Provable Lipschitz Certification for Generative Models

A. Proofs of Lemmas and Theorems

Theorem 1. For feedforward neural networks f, an input set X and sets Z;, Zi. T Vi, 3>> satisfying the containments in
Equations 14-17, the set of vector-Jacobian products satisfies

{Vof(@)Tu|z€X wueBg}C . (18)

For such a Yy, the Lipschitz constant of f may be upper-bounded by maximizing the ||-|| .. norm over the set Y.

Proof. Suppose Z;, Zi, T Vi, Vs satisfy the containments is equation 14-17. Now consider any x € X and v € Bg~. The
proof follows from repeated applications of the following statement: for any function g, if A C B, then g(A) C g(B). We
iteratively apply this statement to the forward recursion to see that Z; (x) € Z, for all i, and similarly for Z;(x) € Z;. From
equation 17, J7,; (z) € Ji41 for all i. We may now perform the backward recursion to see that Y;(z, u) € ; and similarly
for Y;(x,u), ;. Repeating this for all 7 yields the desired result. O

Lemma 1. For any zonotope Z C R and any operator ® operating over RY, if Zisa zonotope satisfying the containment
{(®(z)-AOz|zez}CZ (19)

then

dZ)C (Ao 2Z)® 2.

Proof. By assumption, for every z € Z, there exists a 2 € Z such that ®(z) — A ® z = 2. This implies that, ®(z) =
(A ® z) + 2. By definition, X R
AoZ)®Z ={Aoz+2|2€Z z2eZ},

50 B(2) € (A® Z) @ Z forevery z € Z. O
Theorem 2. When S is the set {(z;, $(z;)) | z: € [li, w;]}, the solution to the vertical parallelogram fitting problem yields

the optimal solution to Equation 20. Repeated calls to this subroutine yields the tightest hyperbox fitting the residuals as in
equation 19.

Proof. Suppose that {A;, b;, ui; }&_, is the set of solutions to the vertical parallelogram fitting problem for each set S; =
{(zi,#(2:) | zi € [li,u;]}. Since the coordinate-wise bounds I;, u; are chosen such that ! < z < u for all z € Z, the
containment holds:

{P(2)—A©z-0b|2€Z}C{P(z) - AOz—-b|l<z<u}.

By definition of solutions to the vertical parallelogram fitting problem, the set of vectors {®(z) —A©®z —b |l < z < u}
is contained in the hyperbox H (0, ;t). Adding b to each element of each set, we see that {®(z) —A© 2z |l < z < wu}is
contained in the hyperbox H (b, i), thus satisfying the assumptions of Lemma 1. O

Lemma 2. For any zonotope Z C R and hyperbox H C RY, if Zisa zonotope satisfying the containment
{toz-—ANoz|lzeH 2e€Z}CZ 21

then

{z@z|lzeH ze€Z}C(AGZ)® Z

Proof. By assumption, for every z € Z and every € H, there existsa 2 € Z suchthatz © z — A ® z = 2. This implies
that, x © z = (A ® z) + 2. And by definition

AeZ)eZ:={ANoz+2|2€Z 2¢eZ},
sox®ze(AOZ)® Zforevery z € Z. O

Theorem 3. When S is the set {(z,2 - 2) | 1®) < z <u(®) 1®) <2 <wu®}, the solution to the vertical-parallelogram
fitting problem yields the optimal solution to Equation 22. Repeated calls to this subroutine yields the tightest hyperbox
fitting the residuals as in Equation 21.

Provable Lipschitz Certification for Generative Models

Proof. Suppose that {(A;,b;, 11;)}&_ is the set of solutions to the vertical parallelogram fitting problem for each set
S ={(zi,7; ® z) | l;z) <z < ugz), ZZ@ <z < uﬁﬂ”)} Let H be the hyperbox with lower and upper-bounds denoted
by Z(I), u(®) . Since the coordinate-wise bounds l;, u; are chosen such that [(2) < 2 < u® forall z € Z, the containment
holds:

{tOz—AOz—b|z€Z 2ecHYC{B(z)—AOz-b|I® <z<u® zenl

By definition of solutions to the vertical parallelogram fitting problem, the set of vectors {z ® (2) — A ® z — b |
1) < 2z < u® 2z € H} is contained in the hyperbox H (0, 11). Adding b to each element of each set, we see that
{t@z—A®z]|l<z<wu x€ H}iscontained in the hyperbox H (b, u1), thus satisfying the assumptions of Lemma
2. O

Theorem 4. The problem of computing the maximal {1 norm of a zonotope is equivalent to the |-|| _,, matrix norm:
both problems are NP-hard in general. Additionally, any approximation algorithm with approximation ratio « for the
Grothendieck problem will yield an approximation algorithm with ratio o for the zonotope {1 maximization problem and
vice versa.

Proof. We prove this via a strict reduction in showing that any instance of one problem may be converted into an instance of
the other and will keep the same optimal value. To do this, we first note that for any matrix M, with (0||M) denoting the
zero-column prepended to the columns of M, that ||M||__ ., = [|(0||M)]| This follows since

co—1°*
1OI[M) ooy = max [[(O|M)v]l; = mazuep., |Mul] = [|M], -
Next, it suffices to show that
= E 23
a2l = el) (23)

for if this were true, certainly any zonotope could be reduced to a matrix-norm maximization problem, and any matrix
norm problem could first prepend the zero column to the matrix and be reduced to a zonotope norm-maximization problem.
Any a-approximation algorithm for one problem could provide an ci-approximation for any instance of the other via this
reduction.

First we show that rg(ax : 2]l < [I(c||E)]| As the right-hand-side may be written
z€Z(c,E

co—1*

H(CHE)HOO—)l = I{)I(Tlagxl Urélg:: ||1;0 . C+EU||1

and whereas the left-hand side of Equation 23 is the same optimization with v restricted to 1. Therefore the (<) direction
of Equation 23 holds. For the other direction, consider any integral solution to the RHS,

(vg,v") € argmax |jvg-c+ Evl|; .
|v0|<1,v€Bso

Without loss of generality, v} may be chosen to be 1, and the point (¢ + Ev*) isin Z (¢, E'). Hence there’s a point in Z (¢, E)
with ¢, norm at least that of ||(c||E)||_, . thus proving the (>) direction of equality 23. O
Theorem 5. For a zonotope, Z(c, E), the linear programming relaxation of max.cy (. g) ||2||; is computable in time
O(|E|) where | E| denotes the number of elements in E.

Proof. First we write down the Linear-programming relaxation of the zonotope-norm maximization problem and then relate
this to the mapping of the zonotope through the absolute value operator, by our vertical-parallelogram fitting procedure. The
final result follows from linear programs being efficiently solvable over zonotopes.

Consider some zonotope Z(c, E) C R? which has coordinate-wise upper and lower bounds [I;, u;] for every i € [d]. We
partition the coordinates into three sets of indices: S~, ST, S such that S~ := {i | u; <0}, ST :={i|l; > 0} and S is
the set of indices not in either S~ or ST. We may write down the familiar mixed-integer programming relaxation for the

Provable Lipschitz Certification for Generative Models

absolute value operator by introducing | S| continuous variables, {¢;};cs, and d integer variables {a; };cs, where t; € R and
a; € {0, 1}:

maxzti — Z 2 + Z 2; (24)

i€S €S~ ieSt
ti > 2 (25)
ti > =2 (26)
i< —zi+2-u;-a; 27
t; <z —2-1;-(1—a) (28)
a; € {0,1} (29)
2 € Z(c,E) (30)

Where the constraints enforce that ¢; = |z;|. The first two constraints require that t; > |z;|. To show ¢; < |z;|, we proceed
by cases. When z; > 0, then 27 implies that a; = 1, for otherwise ¢; < 0 contradicting the first constraint. This causes 28
to imply ¢; < z;. When z; < 0, 28, a; = 0, for otherwise 27 again implies that ¢; < 0. This causes 27 to imply t; < —z;.
When z; = 0, either case can hold and ¢; = 0. The linear programming relaxation lets a; be in the range [0, 1] instead of

{0,1}.

For any fixed z;, we can compute the maximum value of ¢; under this relaxation, which is a function of the now-continuous
variable, a,. By setting the upper bounds to equality, the optimal value of a; is a; = % and ¢ is then upper bounded by

. < —Zi +2u1 . (Zl 711)
- u; — l;

. We observe that this is an equivalent relaxation to the upper-hull provided by the absolute value operator and our
vertical-parallelogram fitting procedure (next section). This allows us to rewrite the optimization above as

—zi +2u; - (2 — 1)
zerrzléa(:},{E); wi — 1 - Z zi + Z Zi

€S €St

which we notice is a linear program over a zonotope. The objective vector may be developed in O(d) time, and linear
programs may be solvable over zonotopes in O(|E|) time. O

Provable Lipschitz Certification for Generative Models

B. Pseudocode

Algorithm 1 ZLip

Require: L-layer feedforward neural network f, input set X', norm 3
Returns: Zonotope Vo 2 {V.f(z)Tv |z € X, v € Bs}

function ZL1p(f, X, 5)
Z, < Zonotope(X) > Cast input set to zonotope
fori < 1to L do > Forward pass (e.g., DeepZ)
Z; map-affine(W;, b;, Zi — 1)
Z; + map_nonlin(o, ZAZ)

J; < elementwise_jacobian(o, Z;) > Gradient range for V.0 (Z;)
end for
V1, + Zonotope(Bs-) > Cast dual ball to zonotope
fori < Lto1ldo > Backward pass

Vi1 < map_affine(W7,0,))
Vi1 elementwisemul(J;, Vi—1)
end for
Vo map,affine(Wg,O,yo)
return JAJO
end function

Algorithm 2 Vertical Parallelogram Fitting
Require: Function o : R — P(R), and interval [c — |E|, ¢ + |E|]
Returns: Slope A*, Altitude p*, center b*

function VP _F171(0,c, F)

T+ ct|E|

S+ {(z,0(x)) | x€Z}

h™,ht « conv_hull(S) > Possibly hard, depends on o
x* + argmaxzer ht(z) — h™(x)

w4 ht(x*) — h™(x*%) > Altitude
A* —6(h™(z*)) No(=hT(z*)) > Slope of parallogram’s non-vert side
b* < 1 (hT(z*) + h™(z%)) > Intercept

return A*, u*, b*
end function

Provable Lipschitz Certification for Generative Models

Algorithm 3 Auxiliary Functions

function var _nonLIN(0o, Z(c, E)) > Z(c, E) C R, o is elementwise
for i < 1toddo
A, bf,pup < VP Fit(oy, ¢, EL)
end for
return Z(b*, diag(p*)) @ (A©® Z(c¢, E))
end function

function ereveENTWISE MUL(H (L, u), Z(c, E))
for ; < 1toddo
Aiy bF, i < VP Fit([li,ug), ¢, BT > Overloading VP_Fit signature
end for
return Z(b*, diag(p*)) @ (A®© Z(c¢, E))
end function

C. Detailed Derivations for Vertical Parallelogram Fitting

We recall the algorithm from Section 6 for fitting a vertical parallelogram to a 2-dimensional set .S. The first step was
to compute the upper and lower convex hulls of S. For sets of the form {(x, f(x)) | « € [I, u]} for some differentiable
function, this is equivalent to the biconjugate and the biconjugate of the negation of f. In this case, there exists a simple
algorithm to yield the upper-convex hull. The lower-convex hull may be found the same way, but for the set {(x, — f(z))}.
Observe that if f is convex over [I, u], then the upper convex hull is the secant line between the endpoints (I, f(1)) and
(u, f(u)) and the lower-convex hull is f(x); vice versa for concave functions. For functions that are neither convex or
concave over [l, u], the upper convex hull may be piecewise continuous, alternating between secant-line segments and f.
For function f, let the secant line of f between z; and x5 be denoted as Sec! (z1,22).

We take inspiration from the gift-wrapping procedure for finding convex hulls of finite 2-dimensional point sets. In
gift-wrapping, the idea is to find the left-most point in the set and sweep a ray clockwise until an intersection with another
point in the set is found. The sweep continues, with ray now starting at the newly intersected point until the left-most point
is intersected again. Our procedure sweeps performs a sweep over rays of decreasing slope, noting that any intersecting
point must lie on the set .S and thus the ray is a secant line. Hence, the key subroutine to find the upper hull is to solve a
maximization over slopes of secant lines. For a fixed x(, the slope of the secant line Secf (g, x) is L@ =1wo) “and the

. z_ro ’
maximization we seek to solve is a constrained variant of this,
) — X
max M) 31)
zE€[To,u] T — X9

When f is differentiable, then we can differentiate the above objective and set to zero and solve for x in the equality

f@) = f(@i)

fla) == —— (32)

This procedure may be repeated until the max is attained at an z > w,;, for which the final secant line spans between
(@i, f(x:)) and (u, f(u)).

Once piecewise forms for the convex upper and lower hulls are formed, the maximal altitude can be computed by
maximizing the piecewise function h*(x) — h™ (z). The proper slope for the tightest fitting vertical parallelogram is attained
by considering an element in the intersection of subgradients of A~ and —h™ at their maximal altitude.

C.1. Sigmoid/Tanh

We demonstrate the above procedure for finding convex upper and lower hulls of sets {(x, f(x) | z € [I,u]} where f is
S-shaped like sigmoid and tanh. We say a function f is S-shaped if it is monotonically increasing and there exists an x’
such that f is concave for all z > z’. We break this into cases, based on the values of [, u]. If f is either convex or concave
over the entire interval [[, u], then the upper hull is either the secant line or f respectively, and vice versa for the lower hull.
In this case, the maximum altitude is attained at the = where f’(x) is equal to the slope of this secant line.

Provable Lipschitz Certification for Generative Models

Figure 3. Procedure for computing the tightest fitting vertical-parallelogram to the set S = {(x, tanh(z)) | x € [—2, 3]}. (Left) We plot
the slope of the secant-line from —2 to x in red and the secant line from x to 3 in blue, where the maximum is marked with a vertical hash.
(Middle) We plot the upper and lower convex hulls for S. (Right) We plot the convex hull of .S and the parallelogram we produce versus
that of prior work.

For cases where f is both convex and concave for portions of [I, u], then we proceed with the iterative giftwrap procedure,
starting at o = [. For monotonically increasing tanh and sigmoid functions, this means that < 0 < u and we seek to find
a point in the concave (z > 0) portion of f such that Equation 32 is satisfied. Since f is concave for > 0, the function

fl@) = 1)

xz—1

f'(x) =

only has one zero for x > 0, which may be found numerically'. Letting x* be such an z, we have that the secant-line is
L@)=JW (3 — 1) + f(1) and the upper convex hull for is

z*—1

given by y =

ht(z) = {W(I -0+ f(Q) %fx € [l,*;z:*]
f(x) ifz € [z*, u]

A similar procedure may be considered for the lower convex hull, also yielding a convex hull like

- f(z) ifr € [l, 21
h™(x) = i
() {W(x_z)+f(1) ifr € [2f,u]

where ' is the minimum amongst zeros for the function f’(z) — W Then the altitude, h™(z) — h™ (), is a
concave piecewise function with three pieces, segmented into the intervals [I, zT], [z, 2*], [z*, u]. If the slope of the linear
component of the upper hull is A™ and the slope of the linear component of the lower hull is A~, then the maximum is
attained at one of four points: i) the point in [I, 2] where f’(x) = A™; ii) the point in [z*, u] where f'(z) = *;iii) 2*, or
iv) 2T Tt is trivial to check all these points where f is the sigmoid or tanh function.

Regardless of which case we are in, once the upper and lower hulls have been computed and their difference has been
maximized, the remaining steps are simple. It suffices to compute the subgradients of the lower hull and negative upper hull
at that point, pick an element of their intersection and find the line that passes through the proper midpoint. This yields the
right altitude and affine function for a vertical parallelogram.

C.2. Elementwise Multiplication

Now we consider the full set of cases for elementwise multiplication. Letting S be the 2-dimensional set {(z,y - x) | « €
[l,u], y € [a,B]}. When oo = (3, then the set S is a line segment, and has vertical parallelogram with height 0 and slope
«. When o < /3, and | > 0 the convex upper hull is 2™ () = S and the convex lower hull is ™~ (z) = aa; vice versa for
when v < 0. The only remaining case is when o < 3, and [< 0 < u, which is the case considered in the main paper, where
h*(x) is the line passing through (I, al) and (u, Su); and the lower hull passes through (I, 51) and (u, cu).

In all of the above cases, the upper and lower hulls are affine functions and their maximum over [I, u] is attained at either [
or u. The admissable slopes are exactly the range [«, 5].

C.3. Absolute Value

"We keep track of the numerical error and ensure that the vertical height of the parallelogram accounts for this.

Provable Lipschitz Certification for Generative Models

Now we consider the absolute value function, as used in the proof of Theorem
5. Consider the set {(z,|z|) | x € [l,u]}. When[-u > 0, then the set S
lies on either the y = x or y = —x line, and the vertical parallelogram fit is
equivalent to mapping through an affine function. On the other hand, when
[< 0 < u, the set S has a lower convex hull of A~ (x) = |z|, because |z| is a

convex function. The upper hull is the secant line connecting (I, |I|) and (u, |u|),

which may be written as h* (z) = %t (z) — 24 The maximum of the altitude,

ht(z) — h~(z), is attained at 2 = 0, for which the maximum altitude is — 24

—ul

and the height of the vertical parallelogram is ;x = =%. The slope must be the

u—l1

slope of the (linear) upper hull, Z—f; and the central line of the parallelogram

must pass through the point (0, =),

P u—l

Figure 4. Convex hull and vertical parallel-
ogram for the set S = {(z,|z|) | = €

[-3,5]}.

Provable Lipschitz Certification for Generative Models

D. Experiments
D.1. Model Architectures

Here we will describe the structure of each of the architectures considered. For networks with only fully connected
and elementwise nonlinearities, we denote the architectures by [y, n1, ... 1L . .. Noyut), Where n; denotes the number of
neurons in the 7*" hidden layer, and ReLU nonlinearities are implied between each layer. We will use the notation “FC X” to
denote fully connected layers with an output of X neurons, and Conv,(C x W x H) to denote convolutional layers with a
stride of s and output dimension of C' channels, and kernels of size W x H. Transpose convolutional layers are denoted
Conv!'(C x W x H). For layers of the same size repeated k times, we’ll denote this as [layers]**.

Toy Networks: For the networks trained on the toy dataset, the input and output dimension are each 2, and the scalar-
valued output is attained by taking the dot product with the vector [+1, —1]. These have varying depth, but all have
architectures like

xk
z = [Fc*loo = ReLU} S FC2 2

where the number of hidden layers denotes the number of ReLU layers in the network.

Generators for MNIST and CIFAR: For MNIST and CIFAR, we trained 6 VAEs and 2 GANSs. These each have the
same architecture with the exception of varying input/output shapes. The VAEs each have a latent dimension of 20 and the
GANSs have an input dimension of 100. We use the notation D and C to denote the output dimnension and channel: (784, 1)
for MNIST and (3072, 3) for CIFAR-10.

L]

VAESmall: [D, 400, 200, 20, 200, 400, D]. Where the decoder is just the [20, 200, 400, D] subnetwork.
* VAEMed: [D, 400, 200, 100, 50, 100, 200, 400, D] where the decoder is just the [50, 100, 200, 400, D] subnetwork.

« VAEBig: [D, 400,200,200, 200, 200, 100, 200, 200, 200, 200,400, D], where the decoder is just the
100, 200, 200, 200, 200, 400, D] subnetwork.

« VAECNN: 2 — Convy(16 x 4 x 4) — ReLU — Convy(32 X 4 x 4) — ReLU — FC50 — FC800 — ReLU —
Conva (16 x 5 x 5) — ReLU — Convi (C' x 4 x 4) — Sigmoid.

* VAETanh: Same as VAEMed with tanh nonlinearities in place of ReLU.
* VC-Tanh: Same as VAECNN with tanh nonlinearities in place of ReLU.
* FFGAN: [100, 256, 512, 1024, D].

* DCGAN: z — Conv] (256 x 4 x 4) — ReLU — Convy (128 x 4 x 4) — ReLU — Convs (64 x 4 x 4) —
ReLU — Convy (C' x 4 x 4) — tanh.

Classifiers for MNIST and CIFAR: For MNIST and CIFAR, we trained three fully connected networks. We refer to
these as {tiny, small, med, } — *. Each of these were trained with both the ReLU and tanh nonlinearities with both standard
and PGD adversarial training. We will describe the training techniques in the next section.

« Tiny*: [D, 20,20, 10].
« Small*: [D, 100,100, 100, 10].

* Med*: [D] + [100] x 6 + [10].

D.2. Datasets, Training Methods, and Computing Environment

Computing Environment: All networks were trained using Pytorch on a machine with 2x GeForce RTX 2070 GPU’s.
All Lipschitz evaluations were performed using the CPU only, an Intel i7-9700K. Mixed integer programming evalutaions
were performed using 4 cores and the Gurobi optimizer.

Provable Lipschitz Certification for Generative Models

Datasets: The CIFAR-10 and MNIST datasets are standard. For the dataset taken from (Aziznejad et al., 2020), we
generate 1000 points uniformly randomly in [—1, 1]? and attach the label 1 if the norm of the data point is < %

Training Methods: We outline the methods used to train each set of networks:

* Toy Dataset Nets: We trained using the CrossEntropy loss and the Adam optimizer with a learning rate of 0.001,
where we trained for 200 epochs.

* VAEs: For the VAE networks, we train with the standard VAE loss: a sum of binary cross-entropy between the
reconstructed example and original input, and a KL-divergence term. We train for 50 epochs for all VAEs with the
Adam optimizer and a learning rate of 0.001

* GANSs: For the GANS, we train using the binary cross-entropy applied to the discriminator output. We train with Adam
(Ir = 0.001) and 25 epochs.

* Classifiers: For the classifiers considered, we always train for 50 epochs using Adam ({r = 0.001) and either the
standard Cross-Entropy loss or the PGD loss for adversarial training. For MNIST networks, we allow an adversarial
budget of ¢, norm of 0.1, and the adversary takes 10 steps with step-size 0.2. For CIFAR-10, the adversary has a

budget of 225 and takes 10 steps of stepsize 225.

D.3. Varying Radius

We consider the effect of varying the radius of the region we evaluate Lipschitz
constants over. We expect that as the radius increases, the bounds for the
preactivations at each layer will become more loose. For ReLU networks, when Proporion of LpMIPinstances that tmeout vsradus
zero is strictly contained in the preactivation bounds, a new degree of freedom .
needs to be introduced to the layerwise zonotope approximations. Hence, as
more degrees of freedom are introduced, we expect the bound returned by ZLip
to be looser and the runtime will be less efficient since the representation of
each zonotope will be larger. However, other methods will likely also yield
looser bounds as well. We also note that a more intelligent strategy that prunes
the zonotope representation size to a more managable size may be employed,
though we leave such performance improvements for future work. o2

Timeout pr
°

—=— LipMIP (Zono)
00 +— LipMIP

Toy Dataset: First we examine the effect of changing the evaluation radius
on the network trained on the circle dataset with 6 hidden layers of width 100
and the ReLU nonlinearity. We report the results in table 2, where we have
evaluated over 64 elements from the test set and ¢, balls of each radius. We Figure 5. Proportion of timed out examples
set a timeout of 120s for the mixed-integer programming approaches, at which for LipMIP versus LipMIP using ZLip as a
point the tightest upper bound is returned, explaining the discrepancy between first step across varius radii.

the results on the first two columns. The proportion of timed out examples is

presented in Figure 5. We observe that for networks with small input dimension,

CLEVER is fairly accurate and can be viewed as a surrogate for the true Lipschitz constant when the LipMIP results time
out. In this case we see that for all but the global evaluation returned by SeqLip, all techniques provide looser bounds as the
radius increases, however ZLip remains significantly tighter than Fast-Lip and even yields a tighter result than the tightest
upper bound provided by LipMIP after this procedure times out.

Generative Models: Here we present results on the generative models when we vary the radius of the input region. We
focus primarily on the VAEs described above for both the MNIST and CIFAR-10 datasets. These results for VAEMEd on
MNIST are displayed in Figure 6. As expected, increasing radius size increases the estimated Lipschitz bound for both
ZLip and Fast-Lip. The relative gap decreases as the radius increases, indicating that ZLip is comparatively tighter when
few neurons are unstable, which we attribute to ZLip being able to perfectly map the affine layers. It is also expected that
Fast-Lip does not get slower even as more neurons become unstable, as the representation size of a hyperbox in R will
always be O(d), and looser neuron bounds just increases the looseness of the approximation without increasing runtime.

Provable Lipschitz Certification for Generative Models

Table 2. Evaluation of various Lipschitz computation techniques for the network with 6 hidden layers trained on the Circle dataset.

Lipschitz Values for 6 x 100 Circle Network

Radius | LipMIP (Zono) LipMIP ZLip Fast-Lip SeqLip CLEVER
0.01 2.62x102 297x10% 298x10% 2.82x10° 2.72x10° 2.95x102
0.05 3.69x102 279%10% 4.22x10% 9.94x10% 2.72x10% 3.61x102
0.1 4.55%102 6.09x10% 6.17x10%2 1.29x10* 2.72x10° 4.39x102
0.25 8.91x102 1.67x10* 1.55x10° 2.00x10* 2.72x10% 4.65x102
0.5 2.51x103 220x10% 3.70x10% 2.46x10* 2.72x10% 6.72x102
1.0 6.49x10° 2.82x10* 5.81x10% 3.10x10* 2.72x10% 9.04x102
Lipschitz Values vs. Radius | MNIST VAEMed Lipschitz Computation Time vs. Radius | MNIST VAEMed
350 E g
Lipschitz Values vs. Radius | CIFAR VAESmall Lipschitz Computation Time vs. Radius | CIFAR VAESmall
2 E

w
o

34

0.025

0.050 0.075 0.100
Radius

0.125

0.150 0.175 0.200

10

0.025 0.050 0.075

0.100 0.125
Radius

0.150 0.175 0.200

Figure 6. Reported Lipschitz constants and times for the MNIST MedVAE as we increase the radius of the region over which we evaluate
Lipschitz constant. (Top Left) reports the values on a log-scale, noticing that both ZLip and Fast-Lip increase their estimate as the radius
increases, the relative gap is largest for small radii.(Top Right) we display times in seconds versus the radius. The increase in running time
of ZLip is due to the increase in number of unstable neurons, which increases the size of the representations of the zonotopes that must be
passed through each layer. (Bottom) Reported Lipschitz constants and times for the CIFAR SmallVAE as we increase radius.

Provable Lipschitz Certification for Generative Models

D.4. Ablating the choice of abstract domain:

ZLip operates by iteratively building zonotopes to satisfy the containments of equations 14-17, specifically we use zonotopes
in both the forward pass (such as DeepZ, DiffAl), but also zonotopes in the backward pass. To examine the importance of
zonotopes in both directions, we replace the zonotopes with hyperboxes in one or both of the directions. Note that using
hyperboxes in both the forward and backward directions is FastLip. We denote the method that uses hyperboxes in the
forward pass, but zonotopes in the backward pass as ‘Hyperbox -; Zono’, and vice versa.

Toy Dataset: In Figure 7 we compare the performance of the different techniques on networks trained on the toy dataset.
The y-axis records the logarithm of the average ratio between each method’s Lipschitz estimate and ZLip’s Lipschitz
estimate for each example. We evaluate on 100 random points for each x-value. On the left panel we vary the architecture
size while evaluating on inputs that are hyperboxes with radius 0.1. For every network considered, on average, the abstract
domain in the forward pass is more important, and this gap becomes more apparent as the size of the network increases. On
the right panel, we fix a network and evaluate the performance as we vary the size of the certified region. For small radii,
the choice of the forward domain is more important, however as the radius increases, the backward domain becomes more
important. We conjecture this is because, for large radii, there is much uncertainty about which ReLLU’s are fixed and the
performance of zonotopes and hyperboxes in the forward pass becomes equivalent.

Relative Lipschitz Constants vs Architecture Size Relative Lipschitz Constants vs Radius | 8 x 100 Circle Network

—#— FastLip

ZLip
—e— Hyperbox->Zono
—&— Zono -> Hyperbox

—#— FastLip

ZLip
—8— Hyperbox->Zono
—&— Zono -> Hyperbox

= - =
~ o N o
o) o o

logso of Lipschitz Estimate / ZLip's estimate
w
o

logso of Lipschitz Estimate / ZLip's estimate

N
o

0.0

2 4 6 8 10 12 14 0.0 0.1 0.2 0.3 0.4 0.5
Number of Hidden Layers (Width 100) Radius of input region

Figure 7. Log-mean-ratio of reported Lipschitz estimates (relative to ZLip) on varying networks trained on the Circle dataset. (Left)
reports the values as we vary the network size, demonstrating that the forward domain is more important as the network size increases.
(Right) reports the values for a fixed network as we vary the input radius size. Larger input radii have more uncertain ReLU neurons and
the choice in forward domain becomes relatively less important.

MNIST Generative models: In Table 3 we evaluate the choice of abstract domains on MNIST generative models. We
consider the decoders of the three different VAE’s trained on MNIST and evaluate over two different radii, considering
hyperboxes of the denoted radius surrounding the encodings of random test MNIST examples. Here we again see that
neither of the single-zonotope approaches is unilaterally better, however larger models tend to benefit more from using
zonotopes in the forward pass.

Provable Lipschitz Certification for Generative Models

Table 3. Mean ratio of Lipschitz estimates provided by other abstract domains relative to the estimate provided by ZLip, evaluated on
MNIST VAE decoders. We see that as the model becomes larger, using zonotopes in the forward pass yields a tighter bound.

Radius | 0.01 | 0.1
Method ‘ Fastlip H—-Z2 Z—H ‘ Fastlip H—~>Z Z—H
VAESmall | 7.85 1.33 5.89 9.39 3.08 3.11

VAEMed | 276.41 12.71 43.78 410.92 51.81 12.25
VAEBig 4238.83 12321 85.65 26018.02 1357.93 26.64

D.5. Experimental Results on Classifiers

MNIST: For completeness and comparison against other networks on more realistic networks, we present results of
our Lipschitz bounding technique versus several recent works for a variety of networks trained both with the standard
classification loss as well as those trained adversarially. We evaluate the Lipschitz value returned by SeqLip, LipSDP,
Fast-Lip, CLEVER, and ZLip for inputs of radius 0.1 centered at elements taken from the test set. If f is the trained classifier
which has outputs in R'®, we consider the Lipschitz constant of the network f; (-) — fix1(+) for each example where the true
label is 7. First we present the values for the MNIST networks trained with the standard CrossEntropy Loss in Table 4 and
times are presented in Table 5. We remark that the bounds reported by CLEVER for networks with high dimension have
been shown to be quite loose, so it is unclear what the correct Lipschitz value is for each of these networks. The most salient
points here are that the values returned by ZLip are comparable to those returned by LipSDP at a significantly faster runtime.
We also note that LipSDP errors when applied to networks as large as MedReLU or MedTanh.

For the PGD trained MNIST networks, we present the values and times in tables 6, 7. In direct comparison to the tables for
the networks trained with CrossEntropy loss, we notice that all methods report lower values for the adversarially trained
network. This tracks with prior work that adversarial regularization serves as a form of Lipschitz regularization.

CIFAR-10: The same experiments as above were performed on networks trained to classify the CIFAR-10 dataset. We
present these results in Tables 8-11, but note that these results are qualitatively very similar to the results for the MNIST
networks.

Table 4. Lipschitz values reported by various networks evaluated on the various Classifiers described above. All numbers report an average
over regions of radius 0.1 centered at examples from the test set.

Lipschitz Estimates (MNIST) — CrossEntropy Loss
Network SeqLip SDP Fast-Lip CLEVER ZLip

TinyReLU | 3.51x10% 2.94x10% 7.36x10° 1.15x10' 5.59x103
SmallReLU | 2.12x10* 1.52x10* 1.94x10° 9.59x10° 9.34x10*
MedReLU | 1.08x106 — 1.45x10% 1.06x10' 1.77x107
TinyTanh 1.33x10* 1.14x10* 2.56x10* 2.97x10' 1.98x10%
SmallTanh | 5.80x10* 4.29x10* 3.24x10° 3.26x10' 1.68x10°
MedTanh 5.50x106 — 429x10% 3.56x10%2 6.94x107

Provable Lipschitz Certification for Generative Models

Table 5. Times for MNIST classifiers trained with the Cross-Entropy loss

Lipschitz Times (MNIST) — CrossEntropy Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip
TinyReLU | 5.08x10~1 1.78x10' 1.75x1072 5.98x10' 4.20x107!
SmallReLU | 2.28x10° 2.63x10% 9.73x1072 1.01x10%2 9.36x10~!
MedReLU | 3.35x10° — 1.07x10~Y 1.75x10% 2.13x10°
TinyTanh 5.90x 10! 1.82x101 1.96x1073 598x10% 4.22x10~!
SmallTanh | 4.56x10° 2.28x10%2 1.05x107' 1.09%x102 9.87x10~!
MedTanh 9.91x10° — 1.08x10~! 1.77x10% 2.03x10°
Table 6. Values for MNIST classifiers trained with the PGD loss
Lipschitz Estimates (MNIST) — PGD Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip

TinyReLU | 3.97x10%2 2.66x10? 3.48x10> 1.07x10° 1.42x10?

SmallReLU | 1.52x10% 9.35x10%2 1.98x10* 1.85x10° 5.39x10?

MedReLU | 3.91x10* 1.64x10* 1.45x107 2.26x10° 9.36x10°

TinyTanh 1.38x10% 8.61x10% 6.86x10% 3.14x10° 5.17x102

SmallTanh | 7.96x10% 4.81x10% 5.68x10* 6.24x10° 2.42x10%

MedTanh 2.73x10° 1.30x10° 5.98x107 1.90x10' 6.27x10°

Table 7. Times for MNIST classifiers trained with the PGD loss
Lipschitz Times (MNIST) — PGD Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip
TinyReLU 1.18x1072 1.14x10' 1.74x1073 2.71x10' 1.10x10~!
SmallReLU | 2.71x10! 1.77x10% 1.13x10~! 1.13x10% 1.12x10°
MedReLLU 3.10x10° 442%x10% 1.11x107!' 1.76x10% 2.17x10°
TinyTanh 6.11x1071 1.62x10' 1.84x1073 533x10! 3.77x107!
SmallTanh | 4.61x10° 1.77x10% 8.66x1072 7.72x10' 7.31x10~!
MedTanh 3.29%x10° 5.00x10% 1.16x107' 1.86x10% 2.15x10°

Provable Lipschitz Certification for Generative Models

Table 8. Values for CIFAR-10 classifiers trained with the Cross Entropy loss

Lipschitz Values (CIFAR-10) — CrossEntropy Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip

TinyReLU | 1.11x10° 8.51x10% 1.13x10° 6.05x10~1 8.89x10?
SmallReLU | 1.27x10* 7.23x10% 1.55x10° 1.43x10° 6.32x10%
MedReLU | 430x10% 1.78x10° 2.42x10% 2.22x10° 2.13x107
TinyTanh | 4.12x10% 3.22x10° 552x10% 2.28x10° 4.32x103
SmallTanh | 2.61x10* 1.77x10* 1.72x10° 5.73x10° 7.82x10*
MedTanh 1.28x106 — 1.86x10% 1.26x10' 2.22x107

Table 9. Values for CIFAR-10 classifiers trained with the PGD loss

Lipschitz Values (CIFAR-10) — PGD Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip

TinyReLU | 3.01x10% 1.92x10> 4.63x10' 1.17x10~' 3.95x10!
SmallReLU | 2.03x10% 1.22x10% 2.15x10* 3.62x10~' 7.75x103
MedReLU | 3.61x10* 126x10* 1.70x107 5.22x10~% 1.26x10°
TinyTanh 1.81x10% 1.31x10% 1.05x10% 8.94x107! 8.91x10?
SmallTanh | 1.51x10* 7.25x10% 2.62x10* 2.67x10° 1.35x10*
MedTanh 2.57x10° 9.56x10* 1.41x107 3.14x10° 1.81x108

Table 10. Times for CIFAR-10 classifiers trained with the CrossEntropy loss

Lipschitz Times (CIFAR-10) — CrossEntropy Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip
TinyReLU | 2.32x1071 5.02x10% 9.59x1072 5.91x10' 6.24x107!
SmallReLU | 7.14x10° 2.88x10%® 1.07x107! 1.06x10> 1.16x10°
MedReLU | 7.45x10' 4.81x10% 6.38x1072 9.88x10' 1.32x10°
TinyTanh 6.45x10~1 5.05x10%> 1.18x10~' 7.28x10' 8.66x107!
SmallTanh | 3.11x10' 3.25x10% 1.17x107! 1.22x10%> 1.22x10°
MedTanh 1.09x10° 6.78x10% 6.34x107% 3.98x10° 1.89x107*

Table 11. Times for CIFAR-10 classifiers trained with the PGD loss

Lipschitz Times (CIFAR-10) — PGD Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip
TinyReLU | 1.47x10~T 3.94x10% 1.09x10~1 6.74x101 7.93x107!
SmallReLU | 4.11x10' 2.52x10% 9.89x1072 9.12x10' 1.07x10°
MedReLU | 5.22x10' 4.01x10® 1.14x107! 1.89x10% 2.39x10°
TinyTanh 8.12x1072 4.60x10% 1.13x10~Y 7.02x10' 8.25x107!
SmallTanh | 4.97x10° 3.28x10% 1.13x10~! 1.22x10%> 1.23x10°
MedTanh 1.13x10° 3.90x10% 5.77x107% 3.98x10° 1.89x10~*

