation

We use unbold letters, e.g. V, to denote scalars, and bold let-
ters, e.g. v and P, to denote vectors and matrices. We use e;
to denote the basis vector that is 1 on coordinate 7, and O else-
where. We use 15 to denote the all-ones vector in RS, and
omit the subscript when it is clear from context. We use || -
HOO to denote the ¢-.-norm of vectors and £, -operator norm
of matrices, e.g.  ||V|loo = maxses [v(s)| and ||P]| s ==
max| x| =1/|PX|[lcc = maxses ) s |P(s,5)].

2. Upper Bound

In this section, we prove the sample complexity upper bound
for obtaining an e-optimal deterministic policy for mixing
AMDPs. We first provide Lemma 2 that relates the value
of AMDPs and DMDPs under the same policy. Then we
reduce solving AMDPs to DMDPs with the proper discount
factor (Lemma 3) and use the state-of-the-art DMDP solver
(restated in Lemma 4) to obtain our result.

Throughout the section, we consider some mixing AMDP,
and its corresponding DMDP with the same tuple
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Table 1. Upper and lower bounds on sample complexity to get c-optimal policy for different type of MDPs. Here Aot denotes the
total size of all state-action pairs, v is discount factor for DMDP, H-MDP corresponds to finite-horizon MDP with length H, tpix is
mixing time for mixing AMDP, and 7 is an ergodicity parameter showing up whenever the designed algorithm requires additional ergodic

condition for MDP, i.e. there exists some distribution q and 7 > 0 satisfying

stationary distribution ™.

1/7q < v™ < 4/7q, for any policy 7 and its induced

Type Method Sample Complexity Accuracy
lower bound (Azar et al., 2013; Feng et al., 2019) QAror (1 —7)3e7?) N/A
Empirical QVI (Azar et al., 2013) O (A(1 =732 e (0,1/y/ 1 —-)|S])
Primal-Dual Method (Wang, 2017a) O (Atorm (1 =) %e?) ec (0,1/(1—7))
Variance-reduced QVI (Sidford et al., 2018a) 19) (Atot( 1-— 7)73672) e€(0,1)
DMDP Empirical MDP Sampler (Agarwal et al., 2020) 9) (Apor (1 —7)%€e7?) €€ (0,\/1/(1—7))
Primal-Dual SMD (Jin & Sidford, 2020) O (Aot (1 —7) 7472 €€ (0,1/(1—7))
Preturbed Empirical MDP Sampler (Li et al., 2020) 0 (Atot(l — 7)_36_2) e€ (0,1/(1=7))
HMDP lower bound (Sidford et al., 2018a) Q (Awor H2e72) N/A
Variance-reduced QVI (Sidford et al., 2018a) O (Agor H?e™?) e€(0,1)
AMDP lower bound (Theorem 2) NQ (Atottmixe ?) N/A
Primal-Dual Method (Wang, 2017b) O (T* Agortice ) €€ (0,1)
Primal-Dual SMD (Jin & Sidford, 2020) O (Agort2ine™?) €€ (0,1)
Our method (Theorem 1) O (Atottmix€ ) €€ (0,1)

(S, A, P, r) and some discount factor v € (0, 1) to be spec-
ified.

Characterization of value vectors. We introduce the
value vector v© € RS under a given policy 7 for all
states s € S. To distinguish between the value vectors
of a DMDP and AMDP, we use vg for DMDPs and v™
for AMDPs respectively. For the discounted case, we let
vi(s) = VL, - i.e. the cumulative reward of the MDP
with initial distribution only on state s. We first give the fol-
lowing equations for computing value vectors v™. These are
known results widely used in literature (see also Puterman
(2014); Wang (2017b); Jin & Sidford (2020)).

Given a tuple (S, A, P, r), for DMDP with discount factor
~ and a policy 7, we have
1
0,— 1. (2
[ - v] @

Similarly, for AMDP and a policy 7 that induces stationary
distribution v™, since the reward doesn’t depend on initial
distribution, we have

VI = AP and V]|l €
t>0

v ={r",vM1 and ||v'|« € [0,1]. 3

To put the two value vectors on the same [0, 1] scale, we
introduce the following rescaled value vectors denoted by

v™, one has

T
—T T l T\t _ T
vi=v —Th_I)I;OTtZ;(P)r =VT.1

o0

and V] = (1-7)v]=(1-9) [th(P”)tr ] :

=0

“4)

We first state a helper lemma for P™ following from the fact
that it has mixing time bound ¢,,;x, quoted from Lemma 23
of Cohen et al. (2016).

Lemma 1 (see Lemma 14 of Jin & Sidford (2020), Lemma
23 of Cohen et al. (2016)). For any policy m with induced
probabilistic transition matrix P™ of mixing time t ., and
stationary distribution v™ and any non-negative integer
k 2 tmix:

I = 1(7) s < (;) sl

Now we provide a lemma that bounds the ¢, -difference of
the two rescaled value vectors v and v7 under the given
policy 7 and discount factor .

Lemma 2. Given a same MDP tuple (S, A,P,r), a policy
7 and some discount factor vy, rescaled value vectors v™ for
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AMDP and V7 for DMDP as defined in (4) satisfy
[v™ — ‘_’;THOO < 3(1 = V) tmix-
Proof. Note that

”‘_’Tr - _:Hoc

=H<1 ) YA T - (1) Y A (P

t>0 t>0

oo

=(1-9)

Z,yt I:(Pﬂ')t _ 1(V7T)T] T
t=0

<AL= AP = 1) oo - 17 oo -

Now, ||r™]|s < 1 by assumption and for all ¢ > 0 we have
1) = 1) oo < [(PT) e + 11(™) Moo = 2.

Further for all ¢ > t,,; we have ||(P™)! — 1(v™) 7| <
2~ k/tmix] by Lemma 1. Combining yields the desired
bound of

V7 = VTl
tmix—1
<1=9) > AP =107 e
t=0
+(1=) D AP = 17) |
t2>tmix
tmix—1 1
S(l - ’7) Z 27t + (1 - 7) Z 9%/t mix]
t=0 tztmix
S?)(l — V)tmix .

O

This lemma shows under the same policy, the values of
AMDP and its corresponding DMDP are close up to € when
choosing the discount factor v = 1 — O(e/tmix). This
allows us to formally reduce solving AMDPs to solving
DMDPs with large enough discount factors in Lemma 3.

Lemma 3. Given an AMDP with mixing time bounded by

tmix, accuracy parameter € € (0, 1), and an ﬁ—optimal

€
mix’

policy m for the corresponding DMDP with v =1 —
7 is also a e-optimal policy for the original AMDP.

Proof. Consider a DMDP with the same transition matrix
and discount factor 7 = 1 — 5*—, we have [|[v" — v7||oc <
€/3 by Lemma 2.

Now let 74 and 7, denote optimal policies for the DMDP
and AMDP respectively. By definition of 7 one has

VT = vl < 5

€ ST ST
ﬂ < HV’Y — V,yd”OO < 6/3

o)

Consequently, one has that entrywise,

—
.
N2
—~
N2

ii (#4d)
o - GTd _ € GTa _ €
VvVi+ 1 >vD > v, 31 > v, 31

Y

g
Y

colon
—

S
S

> (v = §1) - 51,

where we use (i) Lemma 2 together with the choice of
v =1— g5, (ii) equation (5), and (iii) the optimality of
74 for DMDP by definition.

Altogether we conclude that v > v™ — €1 and therefore
V™ > V™ —¢ ie. 7is a e-optimal policy for the given
AMDP. O

With the reduction, we can apply recent DMDP solvers to
obtain an AMDP solver with the desired sample complexity.
In order to solve the corresponding y-discounted MDP to
a desired accuracy, we use the following recent efficient
DMDP solver (Li et al., 2020).

Lemma 4 (Corollary of Theorem 1 of Li et al. (2020)).
There is an algorithm that, given a vy-discounted MDP, de-
sired accuracy € < 1/(1—7), failure probability 0 < § < 1,
outputs an e-optimal policy with probability 1 — § with a
number of oblivious samples bounded by

~ Atot Atot
0] 1 .
( % —ww)

(T—)e
We remark that what we state is an immediate corollary of
Theorem 1 in Li et al. (2020) which works for non-uniform
action space per state as well by expanding the space. Now
we can apply this solver to find an ¢/(1 — )-optimal policy
for y-discounted MDP to obtain our main result.

Theorem 1. There exists an algorithm that, given a mix-
ing AMDP with Ao state-action pairs and mixing time
bounded by t,ix and accuracy parameter € € (0,1), finds
an e-optimal deterministic policy with probability 1 — § with
O(Ator 10g(Asor/€0)tmix/€3) oblivious samples.

Proof of Theorem 1. By Lemma 3, it suffices to solve the
corresponding DMDP to ¢/3(1 — «y) accuracy withy = 1 —
€/9tmix. Using the solver in Lemma 4 with ¢ = ¢/3(1 — ),
it has sample complexity bounded by the following as stated.

O Atot log Atot
(1=7)3(€/3(1 =) 7~ (1 =)z
Atot Atot Atottmix Atot
O((l—w@ 8 eé) O( a o e&)’

where we use the choice of v for the last equality. This
proves the correctness of the method and yields the sample
complexity bound as claimed.

O
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Figure 1. AMDP lower bound hard instance illustration. V states in X' (corresponding to first level), K action per state i' € X!,
Aot = O(NK) total state-action pairs. v € (0,1), p;1 o1 € [0,1] foralli* € X', a* € [K] are tunable parameters.

Remark 1 (Nearly-tight € regime.). That Li et al. (2020)
achieves near-optimal sample complexity for solving
DMDPs forall e € (0,1/(1 — 7)), as opposed to the more
restricted range of £ € (0, 1) in Sidford et al. (2018a) and
€ € (0,1/+/T—7) in Agarwal et al. (2020), is key for The-
orem 1. This is due to the fact that we need to solve the
corresponding DMDP to an accuracy of ¢ = ¢/(1 — 7),
which is on the order of 1/(1 — ) for constant accuracy pa-
rameter € € (0,1). The € regime where we can apply prior
results, i.e. € < 1/y/1 — 1, corresponds in AMDPs in the
regime where our method’s sample complexity is no better
than that of O(Aoit? ., /€?) achieved by prior work (Jin &
Sidford, 2020).

3. Lower Bound

In this section, we show a lower bound of (A ottmix/€?)
oblivious samples for finding an e-optimal policy for an
AMDP with mixing time t,;x. This closes the gap (up to
logarithmic and poly-e terms) for finding an approximately-
optimal policy for an AMDP given oblivious samples and
shows that the method we propose in Theorem 1 with sample
complexity O(Aottmix/€>) is near optimal for constant e.
We defer some proofs in this section to Appendix A.

To obtain this result, we provide a family of AMDP in-
stances that we prove are difficult to solve. Our construc-

tion is similar to that given in Azar et al. (2013); Feng
et al. (2019) for lower bounding the sample complexity
of DMDPs. Formally, we consider the state space to be
S = X' U Xx? U A3, denoting three disjoint subsets of
states on different levels (see Figure 1). We denote the
action space as A;, = [K], for all s = i € X!, and
A, = {single fixed action}, for all s € X2 U X3,

Let X! have N independent states, each with K indepen-
dent actions. We assume for state i € Xj, when taking
action a!, an agent gets to some state at second level, de-
noted as ifil’al) € X2, At state z'%il}al) € X? the agent
can only take one single action after which with probability
1 — ~ it goes uniformly random to a state at the first level in
X1, with probability P(it,q1)7 it goes back to its own state,
and with probability (1 — p(;1 41))7 it gets to some state on
the third level denoted as i,y 1) € X%, Aty 1) € X2,
the agent can take a single action after which with probabil-
ity 1 — v it goes uniformly randomly to a state at first level
in X1 while with probability + it stays at the original state
if’il’al) € X3. Areward 1 is generated when the agent trans-

fers from a state in X'2 to itself, and all other transmissions
generate O reward. See Figure 1 for an illustration.

‘We construct the instances such that for each state-action
pair (i!, a'), a chain of length-2 composed of states i%il alys
-3
K

i

1 1) follows. The probability (1—~) to go back uniformly
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to a state ¢! € X! from each chain allows the entire Markov
chain to “restart” from i uniformly, and ensures a O(1/(1—
-v)) mixing time bound, as we show in Section 3.1. When
in a single chain, only the transition probability p(;1 41y of

transiting from i%il ) to itself effects the average-reward.

To create our family of hard AMDP intances, we consider all
instances such that for each i* € X!, one of the following
two cases occurs:

» Case (4): there is one action k € [K] that leads to
transition probability vp’, and all other actions with
probability yp; in this case the optimal action is k.

* Case (ii): there is one action a’ that leads to transition
probability yp*, one action k € [K] leading to prob-
ability «p’, and all others leading to probability p; in
this case the optimal action is a’.

In Section 3.2 we argue one needs to find the best action for
at least a constant fraction of the states i € X! to obtain
an O(e)-optimal policy and we show this requires at least
Q(N Ktpmixe?) oblivious samples for properly chosen p,
p’, and p*.

3.1. Stationary Distribution and Mixing Time

First, we characterize the stationary distribution under a pol-
icy m; this is useful for bounding suboptimality for policies
in Section 3.2.

Lemma 5 (Stationary Distribution Characterization). Con-
sider a policy that chooses always a fixed a* for each state
in X'. The stationary distribution v is in the following
form:

v(i') = N-;:%,Vil cxl;

. 1 11—~ . .
I/(Z%‘a):f. ,lf’]‘(‘ila :1’
(i1,al) N (1_7p(i1,a1))(2_’)/) (a”)

v (i%il,al)) = Oa val S A, i1 (al) = O’
1 1- il,a .
v (i?il,a1)> _ 1 2 =paay) frala)) =1,

N (1= a2 =)
0, VYa'e€ A mu(a")=0.

The proof of Lemma 5 follows by checking the definition
of stationary distribution given the transition probabilities
of the model; we defer it to Appendix A.

Next, we show that the mixing time of such a Markov chain
under any policy 7 is O(1/(1 — «)) formally; we defer the
complete proof to Appendix A.

Lemma 6. The AMDP constructed in this section has mix-
ing time tmix < O(1/(1 —7)).

Sketch of Proof = We first consider a regularized probabil-
ity transition matrix in form

P=qP+(1—7)1p', (6)

for some probability transition matrix P and some density
vector p.

Such a probability transition matrix induces a Markov chain
where each step moves according to P with probability ~,
and restart from a random state following a fixed distribution
p with probability 1—~. After O(1/(1—7)) steps the initial
distribution doesn’t affect where one is at because with high
probability it has restarted following a fixed distribution
for at least once. That the distribution isn’t affected by the
initial distribution ensures that the Markov chain is mixing.

Unfortunately, we cannot immediately apply this result as
in our Markov chain one will only restart with certain prob-
ability when at a state in X2 U X3 (as opposed to all states).
Instead we show the 2-step probability transition matrix
admits the structure of a regularized probability transition,
i.e. (6). Thus we apply the result to the 2-step transition
matrix to argue that it mixes within O(1/(1 — «)) steps,
which we show implies that the original Markov chain mixes
within time steps O(1/(1 — +)), proving the statement as
claimed. O

3.2. Lower Bound Proofs

Here we show a lower bound on the sample complexity for
obtaining an e-optimal policy. Without loss of generality in
this section we assume N, K are at least some sufficiently
large constants, € < 1/32, and v > 1/2.

We consider the family of AMDPs M where for each MDP
instance and any fixed i' € X! either case (i) or case (ii)
will happen, i.e.

letp=",p' =v+e(l—7), p" =7+2(1—7),

o p’  forsome k € [K],
case () : p(it,a1) = " g
P orany a- # k;

(N
p*  for some al € [K],

case (i) : p(1 a1y = ¢ p'  for some k # al,
p  foranya! ¢ {al, k}.

/

Following the characterization of stationary policy in
Lemma 5, for one state i! € X! the difference of rewards
when choosing a suboptimal action that leads to the tran-
sition 7p2 of s.taying at its own state in. i.%l.l_’al) inst.ead of
an optimal action that leads to the transition yp;, with the
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policy for all other states keeping the same will be

1 (Q=vpy 1 (A-=7p

N (Q=9p1)2-7) N (1—9p2)(2—7)
1 1—ypi(1—~p2) —p2(1 —p1) )
TN 2y (T—p)d - )

1 1—n P1— P2 2

Z 767
(1 =p1)(1 —vp2) — N

where in the last inequality we use the choice of p;,ps €
{p,p, p} p1 > p2, and the fact that ¢ < 1/32 <
1
W Consequently, in order to obtain an 75e-
approximate deterministic policy, one must choose the op-
timal action, i.e. 7(i) = k for case (i) and 7 (i) = al for

case (ii) for a subset of i € Z € [N] satisfying |Z| > 23N

=N 5

Now the key argument follows from an information-
theoretical lower bound for distinguishing between two
binary variables with mean vyp and ~p*, formally given
as follows.

Lemma 7. Given a random variable X drawn uniformly
randomly from the family {bin(yp), bin(yp*)} where p, p*
are as defined in (7). When taking fewer than T = Q(1/(1—
v)€?) samples of X, any procedure with probability 1/4 will
make a wrong prediction on which binary random variable
X is.

As an immediate corollary, one can show that for any algo-
rithm K taking fewer than T samples on a. on any randomly
permuted set of actions of a state 41, it must fail to distin-
guish between case () and case (1) in (7) with probability
1/4.

Now given any algorithm that takes fewer than O(NTK)
deterministic > oblivious samples, we show the algorithm
will not collect enough samples for a constant fraction of
actions a' € A;1 of a constant fraction of states i € X'L.
Thus, one can consider an adversarial instance in the family
M that hides the best action uniformly randomly among
the actions with insufficient samples. With constant prob-
ability the algorithm will output a suboptimal action for
such ©(N) states and output a suboptimal policy = sat-
isfying V™ < V* — O(e) for some instance as we pick
adversarially. By adjusting constants and combing with
Lemma 6, this implies any algorithm will need at least
Q(NKT) = Q(Atortmixe 2) deterministic oblivious sam-
ples to find an e-optimal policy for all instances in the family.

Finally, we note that our lower bound statement is applicable
to any algorithms yielding deterministic policy and using
deterministic oblivious sampling, which already matches
our upper bound results in Section 2 nearly tightly. We
present our lower bound under this setting in our main paper

3Here deterministic means the algorithm takes fixed number of
samples per state-action pair, regardless of the instance.

for clarity and simplicity. However, we believe one can
extend the result to algorithms with randomized policies
and using dynamic samples; we think these are interesting
future directions to further strengthen the lower bound and
discuss them in more detail in Appendix B.

4. Discussion

In this paper, we have shown an Q(Aottmixe 2) sample
complexity lower bound for AMDPs with mixing time
bound %,,ix, and a matching upper bound (up to logarith-
mic and poly(1/e) factors) obtained through reduction to
DMDPs . Our work suggest a few open directions which
we believe would help clarify the structure of AMDPs and
its connection with DMDPs:

Obtaining tight upper bound of sample complex-
ity and runtime. While the authors suspect that an
O(Atottmix€2) upper bound on the required sample com-
plexity may be attainable, it seems to require new ideas in
leveraging the mixing structure of AMDP more directly,
instead of reducing it to DMDPs. Further, it would be in-
teresting to obtain algorithms with efficient running times

as has been shown for DMDPs (Sidford et al., 2018a) in
certain e-regimes.
Relaxing the mixing bound assumption. In certain

cases, assuming global mixing time bound for all policies,
even for all deterministic stationary policies (as we do in the
paper), can be restrictive. We ask if it is possible to obtain
sample complexity dependence in terms of the mixing time
of the optimal policy, or in terms of some alternative parame-
ters like diameter (Jaksch et al., 2010), or bias span (Bartlett
& Tewari, 2012; Fruit et al., 2018) that can be smaller than
tmix for certain types of AMDPs.
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Supplementary material

A. Omitted Proofs for the Lower Bound

In this section we give a detailed proof for the lower bound argument, formally we will prove the theorem:

Theorem 2. There are constants €g, 0o € (0,1/2) such that for all € € (0, €9) and any algorithm K, which on input mixing
AMDP (S, A, P,r) given by a generative model outputs a policy 7 satisfying V™ > V™" — ¢ with probability at least 1 — 6,
K makes at least Q(Aqottmix/ 62) deterministic oblivious queries to the generative model on some instance with Ay total
states and mixing time at most tpix.

First we give the proof for the concrete characterization of the stationary distribution given a deterministic policy for our
AMDP instance.

Proof of Lemma 5. For simplicity we write 7(i') = a' to denote the action a® we take at each state i'. To verify this is the
stationary distribution for all states, one can check the equality from the definition of stationary distribution. Given P as the
transitional matrix of the given Markov chain, and v as the distribution specified above, one can see for all states it e XLt
holds that Vi € X1,

. 1 1—v 1—7 1
Wi =5 5 N'N<H)

= 5 (o) 5w ) 157,

Also, for particular state in X2, if a' # m(i'), the distribution must be 0; if ' = 7(i'), we have

. 1 1—7 . .
2 1 2

Similarly for states in X3, apart from 0 if a' = 7(i1) we have

. 1 (1 = p(itar) ( ) .
3. = — . 2 = 2 (1 — il gl 3‘1 1 Y-
g (2(117‘11)) N (= para)@—7)  J\Ghed (1= paan) 7+ (Z(l a )) i

O

Now we prove Lemma 6 on bounds of mixing time for our constructed instance formally. To do that, we first prove the
following lemma that offers intuition in bounding the mixing time of our interested transition matrix. We use ||v||; =
> scs |V(s)| as the standard £; norm of vectors.

Lemma 8. Given a Markov chain with transition probability matrix P, a probability density vector p € A, and
v € (1/2,1), the Markov chain induced by P = yP + (1 — )1p " has mixing time bound t i, < O(1/(1 —7)).

Proof. By induction on ¢ we have that for all for all ¢ > 1,
P! = Y'P + lf)z—7 for some p;.

Now, for any arbitrary initial distribution q;, q2 we have that

q; P' — q) P*

= H(q1 —a2) (Y'P'+1p])
1

1

< 29" < 2exp(—t(1 —7)).

= H(Oh - OIQ)T 7P
1
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By Perron-Frobenius Theorem, we know there must exists some stationary distribution v satisfying v'P =vT. Now

taking qo = v and some arbitrary q; € A®, we have for t > to := (lloffﬂ ,

Thus one can immediately conclude by definition of the mixing MDP that the induced Markov chain has a unique stationary
distribution and that its mixing time is bounded by O(1/(1 — 7)). O

al P —vT|| < 2exp(—t(1—7) < 1/2

1

Now we provide the formal proof for Lemma 6.

Proof of Lemma 6. Now for a fixed policy we consider the probability transition matrix P corresponding to the Markov
chain of our problem (see Figure 1), we write the block-wise decomposition form of the matrix as

b 0 P,
(1= x1-17 APy}’

where the first block 0 € RV*¥ corresponds to the probability transition matrix from states in X'! to X'}, the second block
P corresponds to transition matrix from states in X'! to states in X2 U A3, and similarly for the rest.

By considering the 2-step transition probability matrix we have
P2 _ (1 — ’}/)%1 . ].T ")/P1P2
Y(1=9) §1-1T (1-9) §1-1T ++°P3
=(1 =7 +7*)No +~(1 - )N,

1-v? 1 1- 1T P P
where we define N = | 17 F7* N . Tt 2
0 - o1 1 1T + P2
1—vy++2 T—y++2 7+7

andN = (%117 0)=1p".

Note Ny is a probability transition matrix and therefore || Ng||o < 1. As a result, we can apply Lemma 8 with 4" =
1 —~(1—7),~v > 1/2 to conclude that for arbitrary two distributions qi, q2, we have for all ¢ > 1,

‘q
‘qf

P2t+1 o q;P2t+1
Thus one can conclude that the mixing time for this Markov chain induced by the form of probability transition matrix we
have is bounded by tix < O(1/7(1 — 7)) = O(1/(1 —7)). O

[ P? —q; P <21 — (1 —7))" < 2exp(—ty(1—7));

1

1P|l < ‘qf

.
= H(Ch —q2) 'Nj

q/ P* —q; P* P — qy P?|| < 2exp(—ty(1—7)).

1

S ‘

1 1

To prove Theorem 2, we first give a simple information theoretic lower bound for distinguishing two binary random variables
p1 = bin(yp*) and p2 = bin(yp) (Yu, 1997).

Lemma 7. Given a random variable X drawn uniformly randomly from the family {bin(yp), bin(~yp*)} where p, p* are as
defined in (7). When taking fewer than T = Q(1/(1 — v)e?) samples of X, any procedure with probability 1/4 will make a
wrong prediction on which binary random variable X is.

Proof of Lemma 7. Here we use of the KL divergence of random variables, defined for the two discretized probability
variables p; and p- as

L(p1/p2) Zpl ) log(p1(i) /p2(3))-
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Now for the given two binary random variables p; = bin(yp*), p2 = bin(yp),

y+e(l—=9) l—y—el—vy
KL(p1|[p2) = v(7v + €(1 — 7)) log (7 +7(1 =7 —€e(l—7))log 1(7) :
We know by Le Cam’s inequality (Yu, 1997) that for every testing procedure V¥, if the environment chooses a binary
distribution V' randomly, let ¥ (X) be the output if the identified distribution of procedure ¥ under a sequence of observations
X, let P be taking over the randomness coming from both X, V', we have

PU(X) £ V) > | (1 - ;Kuplnpg)) =2 (1-ow@ET )

Thus when one take samples 7' < Q(1/(1 — v)e?), for any testing procedure, with probability at least 1/4 it would make a
wrong prediction. O

Now for K > 3, we consider a family of instances of binary variables S as follows: Given p, p’, p* defined as in (7),

let v = (v1,---,vK) where v = bin(yp), v; = bin(yp) fori < K — 1, and

9
let v/ = (v}, - ,Vf) where Vi = bin(yp'),vi_, = bin(yp*), v, = bin(yp) for i < K — 2. ®

We consider v,/ under all random permutations o over [K]| such that Sk = {v,(, v, W 1 €

[K], o is random permutation over [K]}. One has the following corollary from the information-theoretic lower bound of
identifying binary variables in Lemma 7.

Corollary 1. Consider a family of instances Sk as defined above. For any testing procedure taking oblivious samples of
each binary variable from an arbitrary permutation of one of the two instances v,, V., and outputs a prediction of which
index corresponds to a random variable with the highest mean, if it takes samples fewer than T with T = Q(1/(1 — v)e?)
in Lemma 7 on vk _1, it must make wrong predictions for at least one of the instance with probability 1 /4.

Proof. We prove by contradiction. Suppose there is a testing procedure XC and two instances v,, v, in the family Sg that
KC can always make the correct prediction with probability 0.75 for both. Then, we define the following procedure K’ for
testing binary variable X given fewer than 7" samples from X and the permutation ¢. Note this is more information and will
not make the following problem harder for procedure /C to solve. Let 15, _; = X with its own (< T') samples, and all others
be bin(p) or bin(yp’) with auxiliary samples generated from their own distribution as in v/, by assumption we know if
X = bin(yp*), then applying procedure K it outputs o, " (K — 1) as the index of the binary variable with highest mean
with probability 0.75. Similarly, if X = bin(vp), then procedure K outputs o ' (K) as the corresponding binary variable
index with highest mean with probability 0.75. Thus, we obtain a procedure K’ using K that can identify the distribution of
X correctly within 7" samples with probability 0.75, contradicting Lemma 7. O

Proof of Theorem 2. Consider an arbitrary algorithm K which takes a total number of deterministic oblivious samples
N 5 KT where T is as defined in Lemma 7 and let N be divisible by 24, K be divisible by 2. There is a subset X! C x'!

such that |X = 2N and that for all i € X1, the algorithm gets at most T samples from each of the action in some subset

A;1 of actions w1th size | A;1| = K/2. Now consider a family of MDP instances M € M where for each i* € X', the
actions in the subset ./217 1 and the transition probabilities at i%il al) of staying at itself under these actions are characterized
fully by one of permutations v or v’ defined as in (9). When induced by v, the optimal action leads to transition probability
~p' and sub-optimal actions leads to vp, when induced by v/, the optimal actlon leads to transition probablhty 7p* and
sub-optimal ones leads to either p or p’. All other actions in All \ A fori' € X" and all actions for i! € X \ X have
transition probability p of staying at their own states in level i?

Given any algorithm K that takes deterministic oblivious samples on each state-action pair, denote Y; =
1 (K didn’t output the optimal action for state i}» V¢ € X! as a random variable. Consider a random instance where for each i! € X1,
the actions follow some permutation o and one of {v,, v/, } uniformly randomly. By Corollary 1 we know that EY; > 1/8,
and thus we have

]. Markov’s inequality 1 11N 24 22

Yi| > — = P Y; < —N —_ ==

Z Z 24 =12 23N 23
icXxl iex!
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Thus, there exists an instance for which when algorithm takes fewer than %K T oblivious samples, with probability at least
1/23 the algorithm outputs a policy with suboptimal actions on more than iN states of ! € X1

However, note that when the algorithm outputs a suboptimal action for a state, it will incur a loss of at least

1 A=y 1 (A-vpy
N (1-w)2-7) N (Q-)2-7)
_ 1 1=9p (A =9p) —p(l —7p)
N 2=y (1-=9)1-p)
1 1=y p—p > 2
N 2—y(1—=p)1-9p) ~ N

in the average reward. Thus, we conclude with probability at least 1/23 the algorithm will output a lee—suboptimal policy 7
satisfying V™ < V7™ — %e on some instance Mg € M.

€,

Thus by adjusting constant of ¢, for some constant 6y = 1/23 and large enough N we conclude that the number of necessary
samples is Q(NKT) = Q(NK/(1 — v)e?) = Q(N Kt iy /€?) by definition of 7' in Lemma 7 and mixing time bound
in Lemma 6, as stated in the theorem. O]

B. Generalization of the Lower Bound

In this section, we discuss some potential generalizations of our lower bound result. We first show one can fully characterize
all randomized policies: Consider a policy that at state i* chooses a' with probability ;1 (a'). By definition, Y, 7,1 (a') =
1,Vit € X%, following symmetry of actions and the structure of sequential independent chains in our construction, the
stationary distribution v/(i;1 1)) o< m(a') for all ' € [K]. Thus similar to Lemma 5 of stationary distribution for

deterministic policies, we have that the stationary distribution of a given randomized policy 7 is (let i' € X!, a' € X1)

1 1—x
1y _ L 1 1
V(Z)—N 7~ Vit € X
1
2 T (at) 1—7 1 1
V(Z(“’“l)> N - apaa)2-)

Ge)) 7N (L= pee)(2—7)

v (i?’ 1, ) 771-1((11) (- p(il’al)) ,Vil,al.

Combining this structure of stationary distribution together with Corollary 1 gives the following generalization of our lower
bound to all randomized policies.

Theorem 3 (Generalization to randomized policies). There are constants €g, 09 € (0, 1/2) such that for all € € (0, €y) and
any randomized algorithm IC, which on input mixing AMDP (S, A, P, r) given by a generative model outputs a randomized
policy m satisfying V™ > V™ — € with probability at least 1 — &g, KC makes at least Q(Atottmix/EQ) deterministic oblivious
queries to the generative model on some instance with Ay total states and mixing time at most ty;x.

Proof. We define T', X Y Ail as in Theorem 2. Consider any procedure that outputs a randomized policy for a single state
il € X1. By Corollary 1, we know with probability % it must output a randomized policy satisfying ;1 (optimal action) <
1/15, as otherwise one can round the randomized policy to a deterministic one with larger than 3/4 success probability.
Using the structure of stationary distribution under randomized policy, we note that whenever the algorithm outputs a
randomized policy with 7;1 (optimal action) < 14/15 for some state 41, it incurs an average loss in the reward as

14 2e 2e
1—2).2= = . 10
( 15 ) N 15N (19)
Using the similar argument as in Theorem 2 and by adjusting constants, this proves the generalized lower bound. O

It would also be interesting to consider more sophisticated sampling schemes to generalize our lower bound result. For
instance, we believe we can handle algorithms with randomized oblivious samples, by considering a fixed permutation and
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choosing vx_1 = yp or yp* uniformly at random (9) in constructing the hard instance. Even more broadly, we conjecture
that a lower bound result for any algorithms with adaptive samples is achievable through a more careful argument. In
particular, the information-theoretic lower bounds shown for DMDPs in Azar et al. (2013); Feng et al. (2019) use dynamic
sampling, i.e. when the samples are generated iteratively and might depend on the history observation, might be adaptable
to AMDPs as well. Similar to our current proof strategy, that would crucially rely on the structure of our constructed MDP
and the independence between states i' € X!,

Finally, we note that given our upper bounds in Section 2, argument for any algorithms yielding deterministic policy and
using deterministic oblivious sampling already matches our upper bound results nearly tightly. So we present our lower
bound under this setting in our main paper for clarity and simplicity. However, we still think generalizations along these
lines are helpful to fully characterize the hardness of solving AMDPs.



