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Abstract

We study offline reinforcement learning (RL),
which aims to learn an optimal policy based on
a dataset collected a priori. Due to the lack of
further interactions with the environment, offline
RL suffers from the insufficient coverage of the
dataset, which eludes most existing theoretical
analysis. In this paper, we propose a pessimistic
variant of the value iteration algorithm (PEVI),
which incorporates an uncertainty quantifier as
the penalty function. Such a penalty function
simply flips the sign of the bonus function for pro-
moting exploration in online RL, which makes it
easily implementable and compatible with general
function approximators.

Without assuming the sufficient coverage of the
dataset, we establish a data-dependent upper
bound on the suboptimality of PEVI for gen-
eral Markov decision processes (MDPs). When
specialized to linear MDPs, it matches the
information-theoretic lower bound up to multi-
plicative factors of the dimension and horizon.
In other words, pessimism is not only provably
efficient but also minimax optimal. In particu-
lar, given the dataset, the learned policy serves as
the “best effort” among all policies, as no other
policies can do better. Our theoretical analysis
identifies the critical role of pessimism in elim-
inating a notion of spurious correlation, which
emerges from the “irrelevant” trajectories that are
less covered by the dataset and not informative
for the optimal policy.

1. Introduction

The empirical success of online (deep) reinforcement learn-
ing (RL) (Mnih et al., 2015; Silver et al., 2016; 2017;
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Vinyals et al., 2017) relies on two ingredients: (i) expressive
function approximators, e.g., deep neural networks (LeCun
et al., 2015), which approximate policies and values, and
(ii) efficient data generators, e.g., game engines (Bellemare
et al., 2013) and physics simulators (Todorov et al., 2012),
which serve as environments. In particular, learning the deep
neural network in an online manner often necessitates mil-
lions to billions of interactions with the environment. Due to
such a barrier of sample complexity, it remains notably more
challenging to apply online RL in critical domains, e.g., pre-
cision medicine (Gottesman et al., 2019) and autonomous
driving (Shalev-Shwartz et al., 2016), where interactive data
collecting processes can be costly and risky. To this end,
we study offline RL in this paper, which aims to learn an
optimal policy based on a dataset collected a priori without
further interactions with the environment. Such datasets
are abundantly available in various domains, e.g., electronic
health records for precision medicine (Chakraborty and Mur-
phy, 2014) and human driving trajectories for autonomous
driving (Sun et al., 2020).

In comparison with online RL (Lattimore and Szepesviri,
2020; Agarwal et al., 2020a), offline RL remains even less
understood in theory (Lange et al., 2012; Levine et al., 2020),
which hinders principled developments of trustworthy algo-
rithms in practice. In particular, as active interactions with
the environment are infeasible, it remains unclear how to
maximally exploit the dataset without further exploration.
Due to such a lack of continuing exploration, which plays a
key role in online RL, any algorithm for offline RL possibly
suffers from the insufficient coverage of the dataset (Wang
et al., 2020a). Specifically, as illustrated in Section 3, two
challenges arise:

(i) the intrinsic uncertainty, that is, the dataset possibly
fails to cover the trajectory induced by the optimal pol-
icy, which however carries the essential information;

(ii) the spurious correlation, that is, the dataset possibly
happens to cover a trajectory unrelated to the optimal
policy, which by chance induces a large cumulative
reward and hence misleads the learned policy.

See Figures 1 and 2 for illustrations. As the dataset is
collected a priori, which is often beyond the control of the
learner, any assumption on the sufficient coverage of the
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dataset possibly fails to hold in practice (Fujimoto et al.,
2019; Agarwal et al., 2020b; Fu et al., 2020a; Gulcehre
et al., 2020).

In this paper, we aim to answer the following question:

Is it possible to design a provably efficient algorithm for
offline RL under minimal assumptions on the dataset?

To this end, we propose a pessimistic value iteration algo-
rithm (PEVI), which incorporates a penalty function (pes-
simism) into the value iteration algorithm (Sutton and Barto,
2018; Szepesvari, 2010). Here the penalty function simply
flips the sign of the bonus function (optimism) for promot-
ing exploration in online RL (Jaksch et al., 2010; Azar et al.,
2017), which enables a straightforward implementation of
PEVI in practice. Specifically, we study the episodic set-
ting of the Markov decision process (MDP). Our theoretical
contribution is fourfold:

(1) We decompose the suboptimality of any algorithm for
offline RL into three sources, namely the intrinsic un-
certainty, spurious correlation, and optimization error.
In particular, we identify the key role of the spurious
correlation in Section 3, even in the multi-armed ban-
dit (MAB), a special case of the MDP, illustrated in
Appendix A.

(i) For any general MDP, we establish the suboptimality
of PEVI under a sufficient condition on the penalty
function in Section 4.1. In particular, we prove as
long as the penalty function is an uncertainty quanti-
fier, pessimism allows PEVI to eliminate the spurious
correlation from its suboptimality.

(iii) For the linear MDP (Yang and Wang, 2019; Jin et al.,
2020), we instantiate PEVI by specifying the penalty
function in Section 4.2. In particular, we prove such
a penalty function is an uncertainty quantifier, which
verifies the sufficient condition imposed in (ii). Corre-
spondingly, we establish the suboptimality of PEVI for
the linear MDP.

(iv) We prove PEVI is minimax optimal for the linear MDP
up to multiplicative factors of the dimension and hori-
zon. In particular, we prove the intrinsic uncertainty
identified in (i) is impossible to eliminate, as it arises
from the information-theoretic lower bound. Moreover,
such a fundamental limit certifies an oracle property of
PEVI defined in Section 4.2. Specifically, the subopti-
mality of PEVI only depends on how well the dataset
covers the trajectory induced by the optimal policy,
which carries the essential information, rather than
any trajectory unrelated to the optimal policy, which
causes the spurious correlation. See Section 4.3 for
discussions.

Throughout our theory, we only require an assumption on
the compliance of the dataset, that is, the data collecting pro-
cess is carried out in the underlying MDP of interest. Such
an assumption is minimal. In comparison with existing liter-
ature, we require no assumptions on the sufficient coverage
of the dataset, e.g., finite concentrability coefficients (Chen
and Jiang, 2019) and uniformly lower bounded densities
of visitation measures (Yin et al., 2020), which often fail
to hold in practice. Meanwhile, we impose no restrictions
on the affinity between the learned policy and behavior pol-
icy (for collecting data) (Liu et al., 2020), which is often
employed as a regularizer (or equivalently, a constraint) in
existing literature. See Section 1.1 for a detailed discussion.

1.1. Related Works

Our work adds to the vast body of existing literature on
offline RL (also known as batch RL) (Lange et al., 2012;
Levine et al., 2020), where a learner only has access to a
dataset collected a priori. Existing literature studies two
tasks: (i) offline policy evaluation, which estimates the
expected cumulative reward or (action- and state-) value
functions of a target policy, and (ii) offline policy optimiza-
tion, which learns an optimal policy that maximizes the
expected cumulative reward. Note that (i) is also known
as off-policy policy evaluation, which can be adapted to
handle the online setting. Also, note that the target policy
in (i) is known, while the optimal policy in (ii) is unknown.
As (ii) is more challenging than (i), various algorithms for
solving (ii), especially the value-based approaches, can be
adapted to solve (i). Although we focus on (ii), we discuss
the existing works on (i) and (ii) together.

A key challenge of offline RL is the insufficient coverage of
the dataset (Wang et al., 2020a), which arises from the lack
of continuing exploration (Szepesvari, 2010). In particular,
the trajectories given in the dataset and those induced by
the optimal policy (or the target policy) possibly have differ-
ent distributions, which is also known as distribution shift
(Levine et al., 2020). As a result, intertwined with over-
parameterized function approximators, e.g., deep neural
networks, offline RL possibly suffers from the extrapolation
error (Fujimoto et al., 2019), which is large on the states and
actions that are less covered by the dataset. Such an extrapo-
lation error further propagates through each iteration of the
algorithm for offline RL, as it often relies on bootstrapping
(Sutton and Barto, 2018).

To address such a challenge, the recent works (Fujimoto
et al., 2019; Laroche et al., 2019; Jaques et al., 2019; Wu
etal., 2019; Kumar et al., 2019; 2020; Agarwal et al., 2020b;
Yu et al., 2020; Kidambi et al., 2020; Wang et al., 2020c;
Siegel et al., 2020; Nair et al., 2020; Liu et al., 2020) demon-
strate the empirical success of various algorithms, which fall
into two (possibly overlapping) categories: (i) regularized
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policy-based approaches and (ii) pessimistic value-based
approaches. Specifically, (i) regularizes (or equivalently,
constrains) the policy to avoid visiting the states and actions
that are less covered by the dataset, while (ii) penalizes the
(action- or state-) value function on such states and actions.

On the other hand, the empirical success of offline RL
mostly eludes existing theory. Specifically, the existing
works require various assumptions on the sufficient cover-
age of the dataset, which is also known as data diversity
(Levine et al., 2020). For example, offline policy evalua-
tion often requires the visitation measure of the behavior
policy to be lower bounded uniformly over the state-action
space. An alternative assumption requires the ratio between
the visitation measure of the target policy and that of the
behavior policy to be upper bounded uniformly over the
state-action space. See, e.g., (Jiang and Li, 2016; Thomas
and Brunskill, 2016; Farajtabar et al., 2018; Liu et al., 2018;
Xie et al., 2019; Nachum et al., 2019a;b; Tang et al., 2019;
Kallus and Uehara, 2019; 2020; Jiang and Huang, 2020;
Uehara et al., 2020; Duan et al., 2020; Yin and Wang, 2020;
Yin et al., 2020; Nachum and Dai, 2020; Yang et al., 2020a;
Zhang et al., 2020b) and the references therein. As an-
other example, offline policy optimization often requires the
concentrability coefficient to be upper bounded, whose defi-
nition mostly involves taking the supremum of a similarly
defined ratio over the state-action space. See, e.g., (Antos
et al., 2007; 2008; Munos and Szepesvari, 2008; Farahmand
et al., 2010; 2016; Scherrer et al., 2015; Chen and Jiang,
2019; Liu et al., 2019; Wang et al., 2019; Fu et al., 2020b;
Fan et al., 2020; Xie and Jiang, 2020a;b; Liao et al., 2020;
Zhang et al., 2020a) and the references therein.

In practice, such assumptions on the sufficient coverage of
the dataset often fail to hold (Fujimoto et al., 2019; Agarwal
et al., 2020b; Fu et al., 2020a; Gulcehre et al., 2020), which
possibly invalidates existing theory. For example, even for
the MAB, a special case of the MDP, it remains unclear how
to maximally exploit the dataset without such assumptions,
e.g., when each action (arm) is taken a different number
of times. As illustrated in Section 3, assuming there exists
a suboptimal action that is less covered by the dataset, it
possibly interferes with the learned policy via the spurious
correlation. As a result, it remains unclear how to learn
a policy whose suboptimality only depends on how well
the dataset covers the optimal action instead of the subop-
timal ones. In contrast, our work proves that pessimism
resolves such a challenge by eliminating the spurious corre-
lation, which enables exploiting the essential information,
e.g., the observations of the optimal action in the dataset, in
a minimax optimal manner. Although the optimal action is
unknown, our algorithm adapts to identify the essential in-
formation in the dataset via the oracle property. See Section
4 for a detailed discussion.

Our work adds to the recent works on pessimism (Yu et al.,
2020; Kidambi et al., 2020; Kumar et al., 2020; Liu et al.,
2020; Buckman et al., 2020). Specifically, (Yu et al., 2020;
Kidambi et al., 2020) propose a pessimistic model-based
approach, while (Kumar et al., 2020) propose a pessimistic
value-based approach, both of which demonstrate empiri-
cal successes. From a theoretical perspective, (Liu et al.,
2020) propose a regularized (and pessimistic) variant of
the fitted Q-iteration algorithm (Antos et al., 2007; 2008;
Munos and Szepesvéri, 2008), which attains the optimal
policy within a restricted class of policies without assum-
ing the sufficient coverage of the dataset. In contrast, our
work imposes no restrictions on the affinity between the
learned policy and behavior policy. In particular, our algo-
rithm attains the information-theoretic lower bound for the
linear MDP (Yang and Wang, 2019; Jin et al., 2020) (up to
multiplicative factors of the dimension and horizon), which
implies that given the dataset, the learned policy serves
as the “best effort” among all policies since no other can
do better. From another theoretical perspective, (Buckman
et al., 2020) characterize the importance of pessimism, espe-
cially when the assumption on the sufficient coverage of the
dataset fails to hold. In contrast, we propose a principled
framework for achieving pessimism via the notion of uncer-
tainty quantifier, which serves as a sufficient condition for
general function approximators. See Section 4 for a detailed
discussion. Moreover, we instantiate such a framework for
the linear MDP and establish its minimax optimality via
the information-theoretic lower bound. In other words, our
work complements (Buckman et al., 2020) by proving that
pessimism is not only “important” but also optimal in the
sense of information theory.

2. Preliminaries

In this section, we first introduce the episodic Markov de-
cision process (MDP) and the corresponding performance
metric. Then we introduce the offline setting and the corre-
sponding data collecting process.

2.1. Episodic MDP and Performance Metric

We consider an episodic MDP (S, A, H, P, r) with the state
space S, action space A, horizon H, transition kernel P =
{Py}H_,, and reward function r = {r;, }}_,. We assume
the reward function is bounded, that is, 7, € [0, 1] for all
h € [H]. For any policy 7 = {m,}L,, we define the
(state-)value function V¥ : S — R at each step h € [H] as

H

Vi (@) = Ex | Y rilsisa)

i=h

s = x} 2.1

and the action-value function (Q-function) Q7 : Sx A — R
ateach step h € [H] as
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H
QZ(wv a) = ]Eﬂ‘ {Z 7“1‘(81', ai)
i=h

Here the expectation [E,; in Equations (2.1) and (2.2) is taken
with respect to the randomness of the trajectory induced by
7, which is obtained by taking the action a; ~ m;(- | s;) at
the state s; and observing the next state s; 1 ~ P;(- | 5, a;)
at each step ¢ € [H|. Meanwhile, we fix s, = z € Sin
Equation (2.1) and (sp, ap) = (z,a) € S x A in Equation
(2.2). By the definition in Equations (2.1) and (2.2), we
have the Bellman equation

Vi () = (@R (2, ), (- | 7)) 4,

Qr(z,a) =E[rn(sh,an) + ViTi(sht1) ‘ Sh =T, ap = al
where (-, -) 4 is the inner product over A, while E is taken
with respect to the randomness of the immediate reward

rh(Sh, ap) and next state ;1. For any function f : S —
R, we define the transition operator at each step h € [H] as

Prf)(z,a) = E[f(sh_H) | S, =T,ap = a] 2.3)
and the Bellman operator at each step h € [H] as

Brf)(z,a) =E[rn(sh,an) + f(snt1) | Sh=T,ap = al.
(2.4)

For the episodic MDP (S, A, H,P,r), we use 7, )., and
V, to denote the optimal policy, optimal Q-function, and

optimal value function, respectively. We have V77, = 0
and the Bellman optimality equation

sy, =z,ap, =a|. (2.2)

Vi () = max Qi (v, a),

Qp(x,a) = BrVyi1) (2, a).
Meanwhile, the optimal policy 7* is specified by

2.5)

(- |@) = argmax(Qj(z, ), a (-] 2)) 4,

Vi () = (Qp (2, ), (- | 7)) 4,
where the maximum is taken over all functions mapping
from S to distributions over .A. We aim to learn a policy that
maximizes the expected cumulative reward. Correspond-
ingly, we define the performance metric as

SubOpt(m; ) = V" (z) — V{" (x), (2.6)

which is the suboptimality of the policy 7 given the initial
state s1 = .

2.2. Offline Data Collecting Process

We consider the offline setting, that is, a learner only
has access to a dataset D consisting of K trajectories
{(«}, a}, r;)}fhli 1» which is collected a priori by an ex-
perimenter. In other words, at each step h € [H] of each
trajectory 7 € [K], the experimenter takes the action a}, at
the state x7, receives the reward ] = r,(x],a},), and ob-

serves the next state x] ~ Py (- | s, = 2}, ap, = a},). Here
aj, can be arbitrarily chosen, while r;, and P}, are the reward
function and transition kernel of an underlying MDP. We
define the compliance of such a dataset with the underlying
MBDP as follows.

Definition 2.1 (Compliance of Dataset). For a dataset D =

{(z},a}, rﬁ)}f}fil, let Pp be the joint distribution of the

data collecting process. We say D is compliant with an

underlying MDP (S, A, H, P, r) if

/a x;—L-‘rl = I’/ | {(xip a%)};—:h {(Tiu IgH-l) 77—;11)

= P(T‘h,(sh, ah,) = 7”'7 Sh+1 = ' ’ Shp = x;, ap = a;)
2.7

for all ' € [0,1] and ' € S at each step h € [H] of
each trajectory 7 € [K]. Here P on the right-hand side of
Equation (2.7) is taken with respect to the underlying MDP.

Pp (rg =r

Equation (2.7) implies the following two conditions on
Pp hold simultaneously: (i) at each step h € [H] of
each trajectory 7 € [K], (r],xj,) only depends on
{(xil, ai) - U{(ri, xflﬂ) ;;11 via (27, a},), and (ii) con-
ditioning on (27, aj,), (v, z}. 1) is generated by the reward
function and transition kernel of the underlying MDP. Intu-
itively, (i) ensures D possesses the Markov property. Specif-
ically, (i) allows the K trajectories to be interdependent,
that is, at each step h € [H], {(x],, a},, 7], 2}, 1) }re[k] are
interdependent across each trajectory 7 € [K]. Meanwhile,
(i) requires the randomness of {(z7,,ay,, 74, % ;) ;;11 to
be fully captured by (7, a},) when we examine the random-
ness of (1}, z7 ).

Assumption 2.2 (Data Collecting Process). The dataset D
that the learner has access to is compliant with the underly-
ing MDP (S, A, H, P, 7).

As a special case, Assumption 2.2 holds if the experimenter
follows a fixed behavior policy. More generally, Assumption
2.2 allows aj, to be arbitrarily chosen, even in an adaptive
or adversarial manner, in the sense that the experimenter
does not necessarily follow a fixed behavior policy. In
particular, aj, can be interdependent across each trajectory
7 € [K]. For example, the experimenter can sequentially
improve the behavior policy using any algorithm for online
RL. Furthermore, Assumption 2.2 does not require the data
collecting process to well explore the state space and action
space.

3. What Causes Suboptimality?

In this section, we decompose the suboptimality of any
policy into three sources, namely the spurious correlation,
intrinsic uncertainty, and optimization error. We first ana-
lyze the MDP and then specialize the general analysis to
the multi-armed bandit (MAB) for illustration, the latter
deferred to Appendix A.
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3.1. Spurious Correlation Versus Intrinsic Uncertainty

We consider a me/t\a-algorithm, which constructs an esti-
mated Q-function Qp, : § x A — R and an estimated value
function V3, : S — R based on the dataset D. We define the
model evaluation error at each step h € [H] as

Lh(xa a) = (Bh‘/}h+l)(xv a) - @h(xa a)' (31)

In other words, ¢, is the error that arises from estimating
the Bellman operator B;, defined in Equation (2.4), espe-
cially the transition operator IP;, therein, based on D. Note
that ¢, in Equation (3.1) is defined in a pointwise manner
for all (z,a) € S x A, where Vj,;1 and @}, depend on
D. The suboptimality of the policy 7 corresponding to Vi
and @y, (in the sense that Vi, (z) = (Qn(x, ), Tr(- | 2)) 4),
which is defined in Equation (2.6), admits the following
decomposition.

Lemma 3.1 (Decomposition of Suboptimality). Let
7 = {mn}fL, be the policy such that Vj(z) =

(Qn(x,-),7n(-| 2)) 4. For any 7 and z € S, we have

H
SubOpt(7; z) = — ZE% [Lh(sh,ah) | $1 = LE]
h=1
(i): Spurious Correlation
H
+ ZE”* [Lh(s;“ah) | 51 = ;v]
h=1

(ii): Intrinsic Uncertainty
H

+ ZEw* [(@nsny )T (- [ sn) = Tl [ sn))a | s1 = ] -

h=1

(iii): Optimization Error
3.2)
Here E5 and E« are taken with respect to the trajectories
induced by 7 and 7* in the underlying MDP given the fixed
functions V},+1 and @)y, which determine ¢,.

Proof of Lemma 3.1. See Appendix D. O

In Equation (3.2), term (i) is more challenging to control,
as 7 and ¢j, simultaneously depend on D and hence spu-
riously correlate with each other. In Section A, we show
such a spurious correlation can “mislead” 7, which incurs
a significant suboptimality, even in the MAB. Specifically,
assuming hypothetically 7 and ¢}, are independent, term (i)
is mean zero with respect to Pp as long as ¢, is mean zero
forall (z,a) € S x A, which only necessitates an unbiased
estimator of Bj, in Equation (3.1), e.g., the sample average
estimator in the MAB. However, as 7 and ¢, are spuriously
correlated, term (i) can be rather large in expectation.

In contrast, term (ii) is less challenging to control, as 7* is
intrinsic to the underlying MDP and hence does not depend

value

() = argmax, (), 7(-))

() = argmax, (u(). 7()) 4

r fiaja)

(a2) .
w(az) .- T i(aran) action

Figure 1. An illustration of the spurious correlation in the MAB,
a special case of the MDP, where S is a singleton, A is dis-
crete, and H = 1. Here u(a) is the expected reward of each
action a € A and fi(a) is its sample average estimator, which
follows the Gaussian distribution in Equation (A.1). Correspond-
ingly, t(a) = p(a) — i(a) is the model evaluation error. As
the greedy policy with respect to ji, T wrongly takes the ac-
tion a| 4| = argmax, ¢ 4 /i(a) with probability one only because
N(ay4) is relatively small, which allows fi(a4) to be rather
large, even though ((a4)) = 0. Due to such a spurious correla-
tion, 7 incurs a significant suboptimality in comparison with 7*,
which takes the action a1 = argmax, 4 #(a) with probability
one.

on D, especially the corresponding ¢j,, which quantifies
the uncertainty that arises from approximating By, V4. In
Section 4.3, we show such an intrinsic uncertainty is impos-
sible to eliminate, as it arises from the information-theoretic
lower bound. In addition, as the optimization error, term
(iii) is nonpositive as long as 7 is greedy with respect to
Qn. thatis, 7, (- | ) = argmax,, (Qn(,-), Ta(- | )). (al-
though Equation (3.2) holds for any 7 such that Vi (x) =

(@Qn(z, ), 7n(|2)).0).

4. Pessimism is Provably Efficient

In this section, we present the algorithm and theory. Specif-
ically, we introduce a penalty function to develop a pes-
simistic value iteration algorithm (PEVI), which simply flips
the sign of the bonus function for promoting exploration in
online RL (Jaksch et al., 2010; Abbasi-Yadkori et al., 2011;
Russo and Van Roy, 2013; Osband and Van Roy, 2014;
Chowdhury and Gopalan, 2017; Azar et al., 2017; Jin et al.,
2018; 2020; Cai et al., 2020; Yang et al., 2020b; Ayoub et al.,
2020; Wang et al., 2020b). In Section 4.1, we provide a suf-
ficient condition for eliminating the spurious correlation
from the suboptimality for any general MDP. In Section 4.2,
we characterize the suboptimality for the linear MDP (Yang
and Wang, 2019; Jin et al., 2020) by verifying the sufficient
condition in Section 4.1. In Section 4.3, we establish the
minimax optimality of PEVI via the information-theoretic
lower bound.
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4.1. Pessimistic Value Iteration: General MDP

We consider a meta-algorithm, namely PEVI, which con-
structs an estimated Bellman operator Bh based on the
dataset D so that Bth+1 S x A — R approximates
]B%thH :Sx A — R. Here XA/hH : § — Ris an estimated
value function constructed by the meta-algorithm based on
D. Note that such a construction of B, can be implicit in the
sense that the meta-algorithm only relies on BV}, instead
of @h itself. We define an uncertainty quantifier with the
confidence parameter £ € (0, 1) as follows. Recall that Pp
is the joint distribution of the data collecting process.

Definition 4.1 ((-Uncertainty Quantifier). We say
{Tp}L (T}, : 8 x A — R) is a &-uncertainty quantifier
with respect to Pp if the event
& = {|BrVii1)(@,0) ~ BuVis1)(@,a)| < Ta(z,a)
forall (z,a) € S x A, h € [H]} 4.1y

satisfies Pp(€) > 1 — &.

By Equation (4.1), I'y, quantifies the uncertainty that arises
from approximating Bth+1 using Bth_H, which allows
us to develop the meta-algorithm (Algorithm 1).

Algorithm 1 Pessimistic Value Iteration (PEVI): General
MDP

: Input: Dataset D = {(z7,, a}, r;)}fh}il

Initialization: Set ‘A/HH( )« 0.

forsteph=H,H —1,...,1do
Construct (]BthH)( -) and T',(+, -) based on D.
) = BrVig) () =Tl )-
Set Qn(-, ) < min{Q, (-, ), H —h+1}.
Setn(-|-) « argmaxy, (Qn(--),ma(-[-))a.
(1))

© o Set V()
: end for
10: Output: Pess(D) = {7}/ ;.

<Qh('a )

1

2:

3:

4.

5: Set Qh(
6

7

8 ))A-
9

The following theorem characterizes the suboptimality of
Algorithm 1, which is defined in Equation (2.6).

Theorem 4.2 (Suboptimality for General MDP). Suppose
{T'x}L | in Algorithm 1 is a £-uncertainty quantifier. Under
£ defined in Equation (4.1), which satisfies Pp(€) > 1 — &,
forany x € S, Pess(D) in Algorithm 1 satisfies

SubOpt(Pess < QZE Fh Sh,ap |51 = a:]

h=1
(4.2)

Here E - is taken with respect to the trajectory induced by
7* in the underlying MDP given the fixed function I'y,.

Proof of Theorem 4.2. See Section C.1 for a sketch. O

Theorem 4.2 establishes a sufficient condition for eliminat-
ing the spurious correlation, which corresponds to term (i) in
Equation (3.2), from the suboptimality for any general MDP.
Specifically, —T'j, in Algorithm 1 serves as the penalty func-
tion, which ensures —¢j in Equation (3.2) is nonpositive
under &£ defined in Equation (4.1), that is,

—wn(w,a) = Qn(x,a) — (ByVii1)(z,a)
< Qu(@,a) — (BViy1)(z,a)
= (BnVis1) (@, a) — (BrVit1)(z, a)
—Th(x,a) <0. 4.3)

Note that Equation (4.3) holds in a pointwise manner for
all (x,a) € & x A. In other words, as long as I', is a
&-uncertainty quantifier, the suboptimality in Equation (4.2)
only corresponds to term (ii) in Equation (3.2), which char-
acterizes the intrinsic uncertainty. In any concrete setting,
e.g., the linear MDP, it only remains to specify I', and
prove it is a £-uncertainty quantifier under Assumption 2.2.
In particular, we aim to find a £-uncertainty quantifier that
is sufficiently small to establish an adequately tight upper
bound of the suboptimality in Equation (4.2). In the se-
quel, we show it suffices to employ the bonus function for
promoting exploration in online RL.

4.2. Pessimistic Value Iteration: Linear MDP

As a concrete setting, we study the instantiation of PEVI for
the linear MDP. We define the linear MDP (Yang and Wang,
2019; Jin et al., 2020) as follows, where the transition kernel
and expected reward function are linear in a feature map.

Definition 4.3 (Linear MDP). We say an episodic MDP
(S, A, H,P,r) is a linear MDP with a known feature map

¢ : S x A — R if there exist d unknown (signed) measures

1
= (gl

R4 such that
Pz’ | x,a) = (¢(z,

) over S and an unknown vector 0}, €

a)v M}L(xl»v

E[ru(sh,an) | sn = x,an = a] = (¢(z,a),0,) (4.4)
for all (z,a,2’) € S x A x S at each step h
Here we assume ||¢(x,a)|| < 1 for all (z,a) €

and max{||u(S)|, |0r]} < V/d at each step h

Js llpn ()| da.

We specialize the meta-algorithm (Algorithm 1) by con-
structing B, Vj 11, 'y, and V}, based on D, which leads to
the algorithm for the linear MDP (Algorithm 2). Specif-
ically, we construct B, V},; based on D as follows. Re-
call that ]@h ‘7h+1 approximates Bh‘/}h+1, where By, is the
Bellman operator defined in Equation (2.4), and D =

{(«7,a], r;)}thl is the dataset. We define the empiri-
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cal mean squared Bellman error (MSBE) as
K

My (w) = Y (1 + Vi (2 40) — Sl af) Tw)’

T=1
at each step h € [H]. Correspondingly, we set
(@h‘/}fﬂrl)(l‘v a) = ¢(‘T7 a>T{U\h’

where @y, = argmin My, (w) + - ||w||3
weR?

(4.5)

at each step h € [H]. Here A > 0 is the regularization
parameter. Note that wp, has the closed form

Wy, =

K
A (Y olaran) - (17 + Vo (270)) )
T=1

K
where Ay = o(af,a5)d(ah,a) " + A 1.

=1

(4.6)

Meanwhile, we construct I';, based on D as

_ 1/2
Du(a,a) = B+ (d(e.a) A ole, @) * @7)
at each step h € [H]. Here 5 > 0 is the scaling parameter.
In addition, we construct V3, based on D as

th(%a) = min{Q,,(v,a), H — h+ 1},
where Q),(z,a) = (I@h‘Ath)(:p,a) -
Va(@) = (Qn(,), Fn(-| @) as

where 7, (- | z) = argmax(Qp, (x,-), 7
Th

I‘h(as,a),

n(-[2))a

Algorithm 2 Pessimistic Value Iteration (PEVI): Linear
MDP
K,H

I: Input: Dataset D = {(z7,, aj,,7}) ;7 h 2

2: Initialization: Set Viz41(-) 0.
3: forsteph=H,H—1,...,1do

4:  Set Ap, Zle o(zh, af)o(af, a{b)T + M-I

5: §et W, — Agl(Zle QS(T;:CL;) (7'2 +
Vi1 (2]41)))-

6: Setzh( )<_3 (¢(.’.)TA;1¢(,7.))1/2.

7 Set Qh( ) ¢ ) Twp = Tals, ).

8 Set Qu(-,-) « min{Q, (), H — h+1}*.

9: Set 71;1( | )<—argmax AQn( ), mh(-14)) A

10: Set V() = (Qn(, ), Ful(-|)) a-

11: end for

12: Output: Pess(D) = {7, }/L,

The following theorem characterizes the suboptimality of
Algorithm 2, which is defined in Equation (2.6).

Theorem 4.4 (Suboptimality for Linear MDP). Suppose
Assumption 2.2 holds and the underlying MDP is a linear

MDP. In Algorithm 2, we set

A=1, B=c-dH\/C, log(2dH K /€).

Here ¢ > 0 is an absolute constant and £ € (0, 1) is the
confidence parameter. The following statements hold: (i)
{Tp}L | in Algorithm 2, which is specified in Equation
(4.7), is a £-uncertainty quantifier, and hence (ii) under £
defined in Equation (4.1), which satisfies Pp(£) > 1 — &,
for any x € S, Pess(D) in Algorithm 2 satisfies

SubOpt(Pess(D); z)

where ( =

(4.8)

H
< 2B ZE”* [((b(sh,ah)TA,:lqﬁ(sh, ah))l/Q ’ 51 = x}
h=1

Here E~ is taken with respect to the trajectory induced by
7* in the underlying MDP given the fixed matrix Ay,.

Proof of Theorem 4.4. See Section C.2. O

We highlight the following aspects of Theorem 4.4:

“Assumption-Free” Guarantee: Theorem 4.4 only relies
on the compliance of D with the linear MDP. In comparison
with existing literature (Antos et al., 2007; 2008; Munos and
Szepesvari, 2008; Farahmand et al., 2010; 2016; Scherrer
et al., 2015; Liu et al., 2018; Nachum et al., 2019a;b; Chen
and Jiang, 2019; Tang et al., 2019; Kallus and Uehara, 2019;
2020; Fan et al., 2020; Xie and Jiang, 2020a;b; Jiang and
Huang, 2020; Uehara et al., 2020; Duan et al., 2020; Yin
et al., 2020; Qu and Wierman, 2020; Li et al., 2020; Liao
et al., 2020; Nachum and Dai, 2020; Yang et al., 2020a;
Zhang et al., 2020a;b), we require no assumptions on the
“uniform coverage” of D, e.g., finite concentrability coeffi-
cients and uniformly lower bounded densities of visitation
measures, which often fail to hold in practice. Meanwhile,
we impose no restrictions on the affinity between Pess(D)
and a fixed behavior policy that induces D, which is of-
ten employed as a regularizer (or equivalently, a constraint)
in existing literature (Fujimoto et al., 2019; Laroche et al.,
2019; Jaques et al., 2019; Wu et al., 2019; Kumar et al.,
2019; Wang et al., 2020c; Siegel et al., 2020; Nair et al.,
2020; Liu et al., 2020).

Intrinsic Uncertainty Versus Spurious Correlation: The
suboptimality in Equation (4.8) only corresponds to term (ii)
in Equation (3.2), which characterizes the intrinsic uncer-
tainty. Note that A;, depends on D but acts as a fixed matrix
in the expectation, that is, E,~ is only taken with respect
to (sn, ar), which lies on the trajectory induced by 7*. In
other words, as 7* is intrinsic to the underlying MDP and
hence does not depend on D, the suboptimality in Equation
(4.8) does not suffer from the spurious correlation, that is,
term (i) in Equation (3.2), which arises from the dependency
of T = Pess(D) on D.
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The following corollary proves as long as the trajectory
induced by 7* is “covered” by D sufficiently well, the sub-
optimality of Algorithm 2 decays at a K ~'/? rate.

Corollary 4.5 (Sufficient “Coverage”). Suppose there ex-
ists an absolute constant ¢! > 0 such that the event

Al :{Ah > I+ K Ere [$(sn, an)d(sn,an) " | s1 = 2]

forallz € S, h € [H}} 4.9)

satisfies Pp(E1) > 1 —¢&/2. Here Ay, is defined in Equation
(4.6) and E .~ is taken with respect to the trajectory induced
by 7* in the underlying MDP. In Algorithm 2, we set

A=1, B=c-dH\/, where ¢ =Ilog(4dHK/¢).

Here ¢ > 0 is an absolute constant and £ € (0, 1) is the
confidence parameter. For Pess(D) in Algorithm 2, the
event

& :{SubOpt(Pess(D);x) < dPPHPKY2/C

forall z € S} (4.10)

satisfies Pp(&') > 1 — &, where ¢ > 0 is an absolute
constant that only depends on ¢ and c. In particular, if
rank(Xy(x)) < rforall x € S at each step h € [H],
where

Sn(@) = B [¢(sn, an)d(sn, an) " | s1 =z,
for Pess(D) in Algorithm 2, the event

& :{SubOpt(Pess(D);x) <" dH*K~Y2\/¢

forall 2 € S} 4.11)

satisfies Pp(E”) > 1 — &, where ¢/ > 0 is an absolute
constant that only depends on ¢', ¢, and r.

Proof of Corollary 4.5. See Appendix E.3 for a detailed
proof. O

Intrinsic Uncertainty as Information Gain: To under-
stand Equation (4.8), we interpret the intrinsic uncertainty
in the suboptimality, which corresponds to term (ii) in Equa-
tion (3.2), from a Bayesian perspective. Recall that con-
structing BV}, 1 based on D at each step h € [H] in-
volves solving the linear regression problem in Equation
(4.5), where ¢(x7,, aj,) is the covariate, 7], + Vi, 11 (2}, ;) is
the response, and wy, is the estimated regression coefficient.
Here V}, 1, acts as a fixed function. Note that the estima-
tor Wy, in Equation (4.6) is the Bayesian estimator of wyp,,
under prior wy, ~ N(0, A - I) and Gaussian response with
variance one. Within this equivalent Bayesian framework,
the posterior has the closed form

wy, | D ~ N(@p, A1), (4.12)

where wj, and Ay, are defined in Equation (4.6). Meanwhile,
I(wp; ¢(sn,an) | D) = H(wy, | D) — H(wp | D, ¢(sn, an))

det(A])
det (Ah) ’

=1/2log

where AIL = Ay + é(sn,an)d(sn,an) . Here Lis the (con-
ditional) mutual information and H is the (conditional) dif-
ferential entropy. Meanwhile, we have

det(A})

1
8 det(Ap)

= log(l + ¢(Sh7 ah)TA}:I(b(Sha ah))

~ ¢(sn,an) Ay O (s, an),

where the second equality follows from the matrix
determinant lemma and the last equality holds when
d(sn,an) TA;, " ¢(sn,an) is close to zero. Therefore, in
Equation (4.8), we have

E,- [(q&(sh, ah)TAglqﬁ(sh,ah))l/Q ‘ 51 = x}
~V2-E,- [I(wh; & (sh,an) |D)1/2 ‘ 51 = x]

In other words, the suboptimality in Equation (4.8), which
corresponds to the intrinsic uncertainty, can be cast as the
mutual information between wy, | D in Equation (4.12) and
&(sn,an) on the trajectory induced by 7* in the underlying
MDP. In particular, such a mutual information can be cast
as the information gain (Schmidhuber, 1991; 2010; Sun
et al., 2011; Still and Precup, 2012; Houthooft et al., 2016;
Russo and Van Roy, 2016; 2018) for estimating wy,, which
is induced by observing ¢(sy, ap) in addition to D. In
other words, such a mutual information characterizes how
much uncertainty in wy, | D can be eliminated when we
additionally condition on ¢(sp, ap).

Illustration via a Special Case: Tabular MDP: To under-
stand Equation (4.8), we consider the tabular MDP, a special
case of the linear MDP, where S and A are discrete. Corre-
spondingly, we set ¢ in Equation (4.4) as the canonical basis
of RISIMI. When S is a singleton and H = 1, the tabular
MDP reduces to the MAB, which is discussed in Section A.
Specifically, in the tabular MDP, we have

K
Ap =" d(af,a7)p(xq,a7)T + AT

T=1

= diag({Nn(z,a) + A} (z.ajesx.a) € RISIAXISIAL

where Np(z,a) = Zle 1{(z},a}) = (z,a)}. To sim-
plify the subsequent discussion, we assume P, is deter-
ministic at each step h € [H]. Let {(s},a})}L | be the
trajectory induced by 7*, which is also deterministic. In
Equation (4.8), we have

Er [(6(sn a) AR 051, an) * | 51 = a]

= (Nalsprap) +A) 2
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visitation in D

(s1,a7)

7 N

222 .

Sx A Sx A Sx A Sx A

Figure 2. An illustration of the oracle property in the tabular MDP,
where the transition kernel is deterministic. The histogram depicts
the number of times (s, ap,) is visited in D. The suboptimality
in Equation (4.8) only depends on the number of times (s}, aj,),
which lies on the trajectory induced by 7", is visited in D, even

though 7 is unknown a priori.

In other words, the suboptimality in Equation (4.8) only
depends on how well D “covers” the trajectory induced
by 7* instead of its “uniform coverage” over S and A. In
particular, as long as (s, aj ) lies off the trajectory induced
by 7*, how well D “covers” (sj,ay,), that is, Ny (s, as,),
does not affect the suboptimality in Equation (4.8). See
Figure 2 for an illustration.

Oracle Property: Following existing literature (Donoho
and Johnstone, 1994; Fan and Li, 2001; Zou, 2006), we refer
to such a phenomenon as the oracle property, that is, the al-
gorithm incurs an “oracle” suboptimality that automatically
“adapts” to the support of the trajectory induced by 7*, even
though 7* is unknown a priori. From another perspective,
assuming hypothetically 7* is known a priori, the error that
arises from estimating the transition kernel and expected re-
ward function at (s}, a}) scales as Ny, (s}, a})~'/2, which
can not be improved due to the information-theoretic lower
bound.

Outperforming Demonstration: Assuming hypothetically
D is induced by a fixed behavior policy 7 (namely the
demonstration), such an oracle property allows Pess(D)
to outperform 7 in terms of the suboptimality, which is de-
fined in Equation (2.6). Specifically, it is quite possible that
(s, a5) is relatively small and Ny, (s5,, af,) is rather large
for a certain (s$, aj,), which is “covered” by D but lies off
the trajectory induced by 7*. Correspondingly, the subopti-
mality of 7 can be rather large. On the other hand, as dis-
cussed above, rp(s5,, a5) and Np(s7, af,) do not affect the
suboptimality of Pess(D), which can be relatively small
as long as N, (s}, a};) is sufficiently large. Here (s}, a};) is
“covered” by D and lies on the trajectory induced by 7*.

Well-Explored Dataset: To connect existing literature
(Duan et al., 2020), Corollary B.1 specializes Theorem 4.4
under the additional assumption that the data collecting
process well explores S and 4. The suboptimality in Equa-
tion (B.1) parallels the policy evaluation error established

in (Duan et al., 2020), which also scales as H2K ~'/2 and
attains the information-theoretic lower bound for offline
policy evaluation. In contrast, we focus on offline policy
optimization, which is more challenging. As K — oo, the
suboptimality in Equation (B.1) goes to zero.

4.3. Minimax Optimality: Information-Theoretic
Lower Bound

We establish the minimax optimality of Theorems 4.2 and
4.4 via the following information-theoretic lower bound.
Recall that Pp is the joint distribution of the data collecting
process.

Theorem 4.6 (Information-Theoretic Lower Bound). For
the output A1go(D) of any algorithm, there exist a linear
MDP M = (S, A, H, P,r), an initial state z € S, and a
dataset D, which is compliant with M, such that

SubOpt(algo(D);x) 1
S En {(¢(Sh, ah)TAﬁl¢(8h7ah))1/2 ‘ 51 = x}
4.13)

where ¢ > 0 is an absolute constant. Here £« is taken with
respect to the trajectory induced by 7n* in the underlying
MDP given the fixed matrix Aj. Meanwhile, Ep is taken
with respect to Pp, where Algo(D) and A}, depend on D.

Ep

Proof of Theorem 4.6. See Section C.3 for a proof sketch
and Appendix F.3 for a detailed proof. O

Theorem 4.6 matches Theorem 4.4 up to 5 and absolute
constants. Although Theorem 4.6 only establishes the min-
imax optimality, Proposition F.2 further certifies the local
optimality on the constructed set of worst-case MDPs via a
more refined instantiation of the meta-algorithm (Algorithm
1). See Appendix F.4 for a detailed discussion.
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