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A. Appendix
A.1. Proofs for Propositions and Theorems

Here we provide the proofs for the propositions and theorems used in our Option-GAIL.

A.1.1. PROOF FOR OONE-STEP = O

According to Assumption 1.1, an option can be activated at any state, thus the intra-option policy πo(a|s), break policy
βo′(s) and inter-option policy πO(o|s) are all well-defined on any s ∈ S,∀o ∈ O. This suggests that πL(a|s, o) ≡ πo(a|s)
holds over all options on any state. For βo′(s), with Assumption 1.2, we have βo′(s) = 1− πH(o′|s, o′) and for πO(o|s)

we have πO(o|s) = πH(o|s,o′)∑
o 6=o′ πH(o|s,o′)

∣∣∣∣
∀o′ 6=o

=
∑
o′ 6=o πH(o|s,o′)∑

o′ 6=o
∑
o 6=o′ πH(o|s,o′) . Also, with o−1 ≡ #, it can be directly found that

µ̃0(s, o) = µ̃0(s, o = #) ≡ µ0(s). Since S,A, Ras , P as,s′ , γ are all defined the same between Oone-step and O, we can get
thatOone-step = O holds under Assumption 1, and there exists an one-to-one mapping between

(
πH(o|s, o′), πL(a|s, o)

)
and(

πo(a|s), βo′(s), πO(o|s)
)
. �

Combining with Theorem 1, this equivalency also suggests:

ρπ̃(s, a, o, o′) = ρπ̃?(s, a, o, o′)⇔ π̃ = π̃? ⇔
(
πo(a|s), πO(o|s), βo′(s)

)
=
(
π?o(a|s), π?O(o|s), β?o′(s)

)
. (11)

A.1.2. PROOF FOR THEOREM 1

The proof of Theorem 1 can be derived similar as that from Syed et al. (2008) by defining an augmented MDP with options:
s̃t

.
= (st, ot−1) ∈ S×O+, ãt

.
= (at, o

A
t ) ∈ A×O, π̃(ãt|s̃t)

.
= πL(at|st, oAt )πH(oAt |st, ot−1), P̃ ãts̃t,s̃t+1

.
= P atst,st+1

1ot=oAt ,
where we denote ot used in ãt as oAt for better distinguish from the option chosen in s̃t+1, despite they should actually be
the same.
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Figure 8. Illustration of the Bellman Flow on augmented MDP with options.

With the sugmented MDP, we can rewrite:

ρ(s̃, ã)
.
= ρ(s, a, o, o′)

= πL(a|s, o)πL(o|s, o′)

µ̃0(s, o′) + γ
∑

s′,a′,o′′

ρ(s′, a′, o′, o′′)P a
′

s′,s

 (12)

= π̃(ã|s̃)

µ̃0 + γ
∑
s̃′,ã′

ρ(s̃′, ã′)P̃ ã
′

s̃′,s̃


and construct a π̃-specific Bellman Flow constraint similar as that introduced by Syed et al. (2008):

ρ(s̃, ã) = π̃(ã|s̃)

µ̃0(s̃) + γ
∑
s̃′,ã′

ρ(s̃′, ã′)P̃ ã
′

s̃′,s̃

 (13)

ρ(s̃, ã) ≥ 0. (14)
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Now we build the relation between the option-occupancy measurement ρπ̃(s̃, ã) and the policy π̃(ã|s̃).

Lemma 1 The option-occupancy measurement of π̃ which is defined as ρπ̃(s̃, ã) = E
[∑∞

t=0 γ
t1(s̃t=s̃,ãt=ã)

]
satisfies the

π̃-specific Bellman Flow constraint in Equation 13-14.

proof: it can be directly find that Equation 14 is always satisfied as ρπ̃(s̃, ã) = E
[∑∞

t=0 γ
t1(s̃t=s̃,ãt=ã)

]
≥ 0 always holds,

we now verify the constraint in Equation 13:

ρπ̃(s̃, ã) = E

 ∞∑
t=0

γt1(s̃t=s̃,ãt=ã)

 =

∞∑
t=0

γtP (s̃t = s̃, ãt = ã) (15)

= π̃(ã|s̃)µ̃0(s̃) +

∞∑
t=1

γtP (s̃t = s̃, ãt = ã) (16)

= π̃(ã|s̃)µ̃0(s̃) +

∞∑
t=1

γt
∑
s̃′,ã′

P (s̃t = s̃, ãt = ã, s̃t−1 = s̃′, ãt−1 = ã′) (17)

= π̃(ã|s̃)

µ̃0(s̃) +

∞∑
t=1

γt
∑
s̃′,ã′

P̃ ã
′

s̃′,s̃P (s̃t−1 = s̃′, ãt−1 = ã′)

 (18)

= π̃(ã|s̃)

µ̃0(s̃) + γ
∑
s̃′,ã′

P̃ ã
′

s̃′,s̃

∞∑
t=0

γtP (s̃t = s̃′, ãt = ã′)

 (19)

= π̃(ã|s̃)

µ̃0(s̃) + γ
∑
s̃′,ã′

P̃ ã
′

s̃′,s̃Eπ̃

 ∞∑
t=0

γt1(s̃t=s̃′,ãt=ã′)


 (20)

= π̃(ã|s̃)

µ̃0(s̃) + γ
∑
s̃′,ã′

ρπ̃(s̃′, ã′)P̃ ã
′

s̃′,s̃

 � (21)

Lemma 2 The function that satisfies the π̃-specific Bellman Flow constraint in Equation 13-14 is unique.

proof: we first define an operator for policy π̃: T π̃ : R|S×O
+|×|A×O| 7→ R|S×O

+|×|A×O| for any function f ∈
R|S×O

+|×|A×O|:
(
T π̃f

)
(s̃, ã)

.
= π̃(ã|s̃)

(
µ̃0(s̃) + γ

∑
s̃′,ã′ f(s̃′, ã′)P̃ ã

′

s̃′,s̃

)
, then for any two functions ρ1(s̃, ã) ≥

0, ρ2(s̃, ã) ≥ 0 satisfy ρ1 = T π̃ρ1, ρ2 = T π̃ρ2, we have:∑
s̃,ã

|ρ1 − ρ2| (s̃, ã) =
∑
s̃,ã

∣∣∣T π̃ρ1 − T π̃ρ2∣∣∣ (s̃′, ã′) (22)

=
∑
s̃,ã

∣∣∣∣∣∣π̃(ã|s̃)γ
∑
s̃′,ã′

P̃ ã
′

s̃′,s̃ (ρ1 − ρ2) (s̃′, ã′)

∣∣∣∣∣∣ = γ
∑
s̃,ã

∣∣∣∣∣∣
∑
s̃′,ã′

p(s̃, ã|s̃′, ã′) (ρ1 − ρ2) (s̃′, ã′)

∣∣∣∣∣∣ (23)

≤ γ
∑
s̃,ã

∑
s̃′,ã′

p(s̃, ã|s̃′, ã′) |ρ1 − ρ2| (s̃′, ã′) = γ
∑
s̃′,ã′

|ρ1 − ρ2| (s̃′, ã′) (24)

= γ
∑
s̃,ã

|ρ1 − ρ2| (s̃, ã) (25)

∵
∑
s̃,ã

|ρ1 − ρ2| (s̃, ã) ≥ 0, γ < 1 (26)

∴
∑
s̃,ã

|ρ1 − ρ2| (s̃, ã) = 0⇒ ρ1 = ρ2 � (27)
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Lemma 3 There is a bijection between π̃(ã|s̃) and
(
πH(o|s, o′), πL(a|s, o)

)
, where π̃(ã|s̃) = π̃(a, o|s, o′) =

πL(a|s, o)πH(o|s, o′) and πH(o|s, o′) =
∑
a π̃(a, o|s, o′), πL(a|s, o) = π̃(a,o|s,o′)∑

a π̃(a,o|s,o′)

∣∣∣
∀o′

=
∑
o′ π̃(a,o|s,o

′)∑
a,o′ π̃(a,o|s,o′)

With Lemma 1 and Lemma 2, the proof of Theorem 1 is provided:

proof: For any ρ(s, a, o, o′) = ρ(s̃, ã) ∈ D =
{
ρ(s̃, ã) ≥ 0;

∑
ã ρ(s̃, ã) = µ̃0(s̃) + γ

∑
s̃′,ã′ ρ(s̃′, ã′)P̃ ã

′

s̃′,s̃

}
, and a policy

π̃(ã|s̃) satisfies:

π̃(ã|s̃) =
ρ(s̃, ã)∑
ã ρ(s̃, ã)

=
ρ(s̃, ã)

µ̃0(s̃) + γ
∑
s̃′,ã′ ρ(s̃′, ã′)P̃ ã

′
s̃′,s̃

, . (28)

With Equation 28 ρ should be a solution of Equation 13-14, and with Lemma 1-2, the solution is unique and equals to the
occupancy measurement of π̃. With Lemma 3, ρ is also the unique occupancy measurement of (πH , πL).

On the other hand, If ρπ̃ is the occupancy measurement of π̃, we have:

∑
ã

π̃(ã|s̃) = 1 =

∑
ã ρπ̃(s̃, ã)

µ̃0(s̃) + γ
∑
s̃′,ã′ ρπ̃(s̃′, ã′)P̃ ã

′
s̃′,s̃

, (29)

which indicates that ρπ̃ ∈ D and π̃(a, o|s, o′) = ρπ̃(s,a,o,o
′)∑

a,o ρπ̃(s,a,o,o
′) , also:

πH(o|s, o′) =
∑
a

π̃(a, o|s, o′) =

∑
a ρπ̃(s, a, o, o′)∑
a,o ρπ̃(s, a, o, o′)

(30)

πL(a|s, o) =

∑
o′ π̃(a, o|s, o′)∑
a,o′ π̃(a, o|s, o′)

=

∑
o′ρπ̃(s, a, o, o′)∑
a,o′ ρπ̃(s, a, o, o′)

� (31)

A.1.3. PROOF FOR THEOREM 2

We first adapt the corollary on Ghasemipour et al. (2020) into its option-version.

Lemma 4 Optimizing the f -divergence between ρπ̃ and ρπ̃E equals to perform π̃? = HRL(c?) with c? = HIRLψ(π̃E):
π̃? = HRL ◦ HIRLψ(π̃E) = arg minπ̃ −H(π̃) +Df

(
ρπ̃(s, a, o, o′)‖ρπ̃E (s, a, o, o′)

)
proof: we take similar deviations from that provided by Ghasemipour et al. (2020). Let f be a function defin-
ing a f -divergence and let f? be the convex conjugate of f . Given ρπ̃E and cost functions c(s, a, o, o′) defined
on S × A × O × O+, we can define the cost function regularizer used by our option-based HIRL as ψf (c)

.
=
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Eρπ̃E (s,a,o,o′)

[
f?
(
c(s, a, o, o′)

)
− c(s, a, o, o′)

]
and a similar relation holds:

ψ?f
(
ρπ̃(s, a, o, o′)− ρπ̃E (s, a, o, o′)

)
(32)

= sup
c()̇

 ∑
s,a,o,o′

(ρπ̃ − ρπ̃E )(s, a, o, o′)c(s, a, o, o′)− ψf (c)

 (33)

= sup
c()̇

 ∑
s,a,o,o′

(ρπ̃ − ρπ̃E )(s, a, o, o′)c(s, a, o, o′)

−
∑

s,a,o,o′

ρπ̃E (s, a, o, o′)
(
f?
(
c(s, a, o, o′)

)
− c(s, a, o, o′)

) (34)

= sup
c()̇

 ∑
s,a,o,o′

[
ρπ̃(s, a, o, o′)c(s, a, o, o′)− ρπ̃E (s, a, o, o′)f?

(
c(s, a, o, o′)

)] (35)

= sup
c()̇

[
Eρπ̃

[
c(s, a, o, o′)

]
− Eρπ̃E

[
f?
(
c(s, a, o, o′)

)]]
, let Tω = c (36)

= sup
Tω

[
Eρπ̃

[
Tω(s, a, o, o′)

]
− Eρπ̃E

[
f?
(
Tω(s, a, o, o′)

)]]
(37)

= Df

(
ρπ̃(s, a, o, o′)‖ρπ̃E (s, a, o, o′)

)
, (38)

where π̃? = HRL ◦ HIRLψ(π̃E) = arg minπ̃ −H(π̃) + ψ?f
(
ρπ̃(s, a, o, o′)− ρπ̃E (s, a, o, o′)

)
= arg minπ̃ −H(π̃) +

Df

(
ρπ̃(s, a, o, o′)‖ρπ̃E (s, a, o, o′)

)
. �

Similar as Ghasemipour et al. (2020), we omit the entropy regularizer term in Lemma 4, thus after the optimization in
M-step we have Df

(
ρπ̃n−1(s, a, o, o′)‖ρE(s, a)[pπ̃n(o, o′|s, a)

)
≥ Df

(
ρπ̃n(s, a, o, o′)‖ρE(s, a)pπ̃n(o, o′|s, a)

)
. Now we

are ready for proving Theorem 2:

proof: Since the option of expert is inferred based on the policy π̃n on each optimization step, we separate the expert
option-occupancy measurement estimated with π̃n as: ρπ̃E (s, a, o, o′) = ρE(s, a)pπ̃n(o, o′|s, a). By repeating the definition
of Qn in our main paper, we have

Qn = Epπ̃n−1 (o,o′|s,a)

[
Df

(
ρπ̃n(s, a, o, o′)‖ρπ̃E (s, a, o, o′)

)]
(39)

=
∑

s,a,o,o′

ρE(s, a)pπ̃n−1(o, o′|s, a)f

(
ρπ̃n(s, a, o, o′)

ρE(s, a)pπ̃n−1(o, o′|s, a)

)

≥
∑
s,a

ρE(s, a)f

(
ρπ̃n(s, a)

ρE(s, a)

)
(f is convex) (40)

=
∑

s,a,o,o′

ρE(s, a)pπ̃n(o, o′|s, a)f

(
ρπ̃n(s, a, o, o′)

ρE(s, a)pπ̃n(o, o′|s, a)

)
(E-Step)

≥
∑

s,a,o,o′

ρE(s, a)pπ̃n(o, o′|s, a)f

(
ρπ̃n+1(s, a, o, o′)

ρE(s, a)pπ̃n(o, o′|s, a)

)
(M-Step)

= Qn+1. � (41)

With Equation 39, Equation 40 and Equation 41 we can also obtain:

Df

(
ρπ̃n(s, a, o, o′)‖ρE(s, a)pπ̃n(o, o′|s, a)

)
≥ Df

(
ρπ̃n+1(s, a, o, o′)‖ρE(s, a)pπ̃n+1(o, o′|s, a)

)
(42)

⇒ Df

(
ρπ̃n(s, a)‖ρE(s, a)

)
≥ Df

(
ρπ̃n+1(s, a)‖ρE(s, a)

)
(43)
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A.2. Experimental Details and Extra Results

Here we provide more comparative results on several counterparts, as well as the experimental details.2.
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Figure 9. Visualization of the options activated at each step, learned respectively by pretraining and fixing high-level policy(Pretrain,
refers to Directed-info GAIL (Sharma et al., 2018)), Mixer of Expert(MoE, refers to OptionGAN (Henderson et al., 2018)), GAIL-HRL
and our proposed method. ’Demo’ denotes the options inferred from the expert, and ’Sample’ denotes the options used by agent when
doing self-explorations. The effectiveness of our proposed method on regularizing the option switching is obvious by comparing the
consistent switching tendencies between Demo and Sample.

A.2.1. EXTRA RESULTS

Table 2. Comparative results. All results are measured by the average maximum average reward-sum among different trails.

Hopper-v2 Walker2d-v2 AntPush-v0 CloseMicrowave2

Demos (s, a)× T (R11,R3)× 1k (R17,R6)× 5k (R107,R8)× 50k (R101,R8)× 1k
Demo Reward 3656.17±0.0 5005.80±36.18 116.60±14.07 —

GAIL 535.29±7.19 2787.87±2234.46 56.45±3.17 39.14±12.87
Pretrain 436.55±27.74 891.70±100.58 -0.07±1.50 74.34±20.16

MoE 3254.12±446.78 2722.11±2217.80 39.73±37.00 33.33±25.07
GAIL-HRL 3697.40±1.14 3687.63±982.99 20.53±6.90 56.95±25.74

Ours 3700.42±1.70 4836.85±100.09 95.00±2.70 100.74±21.33

A.2.2. EXPERIMENTAL DETAILS

2The source code is provided at Option-GAIL.git. For setting up the environments correctly, please also refer to OpenAI-Gym (Brock-
man et al., 2016) and RLBench (James et al., 2020)

 https://github.com/id9502/Option-GAIL.git
https://gym.openai.com/
https://sites.google.com/view/rlbench
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Figure 10. comparison of learning performance on four environments. We compare the maximum average reward-sums vs. exploration
steps on different environments. The solid line indicates the average performance among several trials under different random seeds,
while the shade indicates the range of the maximum average reward-sums over different trials.

|O| Option-Viterbi / total (s) %

2 0.0938/57.785 0.16%
3 0.0884/90.199 0.10%
4 0.0840/102.00 0.08%
5 0.0938/126.05 0.07%
6 0.1014/142.64 0.07%

Table 3. The computation time of Option-Viterbi comparing with the overall learning time costs

Table 4. Configurations and hyper-parameters

Name Value Name Value

γ 0.99 learning rate 0.0003
λML 0 λMH 0.01

batch size(T) 4096 mini batch size 64


