Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

Tianyuan Jin' Jing Tang?> Pan Xu?

Abstract

In batched multi-armed bandit problems, the
learner can adaptively pull arms and adjust strat-
egy in batches. In many real applications, not
only the regret but also the batch complexity need
to be optimized. Existing batched bandit algo-
rithms usually assume that the time horizon T
is known in advance. However, many applica-
tions involve an unpredictable stopping time. In
this paper, we study the anytime batched multi-
armed bandit problem. We propose an anytime
algorithm that achieves the asymptotically opti-
mal regret for exponential families of reward dis-
tributions with O(loglog T - ilog®(T))" batches,
where a € Or(1). Moreover, we prove that for
any constant ¢ > 0, no algorithm can achieve the
asymptotically optimal regret within cloglogT
batches.

1 Introduction

The multi-armed bandit (MAB) problem provides an ele-
mentary model for exploration-exploitation tradeoffs and
finds many real applications such as medical trials (Thomp-
son, 1933; Perchet et al., 2016), crowdsourcing (Kittur
et al., 2008; Zhou et al., 2014), and marketing (Bertsimas
& Mersereau, 2007; Vaswani et al., 2017). The problem
is typically described as a game between the agent and the
environment. The game proceeds in a total of 7' time steps.
At each time step t, the agent pulls an arm A; from the
arm set K] with the goal of maximizing the accumulated
reward over 7' time steps. Ideally, the agent can observe the
immediate feedback of each pull, e.g., reward, and exploit

'School of Computing, National University of Singapore, Singa-
pore *Data Science and Analytics Thrust, The Hong Kong Univer-
sity of Science and Technology *Department of Computer Science,
University of California, Los Angeles, CA 90095, USA. Corre-
spondence to: Xiaokui Xiao <xkxiao@nus.edu.sg>, Quanquan
Gu <qgu@cs.ucla.edu>.

Proceedings of the 38" International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).
"Notation ilog® (T") is the result of iteratively applying the log-

arithm function on T for o times, e.g., ilog® (T) = logloglogT.

Keke Huang' Xiaokui Xiao! Quanquan Gu?

it to guide the next action. However, this is impractical for
many real applications where the number of interactions
between the agent and environment is limited. For example,
in clinical trials, typically, it takes some time to test the effi-
cacy of a treatment on a patient. It is thus computationally
prohibitive to conduct the experiments in fully sequential.
Instead, patients are usually grouped into batches, and each
batch of patients are tested in a parallel manner. In such
a case, the outcomes are unavailable till the end of each
batch. As another example, in online advertising, the agent
cannot immediately update her strategy upon receiving the
feedback, since there may be a large amount of responses in
every second.

Perchet et al. (2016) modeled the above problem as the
batched multi-armed bandit problem. In such problems, the
time horizon 7' is split into a small number of batches, and
the outcomes are only revealed at the end of each batch.
Previous batched bandit algorithms (Perchet et al., 2016;
Gao et al., 2019; Esfandiari et al., 2019; Jin et al., 2020) all
assume that the time 7" is known in advance. However, many
real-world applications involve an unpredictable stopping
time. Again, consider the clinical trials example, 7" may
correspond to the number of participated patients in the
test for a certain period; and in the online advertisement
example, 7' may correspond to the number of visitors of a
website for a certain period. In both cases, designing an
anytime bandit algorithm is imperative.

Motivated by the above observations, in this paper, we study
the anytime batched multi-armed bandit problem, where the
horizon length 7" is unknown ahead of time. In particular,
we have a set [K] = {1,2,..., K} of K arms, where each
arm ¢ is associated with a reward distribution of some canon-
ical one-dimensional exponential family with mean p;. We
assume the best arm is unique. Without loss of generality,
we assume that arm 1 has the maximum expected reward
throughout the paper, i.e., u; > p; forany i € [K]/ \ {1}.
The pulls of each arm yield rewards which are indepen-
dent and identically distributed (i.i.d.) samples from the
arm’s distribution. Furthermore, the time horizon T is di-
vided into batches represented by a grid T = {t1,t2,...},
which means after j-th batch, the total number of pulls of
all arms reaches ¢;. In this paper, we study the static grid
setting (Perchet et al., 2016; Gao et al., 2019), i.e., t1, ta, . ..

are predefined numbers. At each time step ¢, there exists a

Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

unique j such that ¢;_; < ¢ < t;, and the agent makes a
decision on pulling arm A; based on all the outcomes up
to time ¢;_1. The ultimate goal is to minimize the regret,
which is defined as the expected cumulative difference be-
tween playing the best arm and playing the arm according
to the strategy. The formal definition is given as follows.

T
Rr =T _E|:ZMA,5:|~
t=1

Lai & Robbins (1985) shows that for distributions that are
continuously parameterized by their means,

A,
lim inf > Z 717 (1)
oo 1 kI(pes,
T—oo log K1} (11is 1)
where A; := uy — p; and kl(ﬂ, ') is the Kullback-Leibler

divergence between two distributions with mean £ and mean
1. We refer to limy_, 0 IR as the asymptotic regret rate,
and say that the algorlthm is asymptotically optimal if its
asymptotic regret rate matches the right hand side of (1).

The well-known algorithms such as KL-UCB (Garivier &
Cappé, 2011) and Thompson Sampling (Korda et al., 2013)
are shown to be asymptotically optimal in anytime setting.
Nevertheless, these algorithms are fully sequential, which
require O(T') batches in batched bandits. A very recent
work (Jin et al., 2020) proposes asymptotically optimal al-
gorithms for the 2-armed bandit problem with sub-Gaussian
rewards, requiring O(1) expected batches if T" is known.
However, in the anytime setting, their algorithm needs at
least 2(log T") batches even for 2-armed bandits. Therefore,
a natural question is:

How many batches are needed for anytime K -armed bandit
algorithms to achieve the asymptotically optimal regret?

On the other hand, Besson & Kaufmann (2018) conjectured
that no anytime algorithm can achieve the asymptotically
optimal regret with the exponential time grid (i.e., t; = a®
for some constants a and b) incurring O (log log T') batches.
However, confirming this conjecture theoretically still re-
mains an open problem. This gives rise to another question:

What is the fundamental limit in batch complexity of
anytime K-armed bandit algorithms for achieving the
asymptotically optimal regret?

In this paper, we answer the above two questions through
the lens of both the upper bound and the lower bound of
batch complexities for anytime K -armed bandit algorithms
that achieve the asymptotically optimal regret.

Contributions. Our results can be summarized as follows:

* (Upper Bound) We propose an anytime algorithm BABA
for batched multi-armed bandits where the reward dis-
tributions are from exponential families. We prove

that BABA is asymptotically optimal and only requires
O(loglog T - ilog™(T)) batches, where &« € Op(1) is a
constant and ilog®(T) iteratively applies the logarithm
function on 7' for o times.

* (Lower Bound) We prove that in the anytime setting, for
any positive constant ¢, no bandit algorithm can achieve
the asymptotic optimality within cloglog T batches. This
the first lower bound for anytime batched bandit algo-
rithms in the literature. Our lower bound is almost tight
since it matches the upper bound of our BABA algorithm
up to an iterative logarithm factor.

* We empirically evaluate our proposed algorithm and show
that it enjoys comparable performance with the fully se-
quential algorithm KL-UCB in terms of regret while re-
quiring significantly fewer batches.

2 Preliminaries

In this section, we first review the previous work related
to ours. We then introduce the definition of exponential
families and some useful properties. Finally, we give some
notations that will be frequently used.

2.1 Previous Results

MAB. The MAB problem provides an elementary model
for an class of sequential optimization problems, which
has been extensively studied since the seminal work by
Thompson (1933). In the fully adaptive setting, a large body
of research has analyzed the regret (Audibert & Bubeck,
2009; Garivier & Cappé, 2011; Korda et al., 2013; Degenne
& Perchet, 2016; Agrawal & Goyal, 2017; Kaufmann et al.,
2018; Lattimore, 2018). We refer interested readers to the
book by Lattimore & Szepesvari (2020) for a comprehensive
introduction of bandit algorithms and various applications
of MAB.

Batched MAB. Cesa-Bianchi et al. (2013) studied the
batched bandit problem under the name of switching cost
and show that O (log log T') batches are sufficient for achiev-
ing the near-optimal minimax regret bound. Perchet et al.
(2016) further prove that such batch complexity is suffi-
cient and necessary for achieving the optimal minimax re-
gret for the 2-armed bandit problem, which is later gen-
eralized to the K -armed case (Gao et al., 2019). Perchet
et al. (2016); Gao et al. (2019); Esfandiari et al. (2019) show
that O(log T') batches are sufficient for achieving the near-
optimal instance-dependent regret bound. However, there
exists a multiplicative constant between their regret bounds
and the optimal bound, which makes their algorithms sub-
optimal in the asymptotic sense. Jin et al. (2020) propose
DETC, consisting of two exploration and two exploitation
stages, that can achieve the asymptotic optimality with O(1)
expected batches for the 2-armed case with sub-Gaussian re-
wards. However, the generalization to K -armed bandit and
exponential families of reward distributions is non-trivial

Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

and unclear. More importantly, all the aforementioned stud-
ies assume that 7" is known in advance, while we consider
anytime batched MAB with unpredictable stopping time 7.

Anytime Algorithm. An effective technique to construct
an anytime algorithm from a non-anytime algorithm is the
doubling trick strategy (Auer et al., 1995). At the i-th
round/epoch, the doubling trick strategy guesses T' = a’ (re-
ferred to as geometric doubling trick) or T' = ab (referred
to as exponential doubling trick). For geometric doubling
trick, it costs at least log T" batches. For example, the any-
time version of DETC requires O(log T') exploration and
exploitation rounds by guessing T' = 2¢ at the i-th round,
and each round takes (1) batches. For exponential dou-
bling trick with O(loglog T') batches, Besson & Kaufmann
(2018) conjecture that it cannot achieve the asymptotically
optimal regret, which is confirmed by our lower bound
in this paper. Motivated by the deficiencies of the above
two doubling tricks, we present a new trick strategy that is
asymptotically optimal and takes O(loglog T - ilog®(T))
batches. Compared with the existing tricks, the number of
batches incurred by our trick is significantly smaller than ge-
ometric doubling trick and is slightly larger than exponential
doubling trick.

2.2 Exponential Families

An exponential family is a parametric set of probability
distributions {vp: § € ©} dominated by a measure p on R,
with density given by

dve

(@) = exp(at ~ b(6),

where b(f) = log [e"dp(z) and © = {6 € R: b(0) <
oo}. Exponential families have the following properties.

b'(0) =Elvg] and 0<V'(0) = Var(vy),

where ' (0) and b () are the first derivative and second
derivative of b(6) with respect to 6, respectively. A direct

computation gives the Kullback-Leibler (KL) divergence as
KL(V@, Vg/) = b(@l) — b(@) — b’(@)(e’ — 9)

Let u = '(0) and kl(u, 1) := KL(vg, ve). In this paper,
we assume the variance is bounded, i.e.,

0<V'(0) <V < +co.

We have the following property on the KL divergence.
Proposition 1. For all p and i/, we have

k(s ') > (= p')?/(2V).)
In addition, for € > 0 and u < p' — €, we can obtain that

Kl(p, 1) = K,y — €),

3
and Kl(p, p') < Kl(p — €, 1) &

- L R T R SR

Algorithm 1: Batched Anytime Bandit Alg. (BABA)
Input: a set of K arms and parameters « and [;
initialize ¢t < 0,7 < 1, ¢cg < 1;

while experiment proceeds do

Step I: perform UNIFORMEXPLORATION;
Step II: perform INITIALEXPLOITATION;
Step III: perform OPTIMISTICEXPLORATION;
Step IV: perform CONFIDENTEXPLORATION;
Step V: perform CONFIDENTEXPLOITATION;
r<—r+1;

Ir — f(-[rfl);

Interested readers are referred to Appendix A for the proof
of Proposition 1.

Exponential families include many of the most common
distributions, such as Gaussian, Bernoulli, exponential, etc.
In particular, for Gaussian distribution with known variance
o2 by choosing V = o2, kl(u, p//) = (u — p)/(20?); for
Bernoulli distribution by choosing V' = 1/4, kl(p, ') =
plog(a/ ') + (1 —) log (1 — pr) /(1 — p')): and for ex-
ponential distribution with known parameter A by choosing
V =1/ Kl(p, p') = log(p) — log(u') + p'/pn — 1.

2.3 Notations

Denote by ilog™ (x) the result of iteratively applying the
logarithm function on x for m times, i.e., ilog™ (x)
max{logilogm_l(x),()} for any x > 0 and m € N.
We also define ilog’(z) = z. We define kl,(p,q) :
kl(p, q)1(p < q), where 1(-) is the indicator function. We
use A; to denote the gap between arm 1 and arm 1, i.e.,
A; = p1 — p;. Let 1;(t) be the average reward of arm ¢ at
time ¢ and 7i; , be the average reward of arm 1 after its s’s
pull. Let T;(¢) be the number of pulls of arm 4 at time step
t,ie., T;(t) = ZZ=1 1(A, = i). Throughout the paper, we
adopt the standard asymptotic notations. In particular, we
use f(-) < g(-) todenote f(-) = Or(g()) and f() Z g()
to denote f(-) = Qr(g(+)).

3 The Proposed Algorithm

3.1 Overview

Algorithm 1 presents the framework of our algorithm, re-
ferred to as BABA. In particular, our algorithm guesses 7'
in epochs and proceeds in five batches for each epoch.

In the following, we first introduce two core functions that
are essential for constructing our time grid 7.

f(x) = max{ [T/ (40" 2)] g,

9(x) = [log z/loglog z],

4)
®)

where o > 3 and o € Op(1) is a constant. That is, at the 7-
th epoch, we guess T' = f(")(I}), where f(")(-) iteratively

P S

[

73 N R SR

Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

Algorithm 2: UNIFORMEXPLORATION

Algorithm 4: OPTIMISTICEXPLORATION

fori=1,2,..., K do
while T;(t) < g(I,) do
L pull arm 7;

t+—t+1;
whilet < I._; + K - g(I,) do
pull arm ¢, _1;
|t t+ 1

Algorithm 3: INITTALEXPLOITATION

a1, < argmaX;e(x| Hig(1,)s
{1

while ¢ < log2 I, do
L pull arm aj 3

t—t+1,0+0+1;
applies function f for r times and [; is an input parameter
satisfying

Kg(h)+ (2K +1)log® I < I. (6)
Let I, = f(")(I;). At the r-th epoch, the first four batches
pull the arms exactly K¢(I,), log® I, K -log® I, and K -
log? I, times (for ease of presentation, we assume log I, €
N™), respectively, while the fifth batch pulls the arms until
a total number of I, times is pulled. Our time grid 7 is
given as T = {t171, N ,t5’1, tl,g, ce ,t572, N }, where tj,r
denote the checkpoint at j-th step of the r-th epoch for any
j € [5], defined as follows:

tir=1Ir—1+ Kg(I,),

tor = Iy + Kg(I,) +log” I,

tar =I—1+ Kg(I,) + (K + 1)log” I.,

tay =11+ Kg(I,) + (2K + 1)log* I,.,
and t5, = I,.

It is trivial to see that T is a static time grid. Note that the
trick { f(")(11)},>1 grows (i) faster than geometric doubling
trick which results in far less number of batches than log T,
but (ii) a litter bit slower than exponential doubling trick
which ensures the asymptotically optimal regret.

3.2 Detailed Design
Next, we elaborate the details of the five steps in each epoch.

Step I. UNIFORMEXPLORATION (Algorithm 2) shows the
first step, which pulls the arms a total of Kg(I,) times.
Specifically, at the r-th epoch, for every arm 7 that is pulled
less than g(I,.) times, we pull arm i till reaching a total of
g(I,) times (Lines 1-4). In addition, we pull the “best arm”
¢r—1 found after the (r — 1)-th epoch until the total number

-7 R T R SR

S1 < Ta1,7v(t);

{ag,rs s arr} < [K]\ {a1,};

fori =23,..., K do

while 7,, (t) < min{J; ,,log? I,.} do
pull arm i

L t+—t+1;

7 F+ 1;

<«

10

11
12

13
14
15

fori=23,..., Kdo
8 — min{log2 I, T, , ()}
if K1y (Ta, 50 Bay,ps1) < M
L F <+ T;

break;
while t < I,_, + K - g(I,) + log? I, + K -log® I, do
pull arm ¢, _1;
B t+—t+1;

then

of pulls of all arms reaches I,._1 + K g(I,.) so that this batch
pulls the arms K g(I,.) times (Lines 5-7).

Purpose. Let aq, be the arm with the largest average re-
ward when every arm is pulled exactly g(I,.) times, which
is likely to be the best arm. In fact, we will show that
P(a;, = 1) > 1 — 1/log?I,, which supports us to pull
arm aq , additional log? I, times while keeping the optimal
asymptotic regret.

Step II. INITIALEXPLOITATION (Algorithm 3) shows the
second step, which simply pulls logQ(Ir) times of arm aq ..

Purpose. When a; - is pulled log2 I, times, the sample
average of arm a4, will concentrate on its true mean. This
ensures that when we explore whether other arms have
the potential to be the best arm, we do not pull a; , as
its estimated mean is sufficiently accurate.

Step III. OPTIMISTICEXPLORATION (Algorithm 4) shows
the third step, which pulls the arms K log2 I, times. Define
{air}i>2 == [K] \ {a1,-} as the set of other arms except
for a1 . Let e, := 1/loglog I,.. For i > 2, define

B log(I,. - logQ(IT))
kl(ﬁai,r,g(lr) + €, ﬁa1,7~781 - 6T>7
where s is the number of pulls of ay , after Step II. Then,
we pull a;, till T, 1) > min{&-m,logz I.} fori > 2
(Lines 3-6). We further check the following condition
log (I, log* I,
_ losg (! g’ 1)

51'7-2

)

(7

k1+(ﬁai,7':si7l/’zal,'r751) y ¥
where s; = min{log” I, T,, . (t)}. If for some 4, (8) holds,
then we set F = T; otherwise we set / = | (Lines 7-12).
Finally, we pull arm c,_; until a total number of K - log2 I,
pulls are pulled in this batch (Lines 13-15).

1

10
11
12

Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

Algorithm 5: CONFIDENTEXPLORATION

Algorithm 6: CONFIDENTEXPLOITATION

if 7/ = | then

{1,

while ¢ < K -log*(I,.) do
pull arm a; ,;

L t+—t+1;

Cp < ai,r;

else

fori=1,2,3,...,
?+1;
while ¢ < log? I, do
L pull arm g;

K do

t+—t+1;

| & < argmax;e (] Hi(t);

Purpose. In this batch, we try to explore whether other
arms rather than a4 ,. have potential to be the best arm. In
particular, if k| (fiqa, . s;s fa; ,,s;) is small enough to sat-
isfy (8) for some i, we know that fis, . s, > fa, ,.s, OF the
difference between fiq, , s, and [iq, , s, is very small, which
indicates that a; ,- has potential to be the best arm. Then, we
will further pull each arm in the future to determine whether
a; r 1s better than a; . Otherwise if (8) does not hold for
every ¢, we will confident that a; , is the best arm. Finally,
we pull best arm ¢, found after the (r — 1)-th epoch to
exhaust the budget of this batch.

Step IV. CONFIDENTEXPLORATION (Algorithm 5) shows
the fourth step, which pulls the arms a total of K log2 I,
times. In particular, if 7 = L, we directly pull arm a; , a
total of K log®(I,.) times (Lines 2—5) and update the new
best arm ¢, = a1, (Line 6); otherwise, we pull every arm
log?(I,.) times (Lines 8—12) and update the new best arm
¢, = arg max;e(x] [(t) (Line 13).

Purpose. Intuitively, if 7 = L, i.e., (8) fails for all ¢ > 2,
we can show that P(a;, = 1) > 1 — 1/I,., which ensures
that the regret of pulling a; , additional I,. times is bounded
in the optimal range. Hence, if 7 = L, all the budget
of K - (I,-)? in this batch is used on arm a; , and we set
¢, = ay , for future pulls. On the other hand, if 7 = T, the
arm a; , may not be the optimal arm. We then pull every
arm log® I, times and update ¢, to the arm with largest
average reward.

Step V. CONFIDENTEXPLOITATION (Algorithm 6) shows
the fifth step, which pulls the “best arm™ observed so far
until the total number of pulls reaches ..

Purpose. After the first four steps, we are confident now
that c, is the best arm. Thus, we keep pulling ¢, to optimize
regret until the budget of this batch is exhausted.

1 while ¢t < I, do
2 L pull arm ¢, ;
3

t+—t+1;
4 Main Results
Now, we present our main theoretical results, which consist
of an upper bound for the batch complexity of Algorithm 1,
and a lower bound for the batch complexity of anytime

batched bandit algorithms that attain the asymptotically
optimal regret in (1).

4.1 Upper Bound

The batch complexity of Algorithm 1 is given as follows.

Theorem 2 (Batch Complexity). For any input oo € Op(1)
and I, satisfying (6), the number of batches for Algorithm 1
is O(loglog T - ilog™(T)).

Furthermore, the following theorem shows that Algorithm 1
is asymptotically optimal for an unknown horizon 7.

Theorem 3 (Regret). For any input « € Or (1) and I sat-
isfying (6), Algorithm 1 achzeves the asymptotlcally optimal
regret, i.e., limp_, o I;ZT Zz 9 m

Comparison with Previous Work. Compared with the
fully sequential algorithms, such as KL-UCB (Garivier &
Cappé, 2011) and Thompson Sampling (Korda et al., 2013)
that achieve the asymptotically optimal regret with O(T')
batches, our algorithm only needs O(loglog T - ilog™(T"))
batches while maintaining the asymptotically optimal re-
gret. Compared with Anytime-DETC (Algorithm 5 in Jin
et al. (2020)) that incurs at least Q2(log T') batches, our algo-
rithm not only significantly improves the batch complexity
but also expands the applicability since Anytime-DETC
only applies to 2-armed bandit with sub-Gaussian rewards,
whereas our algorithm generalizes to K -armed bandit with
exponential families of reward distributions.

4.2 Lower Bound

Besson & Kaufmann (2018) conjectures that the geometric
doubling trick can never bring the right constant in asymp-
totic regret bound in (1). We present a lower bound that
theoretically confirms this conjecture.

Theorem 4. For any static grid and constant ¢ > 0, no
anytime algorithm can achieve the asymptotically optimal
regret in (1) within cloglog T batches.

It is worth noting that this is the first lower bound for any-
time batched bandit problem in the literature. We observe
that the lower bound in Theorem 4 matches the upper bound
in Theorem 2 within an ilog™(7T') factor, which shows that
our batch complexity is almost optimal for achieving the

Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

asymptotic optimality in the anytime setting.

We note that Perchet et al. (2016); Gao et al. (2019) also
proved certain lower bounds for the batched bandit problem.
However, their lower bounds are significantly different from
ours, since we focus on anytime algorithm tailored for mini-
mizing the asymptotic regret with an unknown 7', whereas
they consider minimax regret or problem-dependent regret
with a finite known 7.

5 Theoretical Analysis

Now we present the proof of the upper bound results. The
proof the lower bound can be found in Appendix C.

5.1 Analysis of Batch Complexity

Proof of Theorem 2. According to the definition of f, it is
easy to verify that

1+1 ilog® Ipyn—
Ir+n Z (Ir+n—1) * /(1+1 o8 + 1)

> (IT+7171>1-‘,—1/(1-|—ilogu I,) > (IT)(1+1/(1+ilog°‘ IT))”.

Forn = [1+ilog® I,.], we have I,.,,, > (I,.)?. Therefore,
f([1+iloga T]) (Ir) Z f(]'1+ilog“ IT]) (Ir) Z (IT)2~ (9)

This implies that it needs at most [1 + ilog™ T'| epochs for
increasing I,. from (I1)2£ to (Il)zul. Moreover, when I; >
2, £* = log, log, T suffices to ensure (11)22* > T, which
indicates that the algorithm runs at most £* - [1 + ilog™ T']
epochs. Besides, the number of epochs is proportional to the

number of batches. Therefore, the total number of batches
is O(log Tlog T - ilog™ T). O

5.2 Analysis of Regret

Proof of Theorem 3. Let T; be the total number of pulls of

arm 7 in Algorithm 1. Then, the regret can be rewritten as
i>2

Therefore, it suffices to prove the elementary result such
that for each 7 > 2

. E[T}] 1
1 - . 10
7o log T Kl(z, 1) (10)

For ease of presentation, for the r-th epoch, we fix a subop-
timal arm ¢ and define some notations as follows.

* Y1 (r): the number of pulls of arm 4, excluding pulling
¢r—1, in Step I (Lines 14 in Algorithm 2).

* Y5(r): the number of pulls of arm ¢ in Step II (Algo-
rithm 3).

* Y5(r): the number of pulls of arm ¢ in Step III (Line 1-12
in Algorithm 4);

* Y4(r): the number of pulls of arm ¢ in Step IV (Algo-
rithm 5) and V (Algorithm 6).

* Z(r): the total number of pulls of arm ¢,_; when ¢, =
¢ in Step I (Line 5-7 in Algorithm 2) and Step III (Line
13-15 in Algorithm 4).

In addition, since for I, < +/logT’, the algorithm plays
suboptimal arms at most /log 1" times. We use /log 7" to
bound the number of pulls of arm ¢ when I, < /logT'. Let
r’ :=min{r: I, > +/log T} and r° be the total number of
epochs. Then, we have

ro

4
Er) =Y (E[Y;(r)] + E[Z(rn)
j=1

r=1

r°

4
<V0gT+ > <ZE[Y}-(r)] +E[Z(r)}>
j=1

r=r’

=logT + Y E[Y;] +E[Z],

where Y; := >, Y;(r)and Z := Y."_, Z(r). Accord-

ing to Lemmas 2-6, which shall be given later, we have

E[T;)] VlogT 1+1/(1+ilog®T)
= + + OT(l).
logT" logT kl(ki — €, pi1 + €)

Note that Y% — 0, 1/(1 +ilog® T') — 0, €, — 0 and
or(1) = 0 when T' — oo. Therefore,

E[T}] 1
1m = .
T—o0 IOgT kl(y,“ﬂl)

This completes the proof. O

In the following, we bound E[Y;] for ¢ € [4] and E[Z], which
requires the following concentration bounds for exponential
families.

Lemma 1 (Maximal Inequality (Ménard & Garivier, 2017)).
Let N and M be two real numbers in Rt x R+, let v > 0,
and [i,, be the empirical mean of n random variables i.i.d.
according to the distribution vy -1(,,). Then

PEN <n < MKy (fin,) 27) <e 7. (1)
As a consequence, for every x < [,
PAN <n < M, <) <e Ne=w*/@V) (12
Meanwhile, for every x > p,
PAN <n < M, >) < e Ne=w?/@V) (13)

Lemma 2. E[Y7]/logT = or(1).

Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

Proof. Be definition, we have
IT"—l <T < Ir" = f(lro—l) < f(T) <

Note that the total number of pulls of arm ¢ contributed by
Y7 is at most g(I,0). Then, we have

2log(Io)
Yy < g(I0) < ——8re)
1= 9(0e) < loglog(1,-)
21+1/(1 +ilog®T)) -log T
loglog T ’

Since a = Or (1), we obtain
EVi] _ 2(1+1/(1 +ilog* 7))
logT — loglog T
Lemma 3. E[Y3]/logT = or(1).

= OT(l). O

Proof. Intuitively, when I,. is sufficiently large, a; , is arm
1 with high probability, i.e., P(a;, = 1) > 1 — —%

log? I,."

Hence, the expected number of pulls of arm ¢ in Step II 1s
small. In the following, we first bound P(ay , = 7).

Let Apin 1= min;>o A;. After pulling g(I,.) times of arm
1, by (12), we have
P(ﬁl,g([,,,) S H1 — m1n/2) < 679([)A mm/(SV). (14)

Meanwhile,

g(I) >

Combining with (14) gives

log I, >8V (2loglog I, +210gK)
loglog I, ™~ A2

min

1

Amin 2 <27~
/23 2K log? I,

P(ﬁl,g(fr) S Ml -

Similarly, for arm ¢, we can get that
1
P 4 > pi + Amln 2 5712 1
(Hig(1,) = H /2) S Ko T
As a result,

P(li1,g(1,) < Hig(1,)) S (15)

Klog®I,’

Furthermore, we can obtain that

=Y EMa(n)] < Y (log? I, - Play,, = i)

r=r! r=r!

r°

< Z (log2 I - P(f1,g(1,) < Pig(r,)) S7°

Note that 7° = O(loglog T - ilog® T') by Theorem 2. This
implies that
E[Y5] loglog T - ilog® T

= O - 1 . D
logT r logT or(1)

By choosing sufficiently large T, all < hold simultaneously.

T1+1/(1+ilog°‘ T)]

E[Ys] _ 141/(1+ilog® T)

Lemma 4. logT — kl(ps—2€,/,pu14+2€,7) + OT(l)‘

Proof. Define events

Eo(r) 1= {fas s = tar| < &},

&(r) i={ar, =1},

&a(r) = {¥ k € [K]\ {1} [k g, — el < &0
E(r) = Eo(r) N EL(r) N E(r).

Based on £(r), we category the epochs into two sets

1 LE(r) =1},
] 1(E°(r)) = 1}

51::{7"6[,
and Sy :={rer,

Let a;/ , = . Thus, for all epochs in S;, arm 4 is pulled at
most max,cg, 0/, times in Y3, i.e.,

> %0)

resS

< max Oir -

Meanwhile, when T' is sufficiently large, by definition, for
every r € [r/,7°], we have

1 < 1 < Amin
~ loglog/logT — 4 °

Thus, for any r € S;, we have

(16)

€ =

loglog I

/J/zg()+€T<Mz+2€r<ul_26r<ﬂlsl_ T

Then, we can get that

5 < log(I, - log® I, log(Io - log® I.0)
U K+ 260 1 — 260) Kl + 2600, 1 — 26,7)
As a result, we have
log(Io - log® I.o
Z Y3(r) < max 0p r < os(08)
res, kl(uz + 2€p0, 1 — 2€,7)
resS
< (14+1/(1+ilog™®T)) -logT + 210glogf(T)7 (17)

Kl(pi 4 2€pr, p1 — 2€,1)

where the last inequality is due to the fact that I,.. < f(T).
On the other hand,

Z Y3(r) < Z log? I,

reSs €Sy

since arm i is pulled at most log? I,. time in Y3 (r). Hence,

E{ > Yg(r)} < Z P(&°(r)) log? I,.

reSs r=r’

Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

According to the definition of £°(r), we have

P(&°(r)) < P(&5(r)) + P(E1(r)) + P(&3(r))-

Note that after first two steps, a1, has been pulled at least
1og2 I, times. Then, by Lemma 1, we have

K
<> P(3s > log? I, |fin,s —] > er)
k=1

log? I, 1
<2K - exp(8)

- S I 1
2V (loglogI,.)2) ~ I’ (18)

where the first inequality follows from the union bound over
all possible event a; , = k. Meanwhile, by (15), we have

K

< Zp(ﬁl,g(b) < Hig(r,) S
=2

1

P(EF() T

Finally, observing that after first two steps, arm 1 is pulled
at least g(I,.) times, by Lemma 1, we have

K
Z E|s>g

k=1

‘,Ufk s ,uk| > 67“)

1
log? I,

<2K -
exp< loglog[) > ~

As a result, we have

3
g log (19)
Therefore,
E[ZYB } ZZPSC N log?(I) < r°. (20)
reSy r=r’ n=1

Combining (17) and (20), we obtain

ElY) _
logT

1+1/(1+1ilog™T)
kl(,“/l — 26, M1+ 267"’)
Lemma 5. E[Y}]/logT = or(1).
Lemma 6. E[Z]/logT = or(1).

+OT(1). O

Due to the space limit, we refer readers to Appendix B for
proofs of Lemma 5 and Lemma 6.

6 Experiment

In this section, we compare our algorithm BABA with KL-
UCB (Garivier & Cappé, 2011) under two reward distribu-
tions, i.e., Gaussian distribution and Bernoulli distribution.
For each distribution, we test BABA and KL-UCB with 2
arms and 5 arms respectively. Specifically, for 2-arm setting,

regret

50 C regret
KL-UCB 300 KL-UCB
40 — BABA (10 batches) — BABA (10 batches)
240
30 180
20 120
10 60
0 0 = : : : :
' 102 100 10t 10° 10" 10* 10* 10 10°
number of pulls T number of pulls T
(a) K =2 (b) K=5

Figure 1. Regrets over Gaussian distributions. The experiments
are averaged over 2000 repetitions

regret regret
40 KL-UCB 150 8 KLUC
30 | T BABA(10batches) 120 1 — BABA (10 batches)
20 90
60
10 30
0 0
10" 10> 100 10t 10 10" 10> 10 10 10°
number of pulls T number of pulls T
() K =2 b) K =5

Figure 2. Regrets over Bernoulli distributions. The experiments
are averaged over 2000 repetitions

we set i € {1,0} and o = 1 for Gaussian distribution; we
set p € {0.5,0.25} for Bernoulli distribution. For 5-arm set-
ting, we set 4 € {1,0.5,0.5,0.5,0.5} and o = 1 for Gaus-
sian distribution; we set p € {0.5,0.25,0.25,0.25,0.25}
for Bernoulli distribution. For our BABA algorithm, we set
a = 3 and I; = 2000. All the experiments are averaged
over 2000 repetitions.

For Gaussian rewards, Figure 1(a) and Figure 1(b) report
the regret when K = 2 and K = 5, respectively. As we
can see, when 7" approaches 10°, BABA achieves the same
regret as KL-UCB while requiring 10 batches opposed to
10°. The regret of BABA increases rapidly at some time
steps. For example, in Figure 1(a), the regret increases from
17.0 to 24.2 from time steps 520 to 560. The reason is that
in BABA, the suboptimal arms are mostly pulled during the
exploration stages. In addition, as shown in Figure 1(a) and
1(b), when T' = 2000, the regret of BABA is larger than
KL-UCB. The reason is that for small 7', BABA may not
reach the optimal performance since asymptotic optimality
holds only for sufficiently large 7.

For Bernoulli rewards, Figure 2(a) and Figure 2(b) report
the regret when K = 2 and K = 5, respectively. Again, the
BABA achieves the comparable regret with that of KL-UCB
while requiring 10 batches opposed to 10°.

7 Conclusion

We study the anytime bathed multi-armed bandit problem.
We propose an algorithm BABA that achieves the asymp-
totically optimal regret using only O(loglogT - ilog™ T')

Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

batches. We also show a lower bound on the batch com-
plexity of anytime bandit algorithms, which theoretically
confirms the conjecture in Besson & Kaufmann (2018) that
no algorithm using static time grid can achieve the asymp-
totic optimality within cloglog T batches for any constant
c. Moreover, we conduct experiments to show that our algo-
rithm achieves the comparable regret with that of KL-UCB
while using significantly fewer batches.

Acknowledgement

We thank the anonymous reviewers for their helpful com-
ments. X. Xiao is supported by the Ministry of Education,
Singapore, under Tier-2 Grant R-252-000-A70-112. T. Jin
is supported by the National Research Foundation, Singa-
pore under its Al Singapore Programme (AISG Award No:
AISG-PhD/2021-01-004[T]). P. Xu and Q. Gu are partially
supported by the National Science Foundation I1S-1904183.
The views and conclusions contained in this paper are those
of the authors and should not be interpreted as representing
any funding agencies.

References

Agrawal, S. and Goyal, N. Near-optimal regret bounds for
thompson sampling. Journal of the ACM, 64(5):1-24,
2017.

Audibert, J.-Y. and Bubeck, S. Minimax policies for adver-
sarial and stochastic bandits. In Proc. COLT, 2009.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
Gambling in a rigged casino: The adversarial multi-armed
bandit problem. In Proc. IEEE FOCS, pp. 322-331, 1995.

Bertsimas, D. and Mersereau, A. J. A learning approach for
interactive marketing to a customer segment. Operations
Research, 55(6):1120-1135, 2007.

Besson, L. and Kaufmann, E. What doubling tricks can
and can’t do for multi-armed bandits. arXiv preprint
arXiv:1803.06971, 2018.

Cesa-Bianchi, N., Dekel, O., and Shamir, O. Online learning
with switching costs and other adaptive adversaries. In
Proc. NeurIPS, 2013.

Degenne, R. and Perchet, V. Anytime optimal algorithms
in stochastic multi-armed bandits. In Proc. ICML, pp.
1587-1595, 2016.

Esfandiari, H., Karbasi, A., Mehrabian, A., and Mirrokni, V.
Batched multi-armed bandits with optimal regret. arXiv
preprint arXiv:1910.04959, 2019.

Gao, Z., Han, Y., Ren, Z., and Zhou, Z. Batched multi-
armed bandits problem. In Proc. NeurIPS, pp. 501-511,
2019.

Garivier, A. and Cappé, O. The kl-ucb algorithm for
bounded stochastic bandits and beyond. In Proc. COLT,
pp- 359-376, 2011.

Harremoés, P. Bounds on tail probabilities in exponential
families. arXiv preprint arXiv:1601.05179, 2016.

Jin, T., Xu, P, Xiao, X., and Gu, Q. Double explore-
then-commit: Asymptotic optimality and beyond. arXiv
preprint arXiv:2002.09174, 2020.

Kaufmann, E. et al. On bayesian index policies for sequen-
tial resource allocation. The Annals of Statistics, 46(2):
842-865, 2018.

Kittur, A., Chi, E. H., and Suh, B. Crowdsourcing user
studies with mechanical turk. In Proc. CHI, pp. 453-456,
2008.

Korda, N., Kaufmann, E., and Munos, R. Thompson sam-
pling for one-dimensial exponential family bandits. In
Proc. NeurIPS, 2013.

Lai, T. L. and Robbins, H. Asymptotically efficient adaptive
allocation rules. Advances in Applied Mathematics, 6(1):
4-22, 1985.

Lattimore, T. Refining the confidence level for optimistic
bandit strategies. Journal of Machine Learning Research,
19(1):765-796, 2018.

Lattimore, T. and Szepesvari, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Ménard, P. and Garivier, A. A minimax and asymptotically
optimal algorithm for stochastic bandits. In Proc. ALT,
pp. 223-237, 2017.

Perchet, V., Rigollet, P., Chassang, S., and Snowberg, E.
Batched bandit problems. The Annals of Statistics, 44(2):
660-681, 2016.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3/4):285-294, 1933.

Vaswani, S., Kveton, B., Wen, Z., Ghavamzadeh, M., Laksh-
manan, L. V., and Schmidt, M. Model-independent online
learning for influence maximization. In Proc. ICML, pp.
3530-3539, 2017.

Zhou, Y., Chen, X., and Li, J. Optimal pac multiple arm
identification with applications to crowdsourcing. In Proc.
ICML, pp. 217-225, 2014.

Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

A Inequalities on Kullback-Leibler Divergence

Proof of Proposition 1. We first prove (2). By Lemma 1 of Harremoés (2016),

—F—dax. 21
Iu M / Var Vb’ 1 z)) ()

By the assumption Var(vy-1(,)) <V, we have

epy W —p)?
——dz > —dx = —————
'u M / Var Vb’ 1(1)) lL \%4 2V

Next, we prove (3). From (21),

’

H T — [
K(ju, ') = / o —dz
w Var(yb/fl(z))

Be T—p H T—p
= —Fdz + ——dz
/“ Var(l/b/—1(w)) W —e Var(l/b/fl(w))
N/
> kl(p, ' — €) +/
n' —e
2

> kl(p, 1’ —e)—i——

ﬂdm

2V
Similarly,
w—e) /N Topte d:c:/u _ropte dac—k/ulm_/l+€ dz
p—e Var Vyr— 1(1)) p—e VaI‘(Vb/71(m)) w Var(Vb/—l(m))
Bor—pu+e €

> ——————dv + kl(p, 1) > Kl(p, p) + —.

_/M Nyt (s, 1) 2 K, 1) + 557
This completes the proof. O

B Missing Proofs of Theorem 3.
Proof of Lemma 5. 'We first decompose E[Y}] according to F.
E[Yy = E[V;-1(F = L)] +E[Y; - 1(F = T)]. (22)
In the following, we separately bound E[Y, - 1(F = L)] and E[Y, - 1(F = T)].
Part I: Bounding E[Y} - 1(F =)]. By definition,
EYa(r) - L(F=1)]<I.-P(F=_Ll,a1, =1).

We further decompose P(F = L, a1, = 1) based on &(r).

1
PF=l,a1,=1)<P(F=La1,=1E&()+PEr) SP(F=L,a1, =14,&(r)) + I

T

where the second inequality is by (18). In addition, if a; , = % and F = L, by Line 4 of Algorithm 4, we have s; < log2 I,
and by Line 13 of Algorithm 4, we have

log (IT log? IT)

KLy (1,50, Hisy) > pe

)

where s* = sy such that a;/ , = 1. Moreover, when T is sufficiently large, if the event £ (r) happens, we have

ﬁi,sl < s+ € <

Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

This implies that
log (IT 1og2 IT)

S S KLy (f 605 s,) < KI(fi1 g%, po1)-

Therefore,

2
log (I, log? I, e T
P(F = Lar, =i,&(r)) < P(al < n < log? I Kl(fig , 1) > Og(og)> <Y ———<

1
n I, log?l, — I’

n=1

where the first inequality is due to s* < log2 I,- and the second equality is due to (11) of Lemma 1. Putting it together yields

E[Y, 1(F=1)]<I,- (Ii + Ii) - 0(1). 23)

Part II: Bounding E[Y; - 1(F = T)]. We further decompose it based on whether ¢, = i is true.
E[Ya(r) - L(F =T) <P(F=T)log*I, + P(F = T,¢, = i)I,. (24)
In addition, we have
P(F =T)log? I, < P(F = T,&(r))log? I, + P(E°(r)) log? I, = P(F = T,&(r)) log? I, + Op(1),
where the last inequality is due to (19). When T is sufficiently large, if £(r) happens, for k > 2, we have

IOg(Ir i 10g2 IT) > log(Ir) 10g2 Ir)

5k’ r = PN = = = =)
1 kl(/”'k,sk/ + €, H1s; — 67“) kl(/f(‘k,sk/) /-}/1751)
and
2 2
G < log(I, - log= I) < 2V -log(I, - log= I,) <log? 1,
' kl(uk + 26r7 M1 — 267‘) (Amin - 4€r)2

where the second inequality for deriving the upper bound of Jj- . is from (2). Hence, for any k& > 2, if £(r) happens, arm k
is pulled at least min{dy -, log? I} = 6y, times, which indicates that

2
>G> log(I -log™ I.)

> loa(g . (25)
kl(,uk:,sk/ s H1,sy)

However, if 7 = T and a; , = 1, there must exist a k > 2 such that

log(I, - log? I,
kl(,uk,sk/ y U154,)

which contradicts to (25). Therefore, P(F = T, £(r)) = 0. Finally, we have
E[Ya(r) - 1(F = T)] = Or(1). (26)
Next, we derive P(F = T, ¢, = i)I,. Conditioned on F = T and ¢, = 1, the algorithm has pulled every arm at least

log2 I, times. Similar to (18), we have

K 2
log? I, |
PF=T,e, =) <P(F=T,e, #1) < ZP(HS > log? I, |, s — k| > er) < 2K exp (—Og) < T

= 2V (loglog I,.)?
(27)
Substituting (26), (27) to (24), we have
E[Ya(r) - 1(F =T)] = Or(1). (28)
Combining (23) and (28), we obtain
EYa] _ Or() _). O

logT B logT

Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

Proof of Lemma 6. From the analysis for bounding Y, we know that
Ple, =9)=P(F=1L,a1, =49 +P(F=T,¢, =14) S 1/1,.

As a result, we have

SI/ Z IT+10gI)

Note that
I, = (IT71)1+1/(1+i10g“ I,_1) g (Ir71)2~

Hence, I,_1 2 +/1,. Furthermore, we have

r° 2 r° 2
Z K(g<lr;+10g Ir) 5 Z K(Q(L‘) +10g IT) S re.
r=r'+1 r—1 r=r'+1 \/K
Consequently,
Sy 2r) Lot f(I0gT)
=1 < = 1) = 1).
logT ~ logT ogr T ort) =or(l)
This completes the proof. O

C Proof of the Lower Bound

The proof of Theorem 4 requires the following two Lemmas.

Lemma 7 (Lemma 15.1 of Lattimore & Szepesviri (2020)). Let v = (P, ..., Pk) be the reward distributions associated
with one K-armed bandit, and let V! = (P}, ..., Pj.) be the reward distributions associated with another K -armed bandit.
Fix some policy m and let P,, = P, and P, = P, be the probability measure on the canonical bandit model induced by
the N-round interconnection of w and v (respectively, 7 and v'). Then

K

=1

Lemma 8 (Lemma 14.2 of Lattimore & Szepesvari (2020)). Let P and QQ be the probability measure on the same measurable
space (Q, F) and let A € F be an arbitrary event. Then,

1
P(A) +Q(A%) > J exp(~KL(P.Q)),
where A€ = Q\ A is the complement of A.

Proof of Theorem 4. Without loss of generality, we consider that ¢ > 1. By contradiction, we assume that there exists
a strategy 7 using time gird {¢1,¢2,...} (where t; < t2 < ---) that achieves the asymptotically optimal regret within
cloglog T batches. Hence, given ¢ = 1/(16¢), there exists a (sufficiently large) k such that for any s and any 7" with s > k
and t; < T < tsy1, it holds that

s < cloglogT 29)

Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

and

K

(I1+e)A
30
logT ; 1%#1 G0

where (29) is due to the assumption that the algorithm costs at most clog log T" batches, and (30) is due to the definition of
limit for asymptotically optimal regret.

In what follows, we first show that for any j’ > k, there exists a j > j’ such that
tj <N, < Nn+1 < tj+1 and Nn+1 = (Nn)r, 3D

where z = e'/(49) n > 1 and N, is a constant. Then, we further show that no algorithm can satisfy (30) at points Nypt1
and ¢;, where outcomes up to time ¢; are observed. This contradicts to our assumption and hence concludes the theorem.

Existence of N, ;1. Consider the grid {t;/, M1, Mo, ...} with M; = (tj/)“'i, where z = e1/(49)_ Let T} be a constant
satisfying T > (tj/)dogti', and m; € NT such that M,,,, < Ty < M,,, +1. Then, My, 11 = (tj/)””m1+1 > T;. By the
above definitions, we have

loglog My, +1 > loglog 11,

1
loglog My, 11 = (mq + 1) logz + loglogt,;, = m14+ +loglogt;/,
c
loglog Ty > 2loglogt; + 1.
Therefore,

m1—|—1

> loglog Tt —loglogt; > 1/2loglog Ti.

Hence,
my > 2cloglogT1.

Note that from (29), for ts; < T} < ts41, it holds that s < cloglogT}. As a consequence,
mq > 2cloglogTy > 2s > s+ 1.
By the pigeonhole principle, we have that there exists n; € [m;] and ¢j; < t; < Ty, such that

tj <]\4711 < Mn1+1 < tj-i-l-

Conflict with (30). Consider an instance t; < N, < Np41 < tj41, from (31), N, can be arbitrarily large. Fix a suboptimal
arm ¢, let v = (Py, Ps, ..., Px) be a bandit instance, where the i-th arm has distribution P; and mean ;. Let ¢ > 0 be an
arbitrary positive number and define v’ = (P, ..., Py) be another bandit instance, where the ¢-th arm has distribution P,
with mean 1, = p, for £ # i and p be such that kl(p;, i) < kl(ps, 1) + € and @ > pi.

Note that the interconnection before time Ny, is t;, from Lemma 7, we have

KL(P,,P,/) = E,x[Ti(t)]kl(ul,ul) < Eprl l(D]l (pi, pa) + €)
Write P’ and E’ for expectation when rewards are sampled from v’. Then from Lemma 8, we have
1
P(Ti(Nn-H) > Nn+l/2) + P/(Ti(Nn+l) < Nn+1/2) > §eXp(Ewr[Z()](kl(/huul) +e))
Let R and R’ for the regret when rewards are sampled from v and v’. Then we have

RNnJrl =+ R?Vn#»l = Ai]\[n-&-l/Q : P(Ti(N’n+1) > N7z+1/2) + (:U; - Nl)Nn-&-l/Q : P/(Ti(Nn-&-l) < N7L+1/2)
> min{A, p; — p1} - Npy1 /4 - exp(—Eux [Ti(t;)] (Kl (i, 1) + €))

Almost Optimal Anytime Algorithm for Batched Multi-Armed Bandits

regret regret
4000 [- 714000 —=— ,
KL UCB (;0 batches) KL UCB (;0 batches)
3200 | MOSS (107 batches) 13200 ¢ MOSS (10 batches)
- - BaSE (17 batches) - - BaSE (17 batches)
2400 + -- BABA (10 batches) 12400 | -- BABA (10 batches)
1600 | 1 1600
800 800
0 L I 1 L L 0 L I L L
10" 10> 10° 10" 10° 10" 102 10° 10" 10’
number of pulls T number of pulls T
(a) Uniform Dataset (b) Gaussian Dataset

Figure 3. Regrets over Bernoulli distributions. The experiments are averaged over 2000 repetitions

Further, we have

Ny min{A,pui}
Eux[Ti(t;)] 1 log (4(RNn+1+RN +1)>
log(Nny1) — kl(ps, 1) + € log(Np+1)

For any p > 0, when V,, ;1 is sufficiently large, there exists a constant C, such that Ry, , + R’Nn+1 < Cp(Ny41)P. Hence,
we can choose a sufficiently large V,, 41 such that

41 min{A;,pul}
log <4(R1+\¢1+1+R >)) a)
— €

Np41

log(Np+1)

By now, we have
Ev-[Ti(t;)] S 1-¢

log(Npt1) — kl(pi, 1) + €
From the definition of N, 11, log(Ny41) = log((N,)*) > log((t;)*) = xlogt,. As aresult,
X . _ ! _ !
el =) (1)0
log(t;) Kl(piy pa) + € Kl(pi, pa) + €
where the last inequality is because z = e!/(4) > 1 + ﬁ. By choosing a sufficiently small €', such that

c (1-¢) 1+¢/8
146 > 32
<+4>MMMO+€_MWMM’ 42

we have that the regret at time ¢; satisfies

Rtj 21 QAE Z 1+C/8 Z 1+€
log t; logt; — Kl(pi,) — Kl(pi,)
which contradicts to (30). This completes the proof. O

D Additional Experiments

We added new experiments to compare BABA with baselines with knowing horizon 7T": BaSE (Gao et al., 2019) which
achieves the near-optimal finite regret using O(log T") batches, and MOSS (Audibert & Bubeck, 2009), which achieves the
minimax optimal regret O(v/KT) using O(T) batches. We set K = 50, T = 10°, and use Bernoulli reward distributions.
We test the algorithms on two synthetic datasets as follows: (a) Uniform Dataset: the means of arms are uniformly drawn
from [0, 1]; (b) Gaussian Dataset: the means of arms are generated from a Gaussian distribution A/(0.5,0.2) and are
truncated into the interval [0, 1]. Figure 3 shows the results. We can see that BABA achieves a comparable regret with those
of KL-UCB and MOSS, while reducing the batch cost by 4 orders of magnitude. Compared with BaSE, BABA achieves
both smaller regret and batch cost, since BaSE has a hidden constant in the regret bound and uses O(log T") batches while
BABA achieves the asymptotically optimal regret bound and uses O(loglog T - ilog™(T')) batches.

