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Abstract

Incorporating graph side information into recom-
mender systems has been widely used to better
predict ratings, but relatively few works have fo-
cused on theoretical guarantees. Ahn et al. (2018)
firstly characterized the optimal sample complex-
ity in the presence of graph side information, but
the results are limited due to strict, unrealistic as-
sumptions made on the unknown latent preference
matrix and the structure of user clusters. In this
work, we propose a new model in which 1) the
unknown latent preference matrix can have any
discrete values, and 2) users can be clustered into
multiple clusters, thereby relaxing the assump-
tions made in prior work. Under this new model,
we fully characterize the optimal sample com-
plexity and develop a computationally-efficient
algorithm that matches the optimal sample com-
plexity. Our algorithm is robust to model errors
and outperforms the existing algorithms in terms
of prediction performance on both synthetic and
real data.

1. Introduction

Recommender systems provide suggestions for items based
on users’ decisions such as ratings given to those items.
Collaborative filtering is a popular approach to designing
recommender systems (Herlocker et al., 1999; Sarwar et al.,
2001; Linden et al., 2003; Rennie & Srebro, 2005; Salakhut-
dinov & Mnih, 2007; 2008; Agarwal & Chen, 2010; Dav-
enport et al., 2014). However, collaborative filtering suffers
from the well-known cold start problem since it relies only
on past interactions between users and items. With the ex-
ponential growth of social media, recommender systems
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have started to use a social graph to resolve the cold start
problem. For instance, Jamali & Ester (2010) provide an
algorithm that handles the cold start problem by exploiting
social graph information.

While a lot of works have improved the performance of
algorithms by incorporating graph side information into rec-
ommender systems (Jamali & Ester, 2009a;b; 2010; Cai
etal., 2011; Ma et al., 2011; Yang et al., 2012; 2013b; Kalo-
folias et al., 2014), relatively few works have focused on
justifying theoretical guarantees of the performance (Chi-
ang et al., 2015; Rao et al., 2015; Ahn et al., 2018). One
notable exception is the recent work of Ahn et al. (2018),
which finds the minimum number of observed ratings for
reliable recovery of the latent preference matrix with so-
cial graph information and partial observation of the rating
matrix. They also provide an efficient algorithm with low
computational complexity. However, the assumptions made
in this work are too strong to reflect the real-world data. In
specific, they assume that each user rates each item either
+1 (like) or —1 (dislike), and that the observations are noisy
so that they can be flipped with probability 6 € (0, 3). This
assumption can be interpreted as each user rates each item
+1 with probability 1 — 6 or 6. Note that this parametric
model is very limited, so the discrepancy between the model
and the real world occurs; if a user likes item a, b and ¢
with probability 1/4,1/3 and 3/4 respectively, then the model
cannot represent this case well (see Rmk. 3 for a detailed
description).

This motivates us to propose a general model that better rep-
resents real data. Specifically, we assume that user 7 likes
item j with probability R;;, which we call user 7’s latent
preference level on item j, and I?;; belongs to the discrete
set {p1,...,pa} whered > land 0 <p; < -+ <pg < L.
As d can be any positive integer, our generalized model
can reflect various preference levels on different items. In
addition to that, we assume that the social graph informa-
tion follows the Stochastic Block Model (SBM) (Holland
et al., 1983), and the social graph is correlated with the
latent preference matrix R in a specific way, which we will
detail in Sec. 3. Under this highly generalized model, we
fully characterize the optimal sample complexity required
for estimating the latent preference matrix R. To the best of
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Figure 1. Performance comparison of various algorithms for latent preference estimation with graph side information. The x-axis is the
probability of observing each rating (p), and the y-axis is the estimation error measured in || - ||max Or the mean absolute error (MAE). (a)
Our algorithm vs (Ahn et al., 2018) where d = 2, p; = 0.3, p2 = 0.62. (Ahn et al., 2018) performs badly due to the asymmetry of latent
preference levels. (b) Our algorithm vs various algorithms proposed in the literature on real graph data and synthetic ratings. Observe that
ours strictly outperforms all the existing algorithms for almost all tested values of p.

Table 1. MAE comparison with other algorithms on real N 4 real G (Massa & Avesani, 2007; Massa et al., 2008)

USER K-NN SOREC SOREG TRUSTSVD AHN’S OURS

0.614

ITEM K-NN BIASEDMF SOoCIALMF

0.591

ITEMAVG USERAVG

0.547 0.731 0.664 0.592 0.592 0.576 0.567 0.567 0.540

our knowledge, this work is the first theoretical work that
shows the optimal sample complexity of latent preference es-
timation with graph side information without making strict
assumptions on the rating generation model, made in all the
prior work (Ahn et al., 2018; Yoon et al., 2018; Elmahdy
et al., 2020; Zhang et al., 2021). We also develop an algo-
rithm with low computational complexity, and our algorithm
is shown to consistently outperform all the proposed algo-
rithms in the literature including those of (Ahn et al., 2018)
on synthetic/real data.

To further highlight the limitation of the proposed algo-
rithms developed under the strict assumptions used in the
literature, we present various experimental results in Fig. 1.
(We will revisit the experimental setting in Sec. 6.) In
Fig. 1a, we compare our algorithm with that of (Ahn et al.,
2018) on synthetic rating N** and synthetic graph G. Here,
we setd = 2,p; = 0.3,p2 = 0.62, i.e., the symmetry as-
sumption p; + p2 = 1 does not hold anymore. We can see
that our algorithm significantly outperforms the algorithm
of (Ahn et al., 2018) in terms of the estimation error for all
tested values of p, where p denotes the probability of ob-
serving each rating. This clearly shows that their algorithm
quickly breaks down even when the modeling assumption
is just slightly off. Shown in Fig. 1b is the performance
of various algorithms on synthetic rating/real graph, and
we observe that the estimation error of (Ahn et al., 2018)
increases as the observation rate p increases unlike all the

other algorithms. (We discuss why this unexpected phe-
nomenon happens in more details in Sec. 6.) On the other
hand, our algorithm outperforms all the existing baseline
algorithms for almost all tested values of p and does not ex-
hibit any unexpected phenomenon. In Table 1, we observe
that our algorithm outperforms all the other algorithms even
on real rating/real graph data, although the improvement is
not significant than the one for synthetic rating/real graph
data. These results demonstrate the practicality of our new
algorithm, which is developed under a more realistic model
without limiting assumptions.

This paper is organized as follows. Related works are given
in Sec. 2. We propose a generalized problem formulation
for a recommender system with social graph information in
Sec. 3. Sec. 4 characterizes the optimal sample complexity
with main theorems. In Sec. 5, we propose an algorithm
with low time complexity and provide a theoretical perfor-
mance guarantee. In Sec. 6, experiments are conducted on
synthetic and real data to compare the performance between
our algorithm and existing algorithms in the literature. Fi-
nally, we discuss our results in Sec. 7. All the proofs and
experimental details are given in the appendix.

1.1. Notation

Let [n] = {1,2,...,n} where n is a positive integer, and
let 1(-) be the indicator function. An undirected graph G
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is a pair (V, E)) where V is a set of vertices and F is a set
of edges. For two subsets X and Y of the vertex set V,
e(X,Y) denotes the number of edges between X and Y.

2. Related Work

Collaborative filtering has been widely used to design recom-
mender systems. There are two types of methods commonly
used in collaborative filtering; neighborhood-based method
and matrix factorization-based method. The neighborhood-
based approach predicts users’ ratings by finding similarity
between users (Herlocker et al., 1999), or by finding sim-
ilarity between items (Sarwar et al., 2001; Linden et al.,
2003). In the matrix factorization-based approach, it as-
sumes users’ latent preference matrix is of a certain struc-
ture, e.g., low rank, so the latent preference matrix can be
decomposed into two matrices of low dimension (Rennie
& Srebro, 2005; Salakhutdinov & Mnih, 2007; 2008; Agar-
wal & Chen, 2010). In particular, Davenport et al. (2014)
consider binary (1-bit) matrix completion and show that
the maximum likelihood estimate is accurate under suitable
conditions.

Since collaborative filtering relies solely on past interac-
tions between users and items, it suffers from the cold start
problem; collaborative filtering cannot provide a recom-
mendation for new users since the system does not have
enough information. A lot of works have been done to re-
solve this issue by incorporating social graph information
into recommender systems. In specific, the social graph
helps neighborhood-based method to find better neighbor-
hood (Jamali & Ester, 2009a;b; Yang et al., 2012; 2013b).
Some works add social regularization terms to the matrix
factorization method to improve the performance (Cai et al.,
2011; Jamali & Ester, 2010; Ma et al., 2011; Kalofolias
etal., 2014).

Few works have been conducted to provide theoretical guar-
antees of their models that consider graph side information.
Chiang et al. (2015) consider a model that incorporates gen-
eral side information into matrix completion, and provide
statistical guarantees. Rao et al. (2015) derive consistency
guarantees for graph regularized matrix completion.

Recently, several works have studied the binary rating es-
timation problem with the aid of social graph informa-
tion (Ahn et al., 2018; Yoon et al., 2018; Zhang et al., 2020;
Elmahdy et al., 2020; Zhang et al., 2021). These works
characterize the optimal sample complexity as the mini-
mum number of observed ratings for reliable recovery of
a latent preference matrix under various settings, and find
how much the social graph information reduces the optimal
sample complexity. In specific, Ahn et al. (2018) study the
case where users are clustered in two equal-sized groups,
and Yoon et al. (2018) generalize the results of (Ahn et al.,

2018) to the multi-cluster case. Zhang et al. (2020; 2021)
study the problem where both user-to-user and item-to-item
similarity graphs are available. Lastly, Elmahdy et al. (2020)
adopt the hierarchical stochastic block model to handle the
case where each cluster can be grouped into sub-clusters.
However, all of these works require strict assumptions on
the rating generation model, which is too limited to well
capture the real-world data.

Our problem can also be viewed as “node label inference on
SBM,” where nodes are users, edges are for social connec-
tions, node labels are m-dimensional rating vectors (consist-
ing of —1,0, 1), and node label distributions are determined
by the latent preference matrix. Various works have stud-
ied recovery of clusters in SBM in the presence of node
labels (Yang et al., 2013a; Saad & Nosratinia, 2018) or edge
labels (Heimlicher et al., 2012; Jog & Loh, 2015; Yun &
Proutiere, 2016). While their goal is recovery of clusters,
Xu et al. (2014) study “edge label inference on SBM” whose
goal is to recover edge label distributions as well as clusters.

Remark 1. While our problem shares high similarities with
“edge label” inference on SBM, studied in (Xu et al., 2014),
there exist some critical differences. To see the difference,
consider a very sparse graph where many nodes are isolated.
Edge label inference is impossible in this regime since there
is no observed information about those isolated nodes (see
Thm. 2 in (Xu et al., 2014) for more details). On the other
hand, in node labelled cases, we still observe information
about isolated nodes from their node labels, so it is possi-
ble to infer node label distributions as long as we observe
enough number of node labels.

3. Problem Formulation

Let [n] be the set of users, and let [m] be the set of items
where m can scale with n. For i € [n] and j € [m], R;; de-
notes user ¢’s latent preference level on item j, that is, user
1’s rating on item j is +1 (like) with probability R;; or —1
(dislike) with probability 1 —I2;;. We assume that latent pref-
erence levels take values in the discrete set {p1,pa, ..., P4}
where d > land 0 < p; < -+ < pg < 1. The latent
preference matrix R is the n X m matrix whose (i, j)-th
entry is R;;. The latent preference vector of user i is the
i-th row of R.

We further assume that n users are clustered into K clus-
ters, and the users in the same cluster have the same latent
preference vector. More precisely, let C' : [n] — [K] be
the cluster assignment function where C(¢) = k if user i
belongs to the k-th cluster. The inverse image C~*({k})
is the set of users whose cluster assignment is k, so the
users in C~1({k}) have the same latent preference vector
by the assumption. We denote the latent preference vector
of the users in C~!({k}) by uy, for k € [K]. Note that
the latent preference matrix R can be completely recovered
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with the cluster assignment function C': [n] — [K] and the
corresponding preference vectors u1, . . ., Uk.

As the latent preference vector and the cluster assignment
function are generally unknown in the real world, we es-
timate them with observed ratings on items and the social
graph.

Observed rating matrix N We assume that we observe
binary ratings of users independently with probability p
where p € [0,1]. We denote a set of observed entries by
) which is a subset of [n] x [m]. Then, the (4, j)-th entry
of the observed rating matrix N is defined by user i’s
rating on item j if (¢,5) € € and O otherwise. That is,

(N9),; % Bern(p) - (2Bern(R;;) — 1).

Observed social graph G We observe the social graph
G = ([n], E) on n users, and we further assume that
the graph is generated as per the stochastic block model
(SBM) (Holland et al., 1983). Specifically, we consider the
symmetric SBM. If two users ¢ and j are from the same
cluster, an edge between them is placed with probability «,
independently of the others. If they are from the different
clusters, the probability of having an edge between them is
8, where o > 3.

Fig. 2 provides a toy example that visualizes how our obser-
vation model is realized by the latent preference matrix and
the cluster assignment. Given this observation model, the
goal of latent preference estimation with graph side infor-
mation is to find an estimator ¢)( N}, G) that estimates the
latent preference matrix K.

Remark 2 (Why binary rating?). Binary rating has its
critical applications such as click/impression-based adver-
tisement recommendation, in which only —1 (shown, not
clicked), 0 (not shown), 1 (shown, clicked) information is
available. Moreover, binary rating is gaining increasing in-
terests in the industry due to its simplicity and robustness.
This is precisely why Youtube and Netflix, two of the largest
media recommendation systems, have discarded their “star
rating systems” and employed binary ratings in 2009 (Gru-
ber, 2017) and in 2017 (Center, 2017), respectively.

Remark 3. Ahn et al. (2018) assume that each user rates
each item either +1 (like) or —1 (dislike), and that the obser-
vations are noisy so that they can be flipped with probability
0 € (0,%). This assumption can be interpreted as each
user rates each item +1 with probability 1 — 6 (when the
user’s true rating is +1) or # (when the user’s true rating is
—1). Therefore, our model reduces to the model of (Ahn
et al., 2018) by settingd = 2,p; = 0,po =1 -0, K =
2,|C7H({1})] = |C~'({2})| = %. As mentioned in Sec. 1,
the parametric model used in (Ahn et al., 2018) is very
limited. For example, consider the following two latent

Vi Ya Y 3
Uy s g 14

] where n = 2, m = 4. Then R; can

preference matrices R; = [ SRy =

1/3 1/4 3/4 3/4

1/3 1/4 1/4 1/4
be represented by the model used in [Ahn et al., 2018] with
0= i, but Ry cannot be handled by their model with any
choice of 6 since there are more than two latent preference
levels in Ro.

Remark 4. Without graph observation, our observation
model reduces to a special case of the observation model
for the binary (1-bit) matrix completion shown in Sec. 2.1.
of (Davenport et al., 2014).

4. Fundamental Limit on Sample Complexity

We now characterize the fundamental limit on the sample
complexity. We first focus on the two equal-sized clusters
case (ie., K = 2,|[C'({1})| = [C*({2})] = %) and
will extend the results to the multi-cluster case. We use Ag
and Bp, for the ground-truth clusters and ur and vy for the
corresponding latent preference vectors, respectively. We
define the worst-case error probability as follows.

Definition 1 (Worst-case probability of error for two
equal-sized clusters). Let v be a fixed number in (0,1)
and 1 be an estimator that outputs a latent pref-
erence matrix in {p1,pa,...,pqy"*™ based on N%
and G. We define the worst-case probability of er-
ror P)(¢) = max{Pr(¢(N*,G) # R) R €
{p1:p2s -0} lur — vrllo = [ym]} where || - [|o
is the hamming distance.

A latent preference level p; € [p1,...,pq] implies that
the probability of choosing (+1,—1) is (p;, 1 — p;) re-
spectively, so it corresponds to a discrete probability dis-
tribution (p;, 1 — p;). For two latent preference levels
PisDj € [P1,--.,pal, the Hellinger distance between two
discrete probability distributions (p;, 1—p;) and (p;, 1—p;),
denoted dg (p;, pj), is

5V Wh = VB + (V= = VT=

Then, the minimum Hellinger distance of the set of discrete-
valued latent preference levels {p1, ..., pq}, denoted d'j™,
is

min{dH(pi,pj) iF£j e [d}}

Below is our main theorem that characterizes a sharp thresh-
old of p, the probability of observing each rating of users,
for reliable recovery as a function of n, m, v, a, §, dgin.
Theorem 1. Let K = 2,|C~'({1})] = |C71({2})| =
2.y € (0,1), m = w(logn), logm = o(n), I,' :=
—2log (1 — d%(a, B)). Then, the following holds for arbi-
trary € > (.

'Ahn et al. (2018) made implicit assumptions that ¢, 3 — 0
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Figure 2. A toy example of our model where n = 12,m = 8,d = 3,p1 = 0.1,p» = +,p3 = 2, K = 3,C"'({1}) =
{1,2,3},C7*({2}) = {4,5,6},C'({3}) = {7,8,9,10,11,12},p = 0.5, = 0.6, 5 = 0.1.

. 1 (14+€)logn—%1I: (1+€)2logm
(Difp > Wmax{ S , - , then
there exists an estimator 1) that outputs a latent preference
matrix in {p1,pa, . ..,pa}" <™ based on N and G such

that PY(¢) — 0 as n — oo.

(1) lfp < (dmlin)2 max { (1—¢) log nf%157 (l—e)ilog m} and
H

ym

a= O(lo%), then P) (1) - 0 as n — oo for any 1.

Remark 5. We note that our technical contributions lie in
the proof of Thm. 1. In specific, we find the upper bound
of the probability of error in Lem. 3 by using the results of
Lem. 1, 2, and we made nontrivial technical contributions
as we need to handle a significantly larger set of candidate
latent preference matrices.

logn—%1s 2logm }
ym ? n

can be used as a sharp threshold for reliable recovery of the

latent preference matrix. As nmp is the expected number of

observed entries, we define the optimal sample complexity

for two-cluster cases as follows.

Theorem 1 shows that ——— 3 max{
(d5™)

logn—%1s 2logm
ym ’ n

denotes the optimal observation rate. Then nmpa) =

Definition 2. p7) = max{
H

((1‘;;%)2 max {%(n logn — $n?Iy),2mlog m} denotes the

optimal sample complexity for two-cluster cases.

The optimal sample complexity for two-cluster cases is
written as a function of py, ..., pg, so the dependency on d
is implicit. To see the dependency clearly, we can set p; =

and % — 1 asn — oo. These assumptions are used when
they approximate —2log(1 — d%(, 8)) = (1 4 o(1))(v/a —
v/B)?. The approximation does not hold without above as-
sumptions, in explicit, —2log(1 — d}(a,B)) = (Va —
VB)? { % + 0(1)} (see the appendix for the derivation).
The MLE achievability part of our theorem does not make any
implicit assumptions, and the results hold for any « and 8 with
our modified definition of I5 := —21log(1 — d% (c, B)).

i
v
and p’(*,y) increases as a quadratic function of d.

. . logn—21 L
This gives us pz‘,y) ~ 2d% max {gil’ m},

ym ’ n

Remark 6 (How does the graph information reduce the
optimal sample complexity?). One can observe that I, de-
creases as « and 3 get closer to each other, and I; = 0 when
a = (. Hence I; measures the quality of the graph informa-
tion. If we consider the case that does not employ the graph
information, it is equivalent to the case of « = 8 (I; = 0) in
our model, thereby getting the optimal sample complexity

of ﬁ max %n log n, 2mlog m ;. Therefore, exploit-
H
ing the graph information results in the reduction of the
optimal sample complexity by ﬁ %nQ I provided that
H
%n logn > 2mlog m. Note that the optimal sample com-
plexity stops decreasing when I, is larger than a certain

threshold which implies the gain is saturated.

Remark 7. If we set d = 2,p; = O,pp = 1 — 0,
then (d*)? = 1 —2,/0(1-0) = (V1—6 — V)2
Plugging this into the result of Theorem 1, we get
« 1 o floen—3ls 2logm
Py = (V1=0—0)2 ym 0 n
the main theorem of (Ahn et al., 2018) as a special case of
our result.

} , recovering

Our results can be extended to the case of multiple (pos-
sibly unequal-sized) clusters by combining the technique
developed in Theorem 1 and the technique of (Yoon
et al., 2018). Suppose dg (p;,p;) achieves the minimum
Hellinger distance when p; = pg,,p; = Pd,+1. Define
p: {p1,.-s0a}™ — {Pdy>Pdo+1}"™ that maps a latent
preference vector to a latent preference vector consisting of
latent preference levels {pq,, Pd,+1}. In explicit, p sends
each coordinate z; of a latent preference vector to pg, if
Ti < Ddys Pdo+1 if Ti > pay+1. We now present the ex-
tended result below, while deferring the the proof to the
appendix.

Theorem 2. Let m = w(logn), logm = o(n), ¢ty =
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c; Jer

IC (k)] iy = > 0forall k € [K),
lim inf R0 =Pl Ofor all i # j € |K]. Then, the

m—oo m

following holds for arbitrary ¢ > 0.
(I) (achievability) If p >

lim inf Ck
n

1 (1+€)logn—c; ;I } { (14-€) log m
(@gm? Max {i;g?g[’}q{—up(ui)fp(uj)uo e U e
then there exists an estimator 1 such that
Pr(¢ (N G) # R) — 0asn — <.

(1) (impossibility)

Suppose R € {pa,,pa,+1}""", a =
1 rnax{ max {(1—5)10gn—c71,_7'15

(df™)? i£j€[K]

Ip(wi)—pP(uj)llo
then Pr() (N, G) # R) - 0 as n — oo for any 1.

O(*Em). Ifp <

Remark 8. One can observe that Theorem 1 is a spe-
cial case of Theorem 2 by setting K = 2,¢c4 = ¢y =
5, [IP(ur) = p(uz)llo = [ym].

Remark 9. In light of Theorem 14 in (Abbe, 2018), we con-
jecture that our results can be extended to asymmetric SBMs
with a new definition of I involving Chernoff-Hellinger
divergence.

5. Our Proposed Algorithm

In this section, we develop a computationally efficient
algorithm that can recover the latent preference ma-
trix R without knowing the latent preference levels

{p1,...,pa}. We then provide a theoretical guarantee
. 1 (1+€)logn—21, 14€)21
thatif p > @@ rnax{ o 2le ( s)n ogm} for

some ¢ > 0, then the proposed algorithm recovers the latent
preference matrix with high probability. Now we provide a
high-level description of our algorithm while deferring the
pseudocode to the appendix.

Algorithm description

Input: N € {-1,0,+1}"*™, G = ([n], E), K, d, {max

Output: Clusters of usersA "“") ..,A(Ifm‘“"),latent pref-
(€max)

" (Zde)

erence vectors LUK
Stage 1. Partial recovery of clusters We run a spectral
method (Gao et al., 2017) on G to get an initial cluster-
ing result A§°>, e A&g). Unless « is too close to 3, this
stage will give us a reasonable clustering result, with which
we can kick-start the entire estimation procedure. Other
clustering algorithms (Abbe & Sandon, 2015; Chin et al.,
2015; Krzakala et al., 2013; Lei & Rinaldo, 2015) can also
be used for this stage.

Stage 2 We iterate Stage 2-(i) and Stage 2-(ii) for ¢ =
1

ye ooy Umax.

}}First, for each cluster A;c B

} ax{(lfe) logm
kE[K] Ck

Stage 2-(i). Recovery of latent preference vectors In the
{-th iteration step, this stage takes the clustering result

A(Zfl) A(Zfl) and rating data N* as input and outputs

the estimation of latent preference vectors iy (e) , u}((@.
, we estimate the latent pref-
erence levels for d[logm] randomly chosen items with
replacement. The estimation of a latent preference level can
be easily done by computing the ratio of “the number of +1
ratings” to “the number of observed ratings (i €., nonzero rat-

ings)” for each item within the cluster A . Now we have

}}i,( d[logm] number of estimations, and these estimations

ill be highly concentrated around the latent preference
levels p1, . . ., pq under our modeling assumptions (see the
appendix for the mathematical justifications). After running
a distance-based clustering algorithm (see the pseudocode
for details), we take the average within each cluster to get
the estimations py (4), . ,pAd(Z).

,pa®) and the clustering
, we estimate latent preference

Given the estimations p (2)7 .
result Age—r), e A%_l)
vectors 121([) ) by maximizing the likelihood of
the observed ratrng matrrx N* and the observed social %raph
G = ([n], E). In specific, the j-th coordinate of ;") can

be obtained by finding arg min L(ph(z) A(e b ,J) where

Pr O :he[d)
LAY ) = 2 {A(N? = 1)(~logp, )
ieAlY
+1(N? = —1)(—log(1 —ﬁhw))}.
Stage 2-(ii). Refinement of clusters In the /-th it-

eration step, this stage takes the clustering result
A(lefl), e ,A%fl), the estimation of latent preference
vectors u](e),...,u}((é), rating data N, graph data
G as input and outputs the refined clustering result
AL A,

)

We first compute &, B that estimate «, 5 based on the clus-

(1) 4D

tering result A} 7/, ..., and the number of edges

within a cluster and across clusters. Let Agf_l’o) T A,(f_l)
for k € [K]. Then A,(f*l’o)’s are iteratively refined by
T = [log, n] times of refinement steps as follows.

Suppose we have a clustering result A(f 1,t—1),

from the (¢t — 1)-th refinement step Where t =
1,...,T. Given the estimations &,f3, the esti-
mated latent preference vectors u](e),...,u}(“), and

the clustering result Age_l’t_l), . ,A(Iﬁ_l’t_l), we find

the refined clustering result Agéil’t),...,A%ﬂ"t) by
updating each user’s affiliation. Specifically, for

. . -1t
each user ¢, we put user ¢ to A;r *) where

k* := argmin f/(A,ge_l’t_l);i) and I:(Aff_l’t_l);i) =
ke[K]

—log(@)e({i}, Ay ™V) — log(1 — @){|A""] -
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(il AT} 8 {—los(@eltiy AT -

1og1— {|AZ 1,t— 1)| ({}A(l 1,t— 1))}} +{_
S log(in )~ 3 log(L— (i)}
j:Nf}:l j:N?j:fl

(i) ;j denotes the j-th coordinate of i, In each
refinement step, the number of mis-clustered users will
decrease provided that estimations iy (Z)’s Q, B are close
enough to their true values (see the appendix for the mathe-
matical justifications).

After T times of refinement steps, we let A(e = A(Z L)
for k € [K]. Finally, this stage outputs the reﬁned clustermg

¢ ¢
result Ag ), . ,ASK).

Remark 10. The computational complexity of our algo-
rithm can be computed as follows; O(| E'| log n) for Stage
1 via the power method (Boutsidis et al., 2015), O(|?|)
for Stage 2-(i), O((|Q2] 4+ |E|)logn) for Stage 2-(ii). As
lmaz 1S constant, the linear factor of /,,,, is omitted in
the computational complexity of Stage 2-(i),(ii). Over-
all, our algorithm has low computational complexity of
O((10] + |E|) log n).

Remark 11. We note that our technical contributions lie in
the analysis of Stage 2-(i) while the analysis of Stage 1 and
Stage 2-(ii) is similar to those in (Ahn et al., 2018; Yoon
et al., 2018). In specific, we sample O([log m|) number of
items in Stage 2-(i) to get estimations of the latent prefer-
ence levels and Lem. 8 ensures that those estimations are
located in the o(1)-radius neighborhoods of ground-truth
latent preference levels with high probability. Then Lem. 9
ensures that estimations of latent preference vectors con-
verges to ground-truth latent preference vectors with high
probability.

For the two equal-sized clusters case, the following theorem
asserts that our algorithm will successfully estimate the
latent preference matrix with high probability as long as the
sampling probability is slightly above the optimal threshold.
We defer the proof to the appendix.

Theorem 3. Let Uy = 1, K = 2,|C71({1})]

[+ ({2})] = 5.7 € (0 1) = w(logn), logm =
o(n), (Va —B)?* = w(3), m = O(n), and a =
O(loi”). Let ¢; be the ratio of the number of p;’s

among (ugp)1,---, (UR)ms (VR)1s---, (VR)m t0 2m for
j=1,...,d, and assume that ¢; - 0 asn — oo. If

p> max{(lJrE)log”ZIs 2(1+6)10gm}

(drﬁin)2 ym ’ n
for some € > 0, then our algorithm outputs R where the

Jfollowing holds with probability approaching to 1 as n goes

1000 : |R = Rllmax := max |R,J Rl = o(1).
(4,3)€[n]x

Remark 12. As our algorithm makes use of only graph data
at Stage 1, the initial clustering result highly depends on the
quality of graph data I;. In the extreme cases where only
rating data are available, Stage 1 will output a meaningless
clustering result. As the performance of Stage 2 depends
on the success of Stage 1, our algorithm may not work
well even if the observation rate p is above the optimal
rate. In Sec. E, we suggest an alternative algorithm, which
utilizes both rating and graph data at Stage 1. Analyzing the
performance of this new algorithm is an interesting open
problem.

6. Experimental Results

In this section, we run several experiments to evaluate the
performance of our proposed algorithm. Denoting by R the
output of an estimator, the estimation quality is measured
by the max norm of the error matrix, i.e., ||R — Rl|max =
~ max \Rij — R;;|. For each observation rate p, we
(i,4)€[n]x[m]
generate synthetic data (N?, G) 100 times at random and
then report the average errors.

6.1. Non-asymptotic Performance of Our Algorithm

Shown in Fig. 3a is the probability of error
Pr(y1 (N, G) + R) of our algorithm for
(n,m,K,d) = (10000,5000,2,3) and various com-
binations of (I, p). To measure Pr(¢; (N, G) # R), we
allow our algorithm to have access to the latent preference
levels (p1,p2,ps) = (0.2,0.5,0.7) in Stage 2. We draw
p5 as a red line. While the theoretical guarantee of our
algorithm is valid when n, m go to oo, Fig. 3a shows that
Theorem 1 predicts the optimal observation rate p’, with
small error for sufficiently large n, m. One can observe a
sharp phase transition around pZ,.

6.2. Limitation of the Symmetric Latent Preference
Levels

As described in Sec. 1, the latent preference matrix model
studied in (Ahn et al., 2018) assumes that the latent prefer-
ence level must be either 6 or 1 — 6 for some 6, which is fully
symmetric. In this section, we show that this model cannot
be applied unless the symmetry assumption perfectly holds.
Let (K,d,n,m,v,«a,5) = (2,2,2000, 1000, }1, 0.7,0.3).
Shown in Fig. 3b, Fig. 1a, Fig. 3c are the estimation errors
of our algorithm and that of the algorithm proposed in (Ahn
et al., 2018) for various pairs of (p1,p2). (1) Fig. 3b shows
the result for (p1, p2) = (0.3,0.7) where the latent prefer-
ence levels are perfectly symmetric, and the two algorithms
perform exactly the same. (2) Fig. 1a shows the result for
(p1,p2) = (0.3,0.62) where the latent preference levels
are slightly asymmetric. The estimation error of the algo-
rithm of (Ahn et al., 2018) is much larger than ours for all
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Figure 3. (a) Non-asymptotic performance of our algorithm. One can observe a sharp phase transition around p?, (b), (c) Limitation of the
symmetric level model. (b) When the latent preference levels are symmetric (p1 = 0.3 and po = 0.7), our algorithm and the algorithm
proposed in (Ahn et al., 2018) achieve the same estimation errors. (c) When the latent preference levels are not symmetric (p1 = 0.3
and p2 = 0.55), our algorithm significantly outperforms the one proposed in (Ahn et al., 2018). (d) Estimation error as a function of
observation rate p when graph data is generated as per noisy stochastic block models. Observe that our algorithm is robust to model errors.

tested values of p. (3) Shown in Fig. 3c are the experimental
results with (p1,p2) = (0.3,0.55). Observe that the gap
between these two algorithms becomes even larger, and the
algorithm of (Ahn et al., 2018) seems not able to output a
reliable estimation of the latent preference matrix due to its
limited modeling assumption.

6.3. Robustness to Model Errors

We show that while the theoretical guarantee of our
algorithm holds only for a certain data generation model,
our algorithm is indeed robust to model errors and can
be applied to a wider range of data generation models.
Specifically, we add noise to the stochastic block model
as follows. If two users ¢ and j are from the same
cluster, we place an edge with probability o + g¢;j,
independently of other edges, where g;; U [—6, 6]
for some constant 6. Similarly, if they are from the
two different clusters, the probability of having an edge
between them is 3 + ¢;;. Under this noisy stochastic
block model, we generate data and measure the esti-
mation errors with (K, d,p1,p2,ps,n,m,v,a,8) =
(2,3,0.2,0.5,0.7,2000, 1000, i, 0.7,0.3), 0 =
0,0.15,0.3. Fig. 3d shows that the performance of
our algorithm is not affected by the model noise, implying
the model robustness of our algorithm. The result for
6 = 0.3 is even more interesting since the level of noise is
so large that a + ¢;; can become even lower than 5 + g/ ;-
for some (i,j) and (¢,j'). However, even under this
extreme condition, our algorithm successfully recovers the
latent preference matrix.

6.4. Real-World Data Experiments

The experimental result given in Sec. 6.3 motivated us to
evaluate the performance of our algorithm when real-world
graph data is given as graph side information. First, we take
Facebook graph data (Traud et al., 2012) as graph side infor-
mation (which has a 3-cluster structure) and generate binary

ratings as per our discrete-valued latent preference model
((p1,p2,p3) = (0.05,0.5,0.95) ). We use 80% (randomly
sampled) of ) as a training set ({;.) and the remaining
20% of © as a test set (2;). We use mean absolute error
(MAE) 107 >, j)eq, |1V} — (2Ri; — 1)]| for the perfor-
mance metric.” Then we compare the performance of our
algorithm with other algorithms in the literature.? Fig. 1b
shows that our algorithm outperforms other baseline algo-
rithms for almost all tested values of p. The red dotted line
is the expected value of MAE of the optimal estimator (see
the appendix for a detailed explanation) which means our
algorithm shows near-optimal performance. Unlike other
algorithms, MAE of (Ahn et al., 2018) increases as p in-
creases. One explanation is that the algorithm of (Ahn et al.,
2018) cannot properly handle d > 3 cases due to its limited
modeling assumption.

Remark 13. While our algorithm shows near-optimal per-
formance with ;. = 1 for synthetic data, Fig. 4a shows
that our algorithm does not work well with ¢, = 1 for
real-world data. This phenomenon can be explained as fol-
lows. If /,,x = 1, the estimations of latent preference
vectors are only based on the result of the Stage 1. For
real-world graph data, the clustering result of the Stage 1
may not be close to the ground-truth clusters, thereby result-
ing in bad estimations of latent preference vectors in Stage
2-(i). Surprisingly, our algorithm shows near-optimal per-
formance with ¢,,,,, = 2 even for real-world graph data (see
Fig. 1b). Unlike ours, the algorithm of (Ahn et al., 2018)
shows no difference between £, = 1 and £ax = 2.

Furthermore, we evaluate the performance of our algorithm

2We compute the difference between Nf} and 2]35”- — 1 for fair
comparison since N;} € {£1}, Rij €[0,1].

3We compare our algorithm with the algorithm of (Ahn et al.,
2018), item average, user average, user k-NN (nearest neighbors),
item k-NN, BiasedMF (Koren, 2008), SocialMF (Jamali & Ester,
2010), SoRec (Ma et al., 2008), SoReg (Ma et al., 2011), Trust
SVD (Guo et al., 2015b). Except for ours and that of (Ahn et al.,
2018), we adopt implementations from LibRec (Guo et al., 2015a).
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Figure 4. (a) Estimation error as a function of observation rate p for the Facebook graph data (Traud et al., 2012) with different values of
lmax- (b), (c) Estimation error as a function of observation probability p with different values of « and «. The x-axis is the probability of
observing each rating (p), and the y-axis is the estimation error measured in || - ||max.

on a real rating/real graph dataset called Epinions (Massa
& Avesani, 2007; Massa et al., 2008). We use 5-fold cross-
validation to determine hyperparameters. Then we compute
MAE for a randomly sampled test set (with 500 iterations).
Shown in Table 1 are MAE’s for various algorithms. Al-
though the improvement is not significant than the one for
synthetic rating/real graph data, our algorithm outperforms
all the other algorithms. Note that all the experimental re-
sults presented in the prior work are based on synthetic
rating (Ahn et al., 2018; Yoon et al., 2018; Zhang et al.,
2021), and this is the first real rating/real graph experiment
that shows the practicality of binary rating estimation with
graph side information.

6.5. Estimation Error with Different Values of + and I,

We corroborate Theorem 3. More specifically, we observe
how the estimation error behaves as a function of p when
v and (v, B) varies. Let d = 3,p; = 0.2,p2 = 0.5,p3 =
0.7,n = 10000, m = 5000. We first compare cases for
(o, B,7) = (0.26,0.23,0.5) and (0.26,0.23,0.25). Shown
in Fig. 4b is the estimation error as a function of p. We
draw p’, as dotted vertical lines. One can see from the figure
that the estimation error for («, 8,7v) = (0.26,0.23,0.5)
is lower than that for («, 8,7) = (0.26,0.23,0.25) for all
tested values of p. This can be explained by the fact that
p> decreases as ~y increases, as stated in Theorem 3. We
also compare cases for (o, 3,7) = (0.26,0.23,0.25) and
(0.27,0.23,0.25). Note that the only difference between
these cases is the value of . By Theorem 3, we have pi‘y =
0.118 for the former case, and pZ, = 0.081 for the latter
case. That is, a larger value of « implies a higher quality of
graph side information, i.e., the graph side information is
more useful for predicting the latent preference matrix R.
Fig. 4c shows the estimation error as a function of p, and
we can see that even a small increase in the quality of the
graph can result in a significant decrease in pZ.

7. Conclusion

We studied the problem of estimating the latent preference
matrix whose entries are discrete-valued given a partially
observed binary rating matrix and graph side information.
We first showed that the latent preference matrix model
adopted in existing works is highly limited, and proposed
a generalized data generation model. We characterized the
optimal sample complexity that guarantees perfect recovery
of latent preference matrix, and showed that this optimal
complexity also serves as a tight lower bound, i.e., no es-
timation algorithm can achieve perfect recovery below the
optimal sample complexity. We also proposed a computa-
tionally efficient estimation algorithm. Our analysis showed
that our proposed algorithm can perfectly estimate the latent
preference matrix if the sample complexity is above the
optimal sample complexity. We provided experimental re-
sults that corroborate our theoretical findings, highlight the
importance of our relaxed modeling assumptions, imply the
robustness of our algorithm to model errors, and compare
our algorithm with other algorithms on real-world data.
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Appendix

A. Reproducing Our Simulation Results

We provide our Python implementation of our algorithm as well as that of (Ahn et al., 2018) so that one can easily
reproduce all of our experimental results. Our code is available at https://github.com/changhunjo0927/
Discrete-Valued_Latent_Preference, and one can easily reproduce any figure simply by opening the corre-
sponding subfolder and run three or four Jupyter notebooks in order. (Click ‘Run All’ in each Jupyter notebook). Then,
simulation results will be saved as a figure within the subfolder. While the values reported in our figures were the average
performance over 7" = 100 random runs, the default configuration in our codes is 7' = 2. This way, one can quickly
reproduce rough versions of our figures in a few minutes on a typical machine. If one wants to reproduce more precise
simulations results, one may want to change the value of 7" from 2 to 100 by modifying the first cell of each Jupyter
notebook.

B. Pseudocode of Proposed Algorithm

See Alg. 1 for the pseudocode of our algorithm proposed in Sec. 5.

C. Additional Experimental Details

In this section, we provide additional experimental details deferred to the appendix. Let 1, ; be a & x [ matrix whose entries
are all equal to 1.

C.1. Sec. 6.1

For Fig. 3a, we used

n— [ 0.2 - 15000,1250 ‘ 0.5 - 15000,1250 ‘ 0.5 - 15000,1250 ‘ 0.7 - 15000,1250 }
0.2 - 15000,1250 | 0.5 - 15000,1250 | 0.7 - L5000,1250 | 0.5 - 15000,1250

as a latent preference matrix, and (K, d, {rax) = (2,3, 1).

C.2. Sec. 6.2
For Fig. 3b, we used

R— [ 0.3 - 11000,250 | 0-3 - 11000250 | 0-3 - L1000,250 | 0-3 - L1000,250 }
0.3 - 11000,250 ‘ 0.3 - 11000,250 ‘ 0.3 - 11000,250 ‘ 0.7 - L1000,250

as a latent preference matrix, and (K, d, lnax) = (2,2, 1).

For Fig. 1a, we used

R— [ 0.3 - 11000,250 ‘ 0.3 - 11000,250 ‘ 0.3 - 11000,250 ‘ 0.3 - 11000,250 }
0.3 - 11000,250 | 0-3 - L1000,250 | 0-3 - L1000,250 | 0.62 - 11000,250

as a latent preference matrix, and (K, d, lrax) = (2,2, 1).

For Fig. 3c, we used

n— [ 0.3 - 11000,250 ‘ 0.3 - 11000,250 ‘ 0.3 - 11000,250 ‘ 0.3 - 11000,250 }
0.3 - 11000,250 | 0-3 - L1000,250 | 0-3 - L1000,250 | 0.55 - 11000,250

as a latent preference matrix, and (K, d, liax) = (2,2, 1).

C.3. Sec. 6.3
For Fig. 3d, we used

R— [ 0.2 - 11000,250 | 0-5 - 11000250 | 0-5 - L1000,250 | 0.7 - L1000,250 }
0.2 - 11000,250 ‘ 0.5 - 11000,250 ‘ 0.5 - 11000,250 ‘ 0.5 - 11000,250


https://github.com/changhunjo0927/Discrete-Valued_Latent_Preference
https://github.com/changhunjo0927/Discrete-Valued_Latent_Preference
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Algorithm 1

Input: N € {-1,0,+1}"*™, G = ([n], E), K, d, {max
Output: Clusters of users Agem“")7 Agg‘“‘“‘), e A%‘“‘“‘)
Latent preference vectors (e"“""), dg(er“"“‘), ce UK

Stage 1 (Partial recovery of clusters):
Run a spectral method on G, and get a clustering result Ago), Ago), cee Aﬁg).
for / = 1to {1,y do

Stage 2-(i) (Recovery of latent preference vectors):

for k =1to K do

for t = 1to mo(:= d[logm]) do
Sample jt(k) ~ unif{1, m}.
2 l(N?(k) =1)
ieA,(f_l) ijy

1(N;3 *

(limax)

@y € ===
iealt=1
end for
end for
Sort {ajék) ck=1,...,K,t=1,...,mp} in ascending order, get by, ..., brm,.
S {1,...,Kmo—1}
fort=1tod —1do
2z +— argmax(bj41 — bj)
jeS

VIS
S+ S\ {z}
end for
Sort z1, ..., 24—1 in ascending order, get 1, ...,7q—1.

Td%KmO,h(*l
li+1<—ri+1fori:1,..‘,d—1.

pAh(e) — Z”}:i_l’;}b forh=1,...,d.
for k = 1to K do

for j = 1tomdo

(i) ¢ argmin L(p,0; ALY, j)
Phiheld]

end for
end for
0,9 — ()1, .. (@) fork =1,... K.
Stage 2-(ii) (Exact recovery of clusters):

(t=1) -1 (6-1) ple—1)
A kez[:K]e(Ak AT 5 kl#ge[me(flk1 Ay )
Q< = = =
(\Ag “\) ’ lal VAl
2 k£ € (K]

ke[K]
fort =1to T(:= [logyn]) do
for k =1to K do
AL
end for
fori =1tondo
k* < arg min IA/(A,(f*l’tfl); i)

ke[K]
ALTED A0 G )
end for
end for

AD AT D for =1, K.
end for
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as a latent preference matrix, and (K, d, {rax) = (2,3,1).

C.4. Sec. 6.4

Synthetic rating/real graph experiment

For Fig. 1b, we take the Facebook graph data (Traud et al., 2012) as graph side information. In specific, we use the social
graph of 1637 students in Vassar College; an edge is placed between two students if they are friends in Facebook. Students
are clustered by the year they entered the college; 467, 590, 580 students in each year. On top of the social graph, we
generate binary ratings as per our discrete-valued latent preference model. We used

0.05 - 1467,200 | 0.05 - 1467,200 | 0.5 - Lag7,200 | 0.95 - Lug7,200 | 0.95 - 1467200
R = 0.05-1590,200 | 0.95 - 1590,200 | 0.05 - 1590,200 | 0.05 - 1590200 | 0.05 - 1590200
0.95 - 1580,200 | 0.95 - 1580,200 | 0.95 - 1580200 | 0.95 - 1580,200 | 0.95 - 1580,200

as a latent preference matrix, and (K, d, {iax) = (3,3, 2).

We computed the expected value of MAE of the optimal estimator in Sec. 6.4 as follows. Suppose there exists an optimal
estimator ¢* in the sense that ¢* (N}, G);; = R;; for all 4, j. Then

1
the expected value oftest MAE of ” = E [ 37 N = (20" (V7. Gy ~ 1]
e,
1
k (i,j)eﬂt
1 Q
— 1 2 E[NG - @Ry -1l
K (i,§)EQ
1
— m Z E[|2Bern(R7;j) —1—(2Ry; — 1)”
H e

("." conditioned on (7, j) € €2, Nf;- = 2Bemn(R;;) — 1)
= E[|2Bern(R;;) — 1 — (2R;; — 1)|]
=2E HBCI‘H(RU‘) — Rij”
1
=2 Ri; - |1 — Ry 1—-Ri;)- 10— Ry
1637 - 1000 1<;637{ i i+ ( i) il}
1<5<1000

~ 0.236

Real rating/real graph experiment

We used a real ratings/real graph dataset called Epinions (Massa & Avesani, 2007; Massa et al., 2008) that consists of
40163 users and 139738 items with rating and graph data. We preprocess this dataset as follows. First, the rating scale of
this dataset is from +1 to +5, so we regard +1/42 as dislike(-1), +4/+5 as like(+1) and ignore +3’s (i.e., we treat +3’s as
unobserved ratings). After the first step, the observation rate of ratings is about 0.00012 which is too small for meaningful
analysis. This is why we add the following preprocessing steps. 1) Find 100 most frequently rated items. 2) Find 1000 users
who rated above 100 items most frequently. 3) Find a subset of users that shows a cluster structure via spectral clustering.
As aresult, we get a preprocessed dataset that consists of 290 users and 100 items.

C.5. Sec. 6.5

For the black curve with triangle markers in Fig. 4b, we used

R— 0.2 - 15000,1250 | 0.5 - L5000,1250 | 0-5 - 15000,1250 | 0.7 - L5000,1250
0.2 - 15000,1250 | 0.5 - L5000,1250 | 0-7 - 150001250 | 0.5 - L5000,1250
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as a latent preference matrix and (K, d, max, @, 8) = (2,2,1,0.26,0.23).
For the gray curve with square markers in Fig. 4b and Fig. 4c, we used

R= [ 0.2 - 15000,1250 ‘ 0.5 - 15000,1250 ‘ 0.5 - 15000,1250 ‘ 0.7 - 15000,1250 }
0.2 - 15000,1250 | 0.5 - 15000,1250 | 0-5 - L5000,1250 | 0.5 - 15000,1250

as a latent preference matrix and (K, d, {max, v, 8) = (2,2,1,0.26,0.23).
For the yellow curve with circle markers in Fig. 4c, we used

R— [ 0.2 - 15000,1250 ‘ 0.5 - 15000,1250 ‘ 0.5 - 15000,1250 ‘ 0.7 - 15000,1250 }
0.2 - 15000,1250 | 0.5 - 15000,1250 | 0-5 - L5000,1250 | 0.5 - 15000,1250

as a latent preference matrix and (K, d, {imax, v, 8) = (2,2,1,0.27,0.23).

D. Proof of Theorems

In this section, we provide proofs of theorems.

D.1. Proof of Theorem 1
We first recall some definitions and the main theorem.

Definition 1 (Worst-case probability of error). Let v be a fixed number in (0,1) and 1 be an estimator that outputs
a latent preference matrix in {py,pa, ..., pa}"*™ based on N and G. We define the worst-case probability of error
P () := max { Pr(¢(N,G) # R) : R € {p1,p2,-..,pa}" ™, |lur — vrllo = [ym]} where | - ||o is the hamming
distance.

Theorem 1. Let K = 2,|C~'({1})| = |C7'({2})| = %,7 € (0,1), m = w(logn), logm = o(n), I, := —2log (1 —
d% (a, 6)) Then, the following holds for arbitrary € > 0;

. 14€¢)logn—21, : . .
D) ifp > ——— max (tologn—31, (1+e)2logm , then there exists an estimator 1 that outputs a latent preference
p (amm)2 Am ) n P p
matrix in {p1,pa, . ..,pa}" ™ based on N and G such that P) (1)) — 0 as n — 0o

n n

() ifp < W max { (1-¢ 135:_%1'“, (176)21°gm} and o = O(*8™), then PY (1)) - 0 as n — oo for any 1.
H

logn—3 71

, m} denotes the optimal observation rate.
ym n

Definition 2. p{,) := iy max {
H

Then nmpziy) = W max %(n logn — %nQI s),2mlog m} denotes the optimal sample complexity.
H

We will first show that the maximum likelihood estimator v, satisfies (I), and then show that there does not exist an
estimator 1) satisfying (II).

(I) MLE Achievability

Overview of the proof: We show that if the observation rate is above a certain threshold, then the worst-case probability
of error approaches to 0 as n — oo for MLE. In specific, we show the following. Given observed ratings and graph side
information, Lemma 1 shows the negative log-likelihood of a latent preference matrix can be written in a compact form.
Then Lemma 2 represents the probability of the event “the likelihood of a candidate latent preference matrix is greater
than that of the ground-truth latent preference matrix” in a compact form. In Lemma 3, we apply Chernoff bounds to the
result of Lemma 2 to get an upper bound of the probability of error. Then we finally show that the worst case probability
of error approaches to 0 as n — oo by applying the union bound. To get a tight bound, we enumerate all possible latent
preference matrices and group them into four distinct types based on Definition 3. Note that our technical contributions lie
in the proofs of Lemma 1, Lemma 2 and Lemma 3 in which we must consider a significantly larger set of candidate latent
preference matrices compared to the symmetric case. In Remark 14, we give a detailed explanation of our definition of I.
The following diagram visualizes the proof dependencies.
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Proof dependencies:
(D) of Theorem 1 +— Equation (1)
Equation (1) +— Lemma 2, 3
Lemma 2 +— Lemma 1
Lemma 3 <— Chernoff bounds

\. .

Let R be an arbitrary ground-truth latent preference matrix satisfying |lur — vrllo = [ym] and assume our model
is generated as per R (i.e., user ¢ likes item j with probability R;; and n users are clustered into Ar and Br). By
switching the order of items (columns of the latent preference matrix) if necessary, we can assume (ur); = (vg); for
j=1,2,...,(m— [ym]) and (ugr); # (vr); for j = (m — [ym] + 1), ..., m. By switching the order of users (rows of
the latent preference matrix) if necessary, we can also assume that Ar = [3], Br = [n] \ [§]. We will first find the upper
bound of Pr(15,1, (N, G) # R) for arbitrary R, and show that the upper bound approaches to 0 as n approaches to infinity.
We need following lemmas.

Lemma 1. Let L(X) be the negative log-likelihood of a latent preference matrix X for given N® and G. Then

a(l -5

MO = 1-a)p

~logpr) + L(N = ~1)(~log(1 ~ p1))} | +log ( JelAx, Bx) +c

1<t<d |:(’L] S {1
where n/2 2

¢ i= —log { (1= p)"~12p/al®l(1 — a)2("F) (1 - g |,
and Q== {(i,7) € Q: X;j = p}.

Proof. The likelihood of latent preference matrix X given N and G is Pr(N®, G|X) = Pr(N®|X) Pr(G|X). It is clear
that

Pr(N?X) = (1 - )" 1020 T

1(N{;=1) po)tNE=-1) }
’ 1-—
1<t<d|:(1j)€§21{ bt ( }

where ;= {(i,j) € Q: X;; = p:}, and
Pr(G|X) _ a\E\—e(AX,BX)(l _ a)z("f)_(\m—e(Ax,BX))BC(AX,BX)(l _ ﬁ)(g)z—e(Ax,Bx)
Then the negative log-likelihood of X can be computed as follows.
L(X) = flog(Pr(NQ,G\X))

a(l = f)
(1-a)p

Mwmc::fbgﬂlfpﬁmﬂmﬂmamwlfafﬁfklfﬂﬂ%f} O

—logpy) + 1(Nf} = —1)(~ log(L — pr))}| +log ( Je(Ax, Bx) + ¢

oS 11OV
1<t<d (i,5)€Q

Definition 3. (i) x(k,a1,a2,b1,b2) := {X € {p1,p2,...,pa}™*™ : |Ax \ Agr| = |Bx \ Br| = k, ux differs from ug
at ay coordinates among the first m — [ym] coordinates, ux differs from ug at as coordinates among the last [ym]
coordinates, vx differs from vr at by many coordinates among the first m — [ym] coordinates, and vx differs from vg at by
many coordinates among the last [ym/] coordinates. } (ii) Let T to be the index set of x, namely, T := {(k, a1, as,b1,b2) #
(0,0,0,0,0): 0 <k <%,0<ai,by <m—[ym],0 < az, by < Hm]}.

Note that we can assume k < 7 by switching the role of Ax and By if necessary.
Lemma 2. For X € x(k,a1,a2,b1,b2),

Pr(L(X) < L(R) = PPy Toi 22 4 (1 Py ) log 1221

Pr( D {
1<a#b<d L(i,5)€Qaup Pa — Pa

+mQ(_m)42 <&—mz®,

1—a)B/1<i<2(2—k)k
where
Qab = {(i,7) € [n] x [m] : Rij = pa, Xsj = ps },

and A; K " Bern(a), B; bl Bern(3), P;; Gt Bern(p), Pq,i; S Bern(pg).
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Proof. By Lemma 1,

L(R) = 1§§§d{(i7j)§QgR){l(N3 = 1)(~logpa) + LN = ~1)(~log(1 — pa))}| +log (M)e(AR,BR) +e

a(l - p)

m)e(AX,BX) +c

LX)= 3 [ = {UNE=1)(~logp) + LN = ~1)(~log(1 - p))} | +log
(i.)e)™

where Q{ := {(i,j) € @: Rij = p,} and Q) = {(i,5) € Q: Xij = ps}. Then

LR - LX) = 5 _ [ £ {LNE = 1)(~logp, +logp) + LN = ~1)(~log(l = pa) + log(1 ~ )}
+ log (O‘l(l_;fﬁ)){e(AR, Bg) — e(Ax, Bx)}

where Qqp, := {(4,7) € Q: R;j = pa, Xi; = pp}. Itis clear that

2 {1(ND =1)(—logp, +1 (N2 = —1)(=1log(1 — py) + log(1 — }
1§a,bgd[(i,j)emb{ (Nij = (= log pa +log ps) + 1N, )(=log(1 — pa) +log(1 =)}

_ Q _ _ Q_ _1y(_ _ _
= ool B NG = (= logpa +logps) + LNE = —1)(~log(1 —pa) +los(1 —p))}]

1 _
P;;{Pa,ijlog ? + (1 = Pgj)log 1 oL }},

— Pa

— ¥ [ 5
1<a£b<d L(4,5)€Qus

where Qqp := {(4,J) € [n]x[m] : Rij = pa, Xij = b}, Pij S Bern(p), Pg.ij P Bern(p,). Note that our ground-truth
latent preference matrix is R, hence 1(Nj} = 1) = PP, ;; and 1(N;} = —1) = Py;(1 — Py ;) for (i, 5) € Qap)-

Note that X € x(k, a1, az,b1,b2), |[Ax \ Ar| = |Bx \ Br| =k, |Ax N Ag| = |[Bx N Br| = § — k,

e(Ag, B) = e(Bx \ B, Bx N Br) + e(Bx \ Br, Ax \ Ar) + e(Ax N A, Bx N Br) + e(Ax N Ap, Ax \ Ap),
and

e(Ax, Bx) = e(Bx \ Br, Ax N Ag) + e(Bx \ Br, Ax \ Ar) + e(Bx N Br, Ax N Ag) + e(Bx N Br, Ax \ Ag),
so we can get

B(AR,BR) — B(Ax,Bx) = B(BX \BR,BX n BR) + e(AX n AR,AX \AR) — {e(BX \ BR,AX n AR)
+€(BxﬂBR,Ax\AR)}= by B; — b)) A;,
1<i<2(% —k)k 1<i<2( % —k)k
where A; & Bern(a), B; 5 Bern(3). O

Lemma 3. Let X € x(k,a1,a2,b1,b2),Qap := {(4,7) € [n] x [m] : Rij = pa, Xij = pp}, Ai i d. Bern(a), B; i

L. did - - Po. _ - 1—ps :|
Bern((3), P;; Bern(p), Pqi; Bern(p,). Then Pr (1§a§b§d [(i,j)ie:QabP” {Pa,u log Bt (1 —Pyj)log 17%} +

log (FLL550), .3, (Bi= A1) = 0) < (Lp(dip™)2} P (1—dy 0, )Y 5% where D := 1{(6.) € [n] x m):
Rij # Xij}l.
Proof. Let
Db 1—py a(l—5)
7 = b)) Pz Pai'l — 1_Pai’ 1 1 P EEE—— b)) Bi_Ai
1§a7§b§d{(i,j)eQab i{Pasij log Da + i) log 1—pg }} +log ((1 — a)B)lgig(g—k)k( )
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Then
Pr(Z >0) = Pr(e%Z >1)
< E[e%Z ] (".- Markov’s inequality)
= I I {(1—p)+p(Dapr + V1 —pa)(d — +V/I-a)(1-73
1<a#b<d(4,7)€EQuap { P(VPaPs ( Pa)l pb))} 1<i<2 (% \/7 @)
= 11 {1_de(pa7pb)} I1 (1—d%(0&,ﬁ))2

1< atb<d(1)2 00

< I 0 {1-pda™? 10 (1-d4(e,B))?

1<a#b<d(i,7)€Qab 1<i<2(2—k)k

1<i<2(2—k)k

= {1 — p(dm)2YREDEmIXIm:Ry#Xas 3 11 — g2 (o, ) }AHE R
(L= YO — dy(a, B E
O

Remark 14. We give a detailed explanation regarding the definition of I in our paper. In the proof of Lemma 3 in (Ahn
et al., 2018), they made implicit assumptions that o, f — 0 and % — 1 as n — 0, and used these assumptions when

they approximate —2log (1 — d%;(a, 8)) = (1 + o(1))(v/a — v/B)?. The approximation does not hold without above
assumptions. In general,

1—d%(a,8) =vVaf+V/1—a)1-5
—\/ﬂ+y5+\/1—ﬂ y(1-8) (y:=a-p)

~5{1 %%fé(%) Lol >}+<1fﬂ>{1félfﬁ*§<135>2+0<y3>}
(VTF=1+2 -2 o)
y2
zlfero(yg)
_ (a—p)? a—B)3
1= L8 Ofa o)
= 1= WEEPVEEYIE L o((va - V)

Assuming /o — /B = o(1) (which is true when I, = o(1)),
— JB2(Ja >
2105 (1~ a0 9) = —2{ - VEEDWEEIE L o(va - v5)")
(- log(1+2) =z + O(z%))

- va- var{NE Yol o)

Hence we get —21log (1 — d2; (o, B)) = (v/a — v/B) {(\4/;;\/;) + o(1)}. Note that If o, 3 — 0 and G — 4asn — oo,
then —2log (1 — d%;(a, B)) = (Va — VB)*{§ + o(1)} which is different from (/a — +/B)*{1 + o(1)} which means the
approximation used in (Ahn et al., 2018) depends on the asymptotic behavior of a, 8. This is why we introduce a modified
definition of Is :== —2log (1 —d% (o, ,B)), then our achievability result holds for any o and .

The event “¢p1, (N, G) # R" occurs only if there exists a latent preference matrix X whose likelihood is greater than
R’s (in other words, L(X) < L(R) since L(-) is the negative log-likelihood). Let [L(X) < L(R)] denotes the event
“L(X) < L(R)". Then
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Pr(u(N%.G) £ ) < Pr (U, [L(X) < L(R))

union bound S PrL(X) < L(R
2" 5 PrL(X) < L(R)
Lemma 2 1—pp
= > > P ( Dy |: by q Paz log — 1- Pai4 1 :|
€Ixéx(z) | \i<azv<al(ificqu Pis {Pai Og * i) 1og 7 —pa}

o(1-5)
+ log ((1 - Q)B>1<z<2(§ k)b (B; — Ay) > O)
Lemma 3

S B Z L — ()

where Dx := |{(¢,j) € [n] x [m] : R;; # X;;}| and k. is the first coordinate of z = (k.,a1,az,b1,b2). A direct
calculation yields Dx > k.{a1 + ([ym] — a2) 4+ b1 + ([ym] = b2)} + (§ — k2)(a1 + ag + by + b2) =: D, so we have
an upper bound of Pr(¢p/. (N}, G) # R) as follows:

Pr(yyr(N®,G)#R) < T % {=p (5?37 {1 — dy (o, B) 1R

z€ZXex(z
< ¥ X 1 — p(d™iny21D= (1 _ g2 A2k Yk
T 2€IXex(z { p(d™)" 17 (o, B)}H 2
- zgz‘X(z)‘{l — p(dF™) (1 — a0, B)} 15 Rk (1)

We now show the upper bound of Pr(ta. (N, G) # R) approaches to 0 as n — co. Note that
1+e€)logn—% 1 €)2logm min min
P> w;g%)? max{( +€) 'yiz ’ (1+ )21 g } VAN %nISJr’ymp(dH )2 > (1+¢€)logn and np(d )2 > (1+4¢€)logm.

Since the RHS of (1) increases as p decreases, it suffices to consider the case when p = O(lo% + s <£T) = o(1), which
implies , . _

log(1 = p(di™)?) = —p(d™)* + O(p*) = —p(di™)*(1 + 0(1))
Hence the RHS of (1) can be represented as

min 2 _o(n _ ° ° _ _9o(n _ )
(@) PP o) -2 halb L1400 = 5, |y (5)|e(F+ol)(-Palrm2(3 kel 2

where I, := p(d")2. For a constant § € (0, min{~,1 — ~}) (the exact value of § will be determined later), define
J =A{(k,a1,a2,b1,b2) € T : a1,a2,b1,b < om}, K :={(k,a1,a2,b1,b2) €T : k < on}.

Now we show the RHS of (2) approaches to 0 as m — oo by dividing it into four partial sums over

I\ (JUK),T\K,K\JT,TJNK.

*Case I. Z\ (J UK): For z = (k.,a1,a2,b1,b2) € T\ (JUK), on < k., < 7§ since z ¢ K. So 2(5 —
k)k. > 2(5 — §)on = §n2 As z ¢ J, we can assume a; > dm without loss of generality, which implies
Dz = kz{a1+(("ymw —a2)+bl+(ﬁm] —bg)}—!-(%—kz)(a1+a2+b1—|—b2) Z (%—kz)al Z (%—%)5771 = gnm
Then

3 | (Z)|€(1+o(1))(7DZI,,.72(%7lcz)lczls)
z€Z\(JUK)
< N (1+o(1))(—%nmlr—%n213)
- zEI\(JUK)|X(2)|e
_ e(1+o(1))(—%nmlr—%n215) ) ‘ (Z)|

zeI\(JU)C)X
<e (140(1)) (= EnmlI,.—$n?I,)
< ot —450) 5, ()
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< e(1+o(1))(—%nmlr—%nQIs)anZm

(. the total number of latent preference matrices is bounded by 2"d*™)
< e(1+o(1))(7n(%nls+%mlr)7m(%nlr))en log 2+2m log d

— e(l-i-o(l))(—n(ﬂ(logn))—m(Q(logm))+(n10g2+2m10gd) S 0asn — oo.

(.m=w(logn), m—ocoasn — o0)

» Case2. J\K: Forz = (k.,a1,a2,b1,b2) € J\K,on < k., < Fsince z ¢ K. So2(5 —k.)k. > 2(5—75)dn = %nQ.
Asz e J, D, = k.{a1 + ([ym] — az) + b1 + ([ym] — b2)} + (5 — k2)(a1 + az + b1 + b2) > k.{ay + ([ym] —
az) + by + ([ym] —b2)} > k{([ym] — om) + ([ym] — dm)} > 26(y — §)mn. By applying the argument of Case
1, we have

S |x(z)|edHoN(=Dlr=2(5—k)k L) _y () a5 1 — o0.
zeJ\K

» Case3. K\ J: As z € K, k. < dn, which implies 2(5 — k. )k, > 2(§ — on)k. = k(1 —20)n. As z ¢ J, assume
a1 > dm without loss of generality. Then D, = k.{ay+([ym]—az)+bi+([ym]—b2)}+ (5 —k.)(a1+az+by1+b2) >
(% — én)(dm) = (3 — §)dnm. This case is a simple version of Case 4, and one can show that

Z ‘X(Z)‘e(l"'o(l))(_Dzlr_Q(%_kz)kzjs) — O as n — 00.
zEK\T

* Case 4. JNK: As z € K, k. < dn, which implies 2(§ — k.)k. > 2(5 — dn)k. = k.(1 —20)n. As z € J,
D =k, {a1+ [ym] —az2) 4+ b1 + ([ym] — b2) }+ (5 —k2)(ar +az + b1 +by) zkz{(fvnﬂ —om) + ([ym] —
}—l— 5 —on)(ay 4+ az + b1 + ba) > 2k, (v — (5)m—|—(% on)(a; + az + by + b2). Then

b (A4o())(=D=Ir—2(5 —kz)k=1s)

RNC 5=

< n |X(z>|e(1+o(1))[—{2kz(7—6)m+(%—5n)(a1+a2+b1+b2)}Ir—kz(l—Qé)nIs]

T zeJNnK

_ ¥ |X(z)|6(1+0(1))[—ka{('y—é)mlr+(%—6)nls}—(%—6)n(a1+a2+b1+b2)lr}
zEJTNK

(Q Ix(2) o) [—2k.{(1+5) logn } —(14§) log m(ar+as+b1+bs) ]

T zeJNK

- ¥ |X(z)|n*2kz(1+%)(1+0(1))m7(1+%)(a1+a2+b1+b2)(1+0(1))
ze€JINK

< 3 |X(Z)|n—2kz(1+i)m—(1+i)(a1+a2+b1+b2)

T z2eJNK

(o (1+ %)(1 +o(1)) > (1+ i) for sufficiently large n)

(2) E n2k2ma1+a2+b1+b2 (d _ 1)a1+a2+b1+b2n72kz(1+i)mf(1+§)(a1+a2+b1+b2)

T zeJNK

- % nfgkzm*i(a1+a2+b1+52)(d _ 1)a1+a2+b1+bz
zEJTNK

= Y p3ke {m—§<d _ 1)}(a1+a2+bl+b2)
zeJINK

(#)

< % pEk — 1)’
S ems ( {m™i(d-1)}")

< 2 pER(R {moid-1D)m) -1

k.eNU{0} a1 ENU{0}

= <11n_§)(1m_§(d1))IHOasn%oo.

Here, three inequalities hold for the following reasons.

a1€[0 dm]

(i) : It follows from the assumptions %nls +ymlI,. > (1+¢€)logn, L sl > (1+¢€)logm, and they imply (v —3d)mI,. +

(3 —6)nls > (14 £)logn, (5 — 0)nl,. > (1+ £)logm for sufﬁc1ently small 4. In explicit, § = min{ } 1+E”y1+6}
satisfies above inequalities.
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(ii) : For z = (ks,ay,as,by,by), a direct calculation yields |y(z)| = (&) (™ ™)(d — 1) (" (d -

k. ay
1)> (Wgﬂ) (d—1)22 (f’gﬂ) (d — 1)b2 and it can be upper bounded by n2?*=maitaeztbitbz (g _ 1)artaztbitbe

e _tk, _e _ (a14az+bi+b2) < —tk, _e o
(iii) : Note that ze§mlcn 2k {m=%(d 1)} < (kze[o’én]n 2 )(ale[%]’&m}{m i(d
1)} )y “E(d—1)}e by “i(d-1)™ D) ~%(d—1)}") —1 and the last —1
)} )(a26[0,5m] m 4( )} )(b1e[0,6m] m 4( )} )(1)26[0,6m] m 4( )} ) an ¢ las comes
from the fact that (0,0,0,0,0) ¢ J N K. Then apply [%:5 ]{m’i(d— 1)} = [%:5 ]{m’i(d— 1)} =
a1 €(0,0m az2€|(0,0m

by “id-1)ir = % “i(d— 1)},

b1€[0,6m] mn 4( )} b2€[0,6m] m 4( )}

(II) MLE Converse

Overview of the proof: We show that if the observation rate is below a certain threshold, then the worst-case probability
of error does not approach to 0 as n — oo for any estimator. To begin with, Lemma 4 shows that it suffices to prove the
statement above for the constrained version of MLE. Then the rest of the proof is similar to the proof in (Ahn et al., 2018).
Specifically, we consider a genie-aided MLE by providing the constrained MLE with additional information of a small set
where the ground-truth latent preference matrix lies. We first make our analysis tractable by designing a proper set that
reveals a just-about-right amount of information about the ground-truth latent preference matrix. We then show that the
error probability for the genie-aided MLE becomes strictly larger than 0. Since the error probability of a genie-aided MLE
is always lower than that of MLE, we can conclude the error probability of the constrained MLE does not approach to 0 as
n — o0. The following diagram visualizes the proof dependencies.

Proof dependencies:

(IT) of Theorem 1 <— Lemma 4, Case 1, 2
Case 1 +— Lemma 5
Case 2 <—— Lemma 6, 7

We need to show the following : for arbitrary € > 0, if p < (dmli,,)Q max { (-¢logn-5l: (1_6)21°gm }, then PY(¢) - 0
H

ym
as n — oo for any v. To prove the statement for any 1), we need to consider the constrained maximum likelihood estimator.
Suppose dp (p;,p;) achieves the minimum Hellinger distance when p; = pa,,p; = Pdo+1. Let D7 = {X €
{Pdo,Pdoﬂ}[”]X[m] Clux —vxllo = [ym] } Consider the maximum likelihood estimator 15, pv Whose output is
n

constrained in D7. Let R’ be a ground-truth latent preference matrix chosen in D7 where A = [5], Brr = [n] \ [5],

(ur); = (Vrr)j = pd, forj =1,2,...,(m— [ym]) and (ur’); = Pdy, (VR)j = Pdo+1 for j = (m — [ym] +1),...,m.
Lemma 4. inf PY(¢) > Pr(dnppr (N, G) # R|IR = R').
P

Proof.
iI:bf PY(y) = irdl)fmax{ Pr(¢ (N, G) #R) : R € {p1,pa2,...,pa}"™, |lur — vg|lo = [ym]}
> igpf Pr(¢(N?,G) # RIR = R')
= inf Pr(¢(N%,G) # RIR=R'
TP e ) # Bl )
(. if there exist N§*, G such that ¢)( N3}, Go) ¢ D”, we can decrease
Pr(¢(N®, G) # R|R = R') by replacing ¢)( N}, Go) with any element in D”.)
= Pr(¢mr,pr (NQ’ G) # R|R = R)).
(".- maximum likelihood estimator is optimal under uniform prior.)
O
By Lemma 4, it suffices to show that Pr(¢a1,pv (N, G) # R|R = R') » 0asn — cc. Let S := N [L(X) >

X#R', X€D™
L(R')] which is the success event of 51, p» where R = R’. Then it suffices to prove Pr(S) — 0. (.- Pr(S) — 0
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implies Pr(S¢) — 1, and Pr (¢Yar1,pv (N, G) # R|R = R') > 1 Pr(S°). The last inequality comes from the fact that
Pr (¢ML7D7(NQ, G) # R|IR = R’) > % conditioned on SC.)

Now we consider genie-aided ML estimators to prove Pr(.S) — 0; 1[11(\}2 is given with the information that the ground-truth
latent preference matrix belongs to DY N x(0,0,0,1,1), and %\?L is given with the information that the ground-truth

latent preference matrix belongs to D? N x(1,0,0,0,0). Let S() be the success event of wE\?L for i = 1,2. Then

S = N [L(X) > L(R)], S® = N [L(X) > L(R')], and it is straightforward that
X€eD7Nx(0,0,0,1,1) X eD7Nx(1,0,0,0,0)
oy,

Pr(S) < Pr(S™) and Pr(S) < Pr(S®). Note that p < ey max { {mQloen— 3l (—g2logm oy 1y, gminy

2

ym

(1 —€)logm or $nl, + ymp(di™)?* < (1 — €)logn. Hence it is enough to show the following: (i) if 1np(dj™)?

1 — €)logm, then Pr(S™M) — 0 as n — oo, and (ii) if 2nl, + ymp(dH®)? < (1 — €)logn, then Pr(S®) — 0
2 H

n — oQ.
Case 1. 1np(d™)? < (1 — ) logm:

We first need to observe the following fact. Consider X; € x(0,0,0,1,0) N D7, X5 € x(0,0,0,0,1) N D7, X5 €
x(0,0,0,1,1) N DY where vx, differs from vy at i;-th coordinate, vx, differs from vg at i5-th coordinate, vx, differs
from v at iy and ip-th coordinates. Then [L(X;) < L(R’)and L(X2) < L(R’)] implies [L(X3) < L(R')] since
L(X3) — L(R') = (L(X2) — L(R')) + (L(X;) — L(R')) by Lemma 1. Hence [L(X3) > L(R')] implies [L(X;) >
L(R') or L(X3) > L(R’)]. From this observation, we can show that

<
<
as

[L(X) > L(R)] c{ N [L(X1) > L(R)]}u{

/
X1€x(0,0,0,1,0)NDY [L(X2) > L(R )} }

n n
X €x(0,0,0,1,1)ND~ X5€%(0,0,0,0,1)NDY

(. Suppose L(X) > L(R') forall X € x(0,0,0,1,1) N D7. If L(X;) > L(R’) for all X; € x(0,0,0,1,0) N D7, we
are done. If not, there exists X; € x(0,0,0,1,0) N D7 such that L(X;) < L(R’). Let vy, differs from vg at é;-th
coordinate. Consider X3 ; € x(0,0,0,1,1) N'D? where v, ; differs from vg: at iy and (m — [ym] + j)-th coordinates,
and X; € x(0,0,0,0,1) N DY where v, differs from vp at (m — [ym] + j)-th coordinate (j = 1,..., [ym]). Using the
observation above and the fact that L(X3 ;) > L(R’) (by the assumption) together, we can conclude that L(X ;) > L(R')
forallj=1,..., Hm})

Applying the union bound, we get Pr (

Pr(

N [L(X) > L(R")]) < Pr(
X€x(0,0,0,1,1)ND
[L(X2) > L(R')]). Now it suffices to show that Pr (

n (X L(R'
Xren00m 1 0ypn L) > L))+
: g [L(X1) > L(R")]) =0
X2€%(0,0,0,0,1)NDY cevotL oo

as n — oc. (Identical argument can be applied to Pr ( XzeX(O,OQ),O,l)ﬂDW [L(X32) > L(R')]) = 0asn — c0.)

i.4.d. i1 i.4.d.

Lemma 5. For integers K,L > 0, Let {A;}<, X" Bern(a),{B;}K, A Bern(B),{P;}L, "X
Bern(p), {Pay.i} 2, L Bern(pq, ). Assume that «, 3,p = o(1) and max{\/aBK,pL} = w(1l). Then the following
holds for sufficiently large K if \/aSK > pL; sufficiently large L otherwise:

a(1-8) o ) ) ) Pdg+1 _ ) 1—Ppagy+1
Pr (10g (W)KEK(Bl Ai) + 1<%:<LPZ{P<1071 log( p?i(, ) + (1 Pdw)lOg( lfp(:zo )} Z O) =
ie—(1+o(1)>(ms+mf o

where I := ~2log (1 — dj;(a, §)) I = p(dj™)*.

Proof. Can be proved similarly by applying the argument of Lemma 4 in (Ahn et al., 2018). O
Then
Pr(Xlex(O,OQ),l,O)me [L(X1) > L(R))])
B Xﬁx(oﬁ%homm Pr([L(X1) > L(R)]) (- {[L(X1) > L(R)] }Xlex(0,0,0,l,O)ﬁDv is mutually independent. )
- XlEX(O,O%,l,O)ﬂD‘Y(l — Pr([L(X1) > L(R")]))
B Xlex(o,o%,l,o)maw (1 —br ( > Pil{Pu.ilog (p?T:l) + (1 =Py, i) log (%;::1)} > 0)) (- Lemma 2)

1<i<n
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1 n n
< m (1 - —(1+°<1>><5L‘)) -~ apply Lemma 5 with K = 0, L =
~ X1€x(0,0,0,1,0)nDY 46 ( apply Lefima > Wi 2)
< I (e_i(z*(l#»o(l))(%lr)) ( l—z< e—m)

X1€x(0,0,0,1,0)nDY

:exp{ \x(O 0,0,1,0) N D7|e” 1+o<1>>(%m}

= exp{ — i(l — 7)m67(1+0(1))(517-)}

]. n . ].
= exp{ — 1(1 - 7)6_(1"’0(1))(?1"‘)“0%7”} — 0asn — oo (- inL« < (1—¢€)logm)

Case 2. inl, +yml, = inl, + ymp(df™)? < (1 —€)logn:

From the assumption, «, 8 = O( loin )-

Lemma 6. Suppose oo = O(lo%), and consider the following procedure:
1) Forr = logLSn’ letT := {1,2,...,27’}U{%—l—l,%—!—Q,...,% +27’}.
2) Within T, we will delete every pair of two nodes which are adjacent.

3) Denote the remaining nodes by U.

Then the above procedure results in |U| > 31—, with probability approaching to 1.

log n’

Proof. Lemma 5 in (Ahn et al., 2018). O]

Let A be the event [|U| > 310%71]. Let U be the event [there extist subsets Ap C Ap and Ag C Bp such that
() |Ap| = |Ag| = fog7 and (ii) there is no edge between nodes in Ap U Ag|. One can show that A C W. As
Pr(A) =1-o(1) by Lemma 6, Pr(¥) =1 — o(1).

Let X () be the latent preference matrix obtained from X by replacing i-th row with vy if i € Ax; with ux otherwise. In
CXpliCit, AX(i) = AX A {Z} and BX('i) = BX A {Z}

Lemma 7. Suppose that L(R®") < L(R) and L(RY)) < L(R) hold fori € Ap and j € Ag. Then, conditioned on U,
L((RO)D) < L(R).
Proof. Lemma 6 in (Ahn et al., 2018). O

Now we can find the upper bound of Pr (S(?)) = Pr ( [L(X) > L(R')]) as follows.

N
XeD7nNx(1,0,0,0,0)
Pr (5(2)) =Pr (
~pe({(

/
XeDvargl,0,0,0,o) [L(X) > L(R )D

[L(X) > L(R)]) n o} U {( [L(X) > L(R)]) nwe})

n N
X eD7nx(1,0,0,0,0) XeD7nx(1,0,0,0,0)

[L(X) > LR)]) nw) + Pr ((

[L(X) > L(R))]) N v°)

N
XED’Yﬂx(l 0,0,0,0) XeD7Nx(1,0,0,0,0)

)
[L(X) > LR)]) N W) + Pr (¥9)
)

Pr
<P (e honno
=Pr(( xeprmitooog LX) > LE)] W) (1—(1—o(1))
Pr(XemnX(looom [L(X) > L(R)] |x11) Pr (¥) + o(1)
P( L((RO)D) > LIR))¥) - (1 - (1) + o(1)
<re( 1, [4RO) > 101 qu) (o) +Pe (|0 [BRD) > L)) - (1= o(1) + o(1)

(- ByLemma7, L((R(i))(j)) > L(R') implies either one of the following
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(i) L(RY) > L(R') forany i € Ap, or (ii) L(RY) > L(R') forany j € Ag)

N [L(RY) > L(R)] ]\IJ) -(1=0(1)) +o(1) (- by symmetry)
|

|Ap
— 2Pr ([L(R(l)) > L(R')] \\1/) (1= o(1)) +o(1)
(-~ WLOG, 1 € Ap{[L(RY) > L(R')]}iea, is mutually independent since there is no edge in Ap.)

:2Pr<

|Ap|
The upper bound of Pr ([L(R(l)) > L(R")] |\I/) " canbe computed as follows. Let ¢, := log (’(ll(i;)ﬁg)

Pr (L(R<1>) > L(R’)yqf) A

1— [Ap|
S {PI‘ (CS{G(AR,BR) — G(AR(1),BR(1))} + Z Pi{Pdo,i log (M) + (1 — Pdo,i) log (w)} < O|\I/)}

1<i<ym pdo l_pdo
1— |Ap|
< {Pr (cs{e({l},BR) — ({1} ARA{IN} + Y Pi{Payilog (P2H) 4 (1 - Py, i) log (—22ty) < o\mp)}
1<i<ym pd() 17pd0
i |- 4|
< [Pr (cs S Bi-A)+ Y Pi{Pgilog (p;%l) 4 (1—Py,.)log (%Z“)} < 0)} =14
i=1 1<i<ym o 0

< {1 46 —(140(1))(%—7) 57(14'0(1))'7777417»}'14}9' ( - apply Lemma 5 with K = g —rand [ = ,}/m)

1 |Ap]

< [eap{ — Lemtromnnromme |y g < o)

n 1 n n
= — 2 e~ WHo(1))(§ =)L —(1+0(1))ymIy U Ap| =

ex e .
p{ 10g3n4 } ( ‘ P| 10g3n)
1 c

< exp { B L log”} for sufficiently large n

log n4
(- -1+ 0(1))(% —r)I;— (1+o(1))ymI, > —(1 — %) logn for sufficiently large n)

e
nz

=exp{—~—=—} > 0asn—o0

4 log®n

Hence we can conclude that Pr (5(2)) — 0asn — oco.

D.2. Proof of Theorem 2

Overview of the proof: The proof of Theorem 2 consists of two parts; MLE achievability and MLE converse. Both parts
can be proved by combining the technique developed in the proof of Theorem 1 and the technique of (Yoon et al., 2018).

In this section, we provide the full statement and the proof of Theorem 2. Recall that R € {p1,po,...,pq}" "™ is a

ground-truth latent preference matrix, C' : [n] — [K] is a cluster assignment function, uy € {p1,...,pqs}™ is a latent

preference vector whose cluster assignment is k € [K], ¢ := [C71({k})], cij := 93, dy = 'e{alrg min} (VPiPir1 +
i 2,..,d—

V(@ = p;)(1 = pit1)). Define p : {p1,...,pa}™ = {Pdy,Pdo+1}™ that sends each coordinate z; to pa, if z; < pay;

Pdo+1 1f i > Pdgt1-

_ _ gl (i) —p(u;)
Theorem 2. Let m = w(logn), logm = o(n), hnrggff > 0 forall k € [K], iminf#==—"220200 > 0 forall i # j €

m—r oo

[K]. Then, the following holds for arbitrary € > 0.

(te)logn—c;,;l.
(D1 p = gty max{ max (R pnif

Pr(y(N%, G) # R) = 0asn — oo

?X{m}} then there exists an estimator ) such that
ke[K

nxm _ logn 1 (1—e)logn—c; ;1 (1—e¢ logm
(I) Suppose R € {pd,,Pdo+1} ,a=0( - ). Ifp < @mm)z max{zgél);q{ TPp(ui)— p(uj)llo * 1, I?elaKX]{ Hh
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then Pr(¢) (N, G) # R) - 0 as n — oo for any 1).

We will first show that the maximum likelihood estimator 5, satisfies (I), and then show that there does not exist an
estimator 1) satisfying (II).

(I) MLE Achievability
We introduce a few more notations that will be used in the proof. For an arbitrary latent preference matrix X, let
C* : [n] = [K] be a cluster assignment function, u;X € {p1,...,pa}™ be a latent preference vector whose cluster

assignment is k € [K], Ci := (C¥*) "' ({k}), C7Y; := CFENCX. Then {C}Y; : 1 <i,j < K} is a K?-partition of [n]. In
light of the proof of Claim 1 in (Yoon et al., 2018) together with Lemma 2, we get

1—
Pr(L(X) < L(R)) = Pr ( 3 { 3 Pij{Paiilog 22 4+ (1-Pyy)log — Py }}
1<ab<d (i,)€Qub Pa Pa

+ (Np — Na)log (1:7;) +log (M)(ZBZ- - ZAZ-) zo)

1<i<Np 1<i<Ny4

where Qup, == {(i,7) € [n] x [m] : Rij = pa, Xij = pp}, Na = > ICXI-1CX.], Np = > |ICX -

N N N i1j7’§§[K],j¢k i,5,k€[K],j#k
|C,§fi|, and A; gt Bern(a), B; b Bern(3), P;; g Bern(p), Pq,ij gt Bern(p, ). Applying the technique of Lemma
2 in (Yoon et al., 2018) together with Lemma 3, we get

NatNp )

Pr(L(X) < L(R)) < {1 - p(dj™)?}" exp ( .

where Dx := [{(i,j) € [n] x [m] : R;; # X;;}|. Then
x) < or)) "M S Pr(L(x) < L(R))
X#R
Ny + Np
e

Pr(¢an(N?,G) # R) < Pr (XL;R

< > {1 = p(dE™)*}Px exp(
XZR

Iy)

Let X := {X # R : X is a latent preference matrix with K clusters}. It suffices to show that the last summation converges
to 0 as n — co. We divide it into three partial sums over subsets X := {X € X : 3i,j # k € [K] such that |CY|, |C% | >
dn}U{X € X :3i,j # k € [K] such that [CX], |C;| > dn}, Xy := {X € X\ Ay : i € [K] such that [|p(uf’) —
p(uf) llo > dm}, X5 := X\ {&X1 UXe}. Applying the technique used in the proof of Claim 1 in (Yoon et al., 2018), one
can show that each partial sum converges to 0 as n — oo.

(II) MLE Converse

R € {piy,pdg+1}"=™ by the assumption. Let D := {pg,,Pdo+1}"*™. In light of Lemma 4, one can show
that Pr((N2,G) # R) > Pr(var|p(N®,G) # R) where ¢y1|p is the maximum likelihood estimator whose
output is constrained in D. Hence it suffices to show that Pr(vnr|p(N?,G) # R) - 0asn — oo. Let

S = N [L(X) > L(R')] which is the success event of 1p1|p. Then one can observe that Pr(S) — 0 im-
X#R,X€D

pliCS PI‘(?/}ML|'D(NQ, G) 7é R) s 0
Note that p < Wmax{ max {M},&l%{%}} < “p(dum™)2|p(u;) — puj)llo + cijls <

A U TR —p () o
(1 —€)logn for some i # j € [K]” or “cpp(di®)? < (1 — ) logm for some k € [K]”.

e Case 1. p(d3™)2||p(ui) — P(u;)lo + cijIs < (1 —€)logn for some i # j € [K]: Without loss of generality,
assume that « = 1,5 = 2. We consider a genie-aided ML estimator z/Jj(Ll{)L which is given with the information
that the ground-truth latent preference matrix belongs to D; := {X € D : C{* \ CF = CE\ Cf = 1,05 =

(CEuUCE)\ C{,CX = CF fori = 3,...,K}. Then one can show that Pr(S) := Pr(X;ﬁRﬁXGD [L(X) >

L(R)]) < Pr(X#Rr;(EDl [L(X) > L(R')]) — 0 by using the technique developed in (Yoon et al., 2018).
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e Case 2. cxp(dni™)? < (1 — €)logm for some k € [K]: Without loss of generality, assume that k = 1. We
consider a genie-aided ML estimator 1/)( ) which is given with the information that the ground-truth latent preference

matrix belongs to Dy := {X € D : ||u1 —uflllo = L,uX = uff fori = 2,...,K}. Then one can show
— N1y < , . .
that Pr(S) Pr(XiRrlep[L(X) > L(R)]) < PY(X;éRQ(eDQ [L(X) > L(R')]) — 0 by using the technique

developed in (Yoon et al., 2018).

D.3. Proof of Theorem 3

Overview of the proof: For Stage 1, we make use of the standard performance guarantee of spectral clustering algorithms,
and this step is identical to the argument in (Ahn et al., 2018).

Our theoretical contribution lies in the analysis of Stage 2-(i). In (Ahn et al., 2018), the authors have considered the
symmetric case with d = 2, i.e., p; + p2 = 1. Thus, one just needs to estimate a single parameter p;, making the entire
parameter estimation part straightforward. On the other hand, we do have to estimate d parameters p1, pa, . . . , pqg, making
our estimation algorithm more complicated and complicating our analysis.

To obtain a theoretical guarantee of Stage 2-(i), we first show that 2d[log m| number of estimations a;’s and a;-’s satisfy
the following in Lemma 8; (i) every p; € {p1,...,pq} will be estimated by at least one of a;’s or a;’s with probability
approaching 1 as n — oo, (ii) a;’s and a;-’s are located in the o(1)-radius neighborhoods of ground-truth latent preference
levels p1, . .., pq with probability approaching 1 as n — oco. The next step is a distance-based clustering on the distribution
of p1,...,pq which will give us p1, ..., pq where py, is indeed the average of numbers whose distance from pj can be
arbitrarily small as n — oo. Then for each pair of cluster and column, we assign one of py, ..., py whose likelihood is
maximum for that pair. This gives us ¥, vr which are the estimations of latent preference vectors, and Lemma 9 ensures

that uAR(j) — ug), v}g(j) — vg) forall 5 = 1, ..., m with probability approaching to 1 as n — co.

Stage 2-(ii) is a local refinement step in which we compare estimated likelihood values and update cluster assignments,
and the analysis is similar to the proof in (Ahn et al., 2018). We prove that under the conditions of Thm. 2, the number
of wrongly classified users can be halved in each iteration, and hence one can successively improve the quality of the
estimation, eventually achieving the perfect recovery. Note that the proof procedure is based on a standard successive
refinement technique. The following diagram visualizes the proof dependencies.

Proof dependencies:

Theorem 3 <— Analysis of Stage 1, 2-(i), 2-(ii)
Analysis of Stage 2-(i) «+— Lemma 8, 9
Analysis of Stage 2-(ii) «+— Lemma 10, 11, 12

Theorem 3. Let (o = 1,K = 2,|C7'({1})] = |[C*{2})| = %,v € (0,1), m = w(logn), logm =
o(n), (Va — /B)? = (f) m = ( ) and a = 0(107%). Let ¢; - 2m be the number of p;’s among
(ur)1s .-+, (WR)m, (VR)15 .-+, (VR)m for j = 1,...,d, and assume that ¢; - 0 as n — oo. If
1 1 — 27
p> 1 - (1+¢€)logn—1% é,2(1—|—e)logm
(dﬁm)Z ym n

Jor some € > 0, then our algorithm outputs R where the following holds with probability approaching to 1 as n goes to oo :
IR — R|lmax :=  max |R” R;j| = o(1).
(i,5)€[n] x|

In Algorithm 1, (Stage 1) we first use spectral clustering to get A§§ , B 0) , (Stage 2-(i)) then get almost exact recovery of
latent preference vectors up, g, (Stage 2-(ii)) and eventually get exact recovery of clusters A R, B R.

Analysis of Stage 1. Let n := M . Then n — 0 as n — oo with probability approaching to 1.

Proof. Since (v/a — v/B)? = w(L) satisfies the assumption of Theorem 6 in (Gao et al., 2017), 7 — 0 as n — oo with
probability approaching to 1. O

Analysis of Stage 2-(i). Under the success of Stage 1, “r — ug,vr — vgr as n — oo with probability approaching to 1.
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Proof. 1t follows directly from Lemma 9, and we need to prove Lemma 8 first.

> ANG=1)
ieal®
Lemma 8. Sample mo := d[logm] elements j1, ..., jm, from [m] with replacement. Define a; = ZEAf(Nin:l o 1)
ieal®
> 1(Ng=1)
ien(®
and a;- = Zer(Nﬁ:l pr—y forj =7j1,...,0me Letqi,...,q2m, be ground-truth latent preference levels corresponding
iEBg])
10 Qjyyeeey Qg s Oy a;mo respectively. (i) Then {qi, ..., q2m,} = {P1, - .-, pa} with probability approaching to 1 as

n — oo. (ii) Moreover, for any constant § > 0, the following holds with probability approaching to 1 as n — oo: for all
i=1,...,mo, |aj, —ql <dand|a}, —q| <é.

Proof. (i) As there are ¢; - 2m p;’s among (ug)1, .- -, (WR)ms (V)15 -- -, (VR)ms Pr ([p; & {q1,.- - q2mo}]) = (1 —
$;)*mo < (1 — 8p)?™ (. ¢; - 0 implies 3§; > 0 such that ¢; > §; for all n. Then define dp := min{d1,...,dq}).

By union bound9 Pr ({Q1a---7QQm0} 7é {p17"'7pd}) S Z Pr([p] ¢ {QIa"'aQ27no}]) S E (1 - 60)2m0 -
1<5<d 1<5<d

d(1 —60)%>™ — 0asn — 00. S0 {q1,---,G2me} = {P1,---,pa} with probability approaching to 1 as n — oo.

(i) For j = j1, Pr(la;, — ¢i| > ¢) = Pr(a;, — ¢1 > &) + Pr(a;, — ¢1 < §). We first find the upper bound of
PI‘(Cle —q1 Z 5)

Pr(a;, —q1 > 0) = Pr(aj, > q1 +6)

Z(O)l(Nf}l =1) %: PiQi: + (%: PPy
€A i€AL NAR 1€EAL'\AR
=Pr i >q+0|=Pr - - >q +46
( > 1LNZ =1lor —1) 2. Pi
iEAg) iEAg?)

(P: "~" Bern(p), Q;.; X" Bern(q1), Qrs X" Bern(py) where

q1, py are ground-truth latent preference levels of j;-th column of Agr, Br respectively.)

=P Y PQua -0+ 3 PilPri—a—d)20)

icAPNAR icAP\ AR
=Pr(Y >0) (Y = 3 PQu-a-0+ > PiPri-a- 5))
ieA®nAg ieA\Ag
— tY > < : tY .. 'q 1 H
Pr (e > 1) ( for all t>0) < %gg Ele"" ] ( . Markov’s 1nequahty)

< Ele'Y] (to = log (m))

_ toP;(Q1,i—q1—0) toPi(Py,i—q1—0) — (0) _ 17 - (0) _
1§2L16 lgnge (L1 == |AR’ N Ag| (2 n)n, Ly := [AR’ \ Ag| =nn)

q1+6 1—q1—6
qi' "(l—q) ™ toPs (P y.s—q1—0)
= H{l— ( )}H oPi(Prima
1<i<Ly A=p)+p (n+0)nt+o(1—qg — )9 1<i<Ls’

= T (1-asp) T e'PiPri=a=9) for some constant a; € (0,1)
1<i<L

1<i<L,y <L»
.. +5 1—q1—6 / +5 —q1—6 l-—=
(LetG(z) == (1 —2)'"" "% then G'(z) = x® (1 —2) " °{(1 —q1 — 0) + (@1 +9) " }.
G
Note that G'(z) > 0 for z € (0,1), so G(q1 + &) > G(g1) which means a5 = 1 — G((qj—)é) €(0,1).)
q1
< — >
< 1Sng(l aép)lgng(l + bsp) for some constant bs > 0
(by calculating 1<1’£L etoPi(Pri—a1—9) directly, it is clear that such by exists.)
S L2

— e(z—mnlog(1—asp) gnnlog(1+bsp)
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1_ 9 _ b5
JFmmn(= gz o) 1 mm (Gt +o(u)1r

as min
(- log(l —asp) = —asp+O(p*) =1, ( — (@ +0(1)) where I.=p(dj")?.)
H
~ Gtz I A =m) (o1 —n(GE +o(1)}
=e
<e W(1+ ) log m
1 bs € .
(- nIT{(5 —n)(1+o0(1)) — n(a—é +o(1)} > (1+ 5) log m for sufficiently large n

1
since §nlr > (1+€)logmandn — 0asn — c0.)

(1+35) as

(@)

= 7717(‘”1'1'7&)2 = o(m_A) (A = > 0)

So we get Pr(aj, —q1 > 0) = o(m~*) for some A > 0, and similarly, Pr(a;, —q1 < 6) = o(m™?) for some B > 0. Hence

Pr (|aj1 —q| > 5) = o(m’ mi“{A’B}). Note that A,B depend only on p1,...,pq,0 ( A= W’ as=1-— G?;fi)(s)

where g1 € {pi1,...,pa}), which means we can find a constant A5 > 0 such that Pr(|a;, — ¢;| > &) = o(m~*) and
Pr(|a}, — qmo+il > 6) = o(m~4s) fori = 1,...,mg. Then

1—Pr ( N [|aj,. —qi| < 5] <iQm0 [| /1 — QMO+i| < (ﬂ)

1<i<mg
< Z Pr(laj, — ¢;| > 9) + Z Pr(|a}, — gmo+il > d) (.- Union bound)
1<i<myg 1<i<mg
= Z o(m=4%) + Z o(m~=49)
1<i<mg 1<i<mo
= 2mg-o(m~4%) = 2d[logm]o(m %) = 0as n — oo
So we can conclude that Pr ( 1§ir;m0 llaj, —q| <8N 1§i2m0 [|a; — Gmoti| <0]) = Lasn — oo. O
Applying Lemma 8 with § = +, we have the following with probability approachmg tolasn — oo : foralli = 1 , Mo,
|aj, — q;| < § and |a), qz| < 1. If we choose large enough Isatisfying } < tmin{p;41 —p;:i=1,2,....d 1}, one
can show that py, is a correct estimation of pp, fork =1,...,d (see Algorithm 1 for the definition of pr). In explicit, pj

is indeed the average of numbers whose distance from py, is less than , hence we get |pr, — pi| < l As we can choose
arbitrary large [ by Lemma 8, we can observe |py, — pr| = o(1). Moreover as there are finite number of choices for k, the
following holds with probability approaching to 1 as n — oo:

|Ipr — x| = 0(1) forallk=1,...,d. (3)

Note that £ and 1=% are continuous functions on R?\ {(z, y)|z # 0,z # 1}. Together with the facts that 0 < py,...,pq < 1
and that there are ﬁmte number of choices for (7, j) where 1 < i, j < d, the following holds with probability approaching to
lasn — oo: ) o 1

bj _Pj —pj

—= = —2(1+0(1)) and =

Di pi( ( )) 1—]0@ 1—p;
Lemma 9. Define i) = argmin( Y {1(N{} = 1)(—logpi) + LN = —1)(=log(1 — p))}), and vr") =

Pr:k€[d] iGAg))

argmin( Y {1(N{} = 1)(—logpk) + L(N;} = —=1)(=log(1 —pr))}) for j = 1,...,m. Then the following holds with
prikeld] e gl

(1+0( )) foralli,j=1,...,d. 4)

probability approaching to 1 asn — oo : forall j =1,...,m, u ( ) ug), @) vg)
Proof. Without loss of generality, assume ug) = p1. Let L oh(pr) == > {1(]\73. = 1)(—logpi) + 1(Ni§j2. =
icA®

—1)(—1log(1 — pi))}). Then
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Pr(up"?) # py) < Z Pr (L.t (Pr) < Ly (B1)) (- Union bound)

2<k<d
-y {Pr( Y AW =1lg? g =1 )1og17p’“}zo)
25k<d icAVNAR P P
+Pr( Y {1(N§}=1)10g@+1(N§}_ 1) log - p’“}>o)}
icAY\ AR b1 1=n
_ Z{Pr( 3 {PPlllogA +P(1 Plz)logl p‘“}zo)
2<k<d €AV AR h
+Pr Z {PPfllog +P( Pf’)log1 pk}ZO)}
icAV\ AR p1

(Pi id Bern(p), P1; e Bern(p1), Py bR Bern(py)

where py is the ground-truth latent preference level corresponding to j-th column of B R)

S {Pr(Zia = 0)+Pr(Zr2 > 0)f = Y {Pr(e??r > 1)+ Pr(e? %2 > 1)}

2<k<d 2<k<d
< Z (E[e%Z*‘»l] + E[e%Z“]) (.- Markov’s inequality)
2<k<d

%
=
+
=3
—
|
=
—_
|
Nk
==
+
_
|
-
P>
b
?J@»:l
—
S
-
hs}
=
<
+
=
—
|
]
=
—_
Nk
ol
+
_
|
=
e

2<k<d ieAl ”AR

1—px
1—p

pp1 D (1+0(1)) +p(1 —p1)

2<k<d zeA( >ﬂ p

{
o )
a4 {ppf\/z?1+0 +p(1_pf)\/i(1+ o) +(1-p}  (®)
o }
wr

pv/DP1pk(1+0(1)) +pv/ (1 —p1)(1 —pr)(1 4+ 0(1)) + (1 — p)

B+ o0) 4 p(1 = )y T+ o) + (1= )}

zeA“”\A
< I {p(l—(@F")*)(1+o(1)+(1—p)}- II (14 Byp) (itis clear that such By, > 0 exists)
9shedi€AR NAR i€A\AR
Z e(z—mnlog{p(1—(d5™)?)(1+o(1)+(1-p)} , gnnlog(1+Bkp)
2<k<d

By,
> o(E=mn(- o)1, 7 Gz +o() I

2<k<d
(log (1—p{1—(1—@dF™")*)(1+0(1)}) = - (dmin)z( +0(1)) +O0(p*) = I(=1 + o(1)) where I, = p(d™)?)
_ Z e(%—n)n(—l—‘ro(l))lr—o—nn(Mglfii’gﬂ—o—o(l))lr _ Z —nl, { (3 —n)(1+o(1))~ n((dmm)2+o(1))}
2<k<d 2<k<d
Z L { n) (14 0(1)) — 77(%2 +o(1))} > (1+ E)logm for sufficiently large n)

> O(m™'72)=0(m'"32)

2<k<d
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If we set u( ) = = Pa, ,vg) = py, for j = 1,...,m, above result means Pr(ur ) # Da,;) = O(m=1=3)forj=1,...,m

Similarly, Pr(vz?) # p;) = O(m™17%) for] =1,...,m. Then

Y {Prir”) # pa,) + Pr(vr' # py,)} = 2m - O(m™"'"%) = o(1)
1<5<m
which implies g = ﬁaj,v}g(j) = py,; for all 7 = 1,...,m with probability approaching to 1 as n — oco. As
Pa; —* Pay>Po; — pp; forall j = 1,...,m with probability approaching to 1 as n — oo by (6), we can conclude that
Wpt) — Pa; (= ug)), vr) — Py, (= vg)) for all 7 = 1,...,m with probability approaching to 1 as n. — oo. O
Lemma 9 implies the success of Stage 2-(i). O

Analysis of Stage 2-(ii). With probability approaching to 1 as n — 00, T := [log n] iterations ensure that Ap = Ap and
Br = Bgr will be recovered exactly.

Proof. Let L(i; A, B) := log(a(1 ) ({i}, A)— [ > log(u (])) > log(1— u(j))]—&—log((’(1 ’B)) ({i}, B)+

]:Nﬁ 1 jNngl
[ 32 losw)+ ¥ log(l— v,
j.NS) 1 ]Nfl
and L(i; A, B) := log( (1= ﬁ)) {ih, A - ¥ lgur)+ X log(l—uR(j))]+log(a(1 ﬁ)) ({i}, B) +
Ba~ jiN2=1 jiN2=-1
[ ¥ log(r?)+ 3 log(l—wr")].
JiNfE=1 JiNi=—1

There are T iterations in Stage 2-(ii), and at ¢-th iteration, Algorithm 1 updates every user’s affiliation by the following rule
: put user i to A%) if f/(z, A%_l), Bg_l)) < 0; put user ¢ to Bg) otherwise. In Lemma 11, we show the following holds
with probability approaching to 1 as n — oo: if we use L(i; A, B) instead of L(i; A, B), A, Bg can be recovered exactly
within 1 iteration of Stage 2-(ii).

Lemma 10. Suppose inl, + ymp(di™)? > (1 + €) logn. Then there exist a constant T > 0 such that L(i; Ag, Bg) <
—7lognifi € Ar; L(i; Ar, Br) > Tlogn if i € Bg with probability 1 — O(n™%)
Proof. This lemma can be proved similarly by applying the argument of Lemma 9 in (Ahn et al., 2018). O

Our goal is to show Ag, Bg can be recovered exactly by using ﬁ(i; A, B) in Stage 3. Define Z; := {(A7 B): AUB=

n],ANB=0,|[AA Ag|=|B A Bg| < én} foré € [1 1)

Lemma 11. Suppose o = @(k’%) For arbitrary T > 0, there exists 0o < & such that if § < 8o, the following holds with
probability 1 — O(n=') : for all (A, B) € Zs, |L(i; A, B) — L(i; Ag, Bg)| < % logn, for all except g many i's.

Proof. This lemma can be proved similarly by applying the argument of Lemma 10 in (Ahn et al., 2018). O
Lemma 12. Suppose o = O(' 8% p = Q(1%82 4 8™ 'y — O(n). For arbitrary T > 0, the following holds with

probability approaching to 1 as n — co: forall A, B C [n], and i € [n], |L(i; A, B) — L(i; A, B)| < 7 logn.

Proof. This lemma can be proved similarly by applying the argument of Lemma 11 in (Ahn et al., 2018). O

By Lemma 11, there exists o < 3 such that if § < &, the following holds with probability 1 — O(n~!) : for all

(A,B) € Zs, |L(i; A, B) — L(i; Ar, Br)| < % logn, for all except 3 many i's. At the same time, by applying Lemma 12
to (A, B) € Zjs, the following holds with probability approaching to 1 as n — oo: for all (A, B) € Zs, and i € [n],
|L(i; A, B) — L(i; A, B)| < % log n. Combining these two results, the following holds with probability approaching to 1 as
n — oo : forall (A, B) € Zs, |L(i; A, B) — L(i; Ar, Br)| < |L(i; A, B) — L(i; A, B)| + | L(i; A, B) — L(i; Ag, Br)| <
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5 logn + Zlogn = 7logn, for all except g many i’s. Then together with Lemma 10, we eventually get the following
holds with probability approaching to 1 as n — oo : for all (A, B) € Zj,

P4 B) = < L(i; Ag, Br) + |L(i; A, B) — L(i; Ag, Bg)| < —7logn +Tlogn =0 ifi € Ag;

e >L(i;AR,BR)f|ﬁ(i;A,B)fL(i;AR,BR)|>Tlogn7710gn:0 if i € Bp;
for all except g many 4's. This means that at each iteration of Stage 2-(ii), every user’s affiliation will be updated to the
correct one except for g many ¢’s. So the following holds with probability approaching to 1 as n — oo : whenever (A, B)

belongs to Zs, the result of single iteration of Stage 2-(ii) belongs to Z s Then T' = [%] iterations guarantee the
exact recovery of Ap, Bg. O

E. An Alternative Algorithm

As we mentioned in Rmk. 12, we suggest an alternative algorithm, which utilizes both rating and graph data at Stage 1.
Analyzing the performance of this new algorithm is an interesting open problem.

Algorithm 2
Input: N € {-1,0,+1}"*™ G = ([n], E), K, d

Output: Clusters of users Agl), . ,Ag), latent preference vectors (1), e u}((l)

Preprocessing: We first concatenate G and N*? to get a new matrix [G|N®] € {—1,0, +1}"*("+™) We denote [G|N*]
by Iy. To make Stage 1 and Stage 2-(i) independent, we split the information of I by using the technique used in (Abbe
et al., 2016). In specific, we generate a matrix M; € {0, +1}"*("+™) where each entry is drawn independently from the
Bernoulli distribution with parameter Jliﬂ' A matrix My € {0, +1}"*(+m) is defined as (1, (n4+m) — M1). Then, we
let I; = Iy o Mj and Iy = Iy o Mo, where o is the Hadamard product.

Stage 1. Partial recovery of clusters We apply Part I of the algorithm proposed in (Awasthi & Sheffet, 2012) to I1: (i)
we project I; onto the subspace spanned by the top K singular vectors, and we denote the projected matrix by I3; (ii) run a

10-approximate k-means algorithm on /5, and obtain an initial clustering result Ago), ey A(Ig).
Stage 2-(i) Run Stage 2-(i) of Alg. 1 on I5.
Stage 2-(ii) Run Stage 2-(ii) of Alg. 1 on I;.




