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Abstract

In this paper, we study the generalization perfor-
mance of min f5-norm overfitting solutions for
the neural tangent kernel (NTK) model of a two-
layer neural network with ReLU activation that
has no bias term. We show that, depending on
the ground-truth function, the test error of overfit-
ted NTK models exhibits characteristics that are
different from the “double-descent” of other over-
parameterized linear models with simple Fourier
or Gaussian features. Specifically, for a class
of learnable functions, we provide a new upper
bound of the generalization error that approaches
a small limiting value, even when the number
of neurons p approaches infinity. This limiting
value further decreases with the number of train-
ing samples n. For functions outside of this class,
we provide a lower bound on the generalization
error that does not diminish to zero even when n
and p are both large.

1. Introduction

Recently, there is significant interest in understanding why
overparameterized deep neural networks (DNNSs) can still
generalize well (Zhang et al., 2017; Advani et al., 2020),
which seems to defy the classical understanding of bias-
variance tradeoff in statistical learning (Bishop, 2006;
Hastie et al., 2009; Stein, 1956; James & Stein, 1992; Le-
Cun et al., 1991; Tikhonov, 1943). Towards this direction, a
recent line of study has focused on overparameterized linear
models (Belkin et al., 2018b; 2019; Bartlett et al., 2020;
Hastie et al., 2019; Muthukumar et al., 2019; Ju et al., 2020;
Mei & Montanari, 2019). For linear models with simple fea-
tures (e.g., Gaussian features and Fourier features) (Belkin
et al., 2018b; 2019; Bartlett et al., 2020; Hastie et al., 2019;
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Muthukumar et al., 2019; Ju et al., 2020), an interesting
“double-descent” phenomenon has been observed. Thus,
there is a region where the number of model parameters (or
linear features) is larger than the number of samples (and
thus overfitting occurs), but the generalization error actu-
ally decreases with the number of features. However, linear
models with these simple features are still quite different
from nonlinear neural networks. Thus, although such results
provide some hint why overparameterization and overfitting
may be harmless, it is still unclear whether similar conclu-
sions apply to neural networks.

In this paper, we are interested in linear models based on the
neural tangent kernel (NTK) (Jacot et al., 2018), which can
be viewed as a useful intermediate step towards modeling
nonlinear neural networks. Essentially, NTK can be seen as
a linear approximation of neural networks when the weights
of the neurons do not change much. Indeed, (Li & Liang,
2018; Du et al., 2018) have shown that, for a wide and
fully-connected two-layer neural network, both the neuron
weights and their activation patterns do not change much
after gradient descent (GD) training with a sufficiently small
step size. As a result, such a shallow and wide neural net-
work is approximately linear in the weights when there are
a sufficient number of neurons, which suggests the utility of
the NTK model.

Despite its linearity, however, characterizing the double de-
scent of such a NTK model remains elusive. The work in
(Mei & Montanari, 2019) also studies the double-descent
of a linear version of two-layer neural network. It uses
the so-called “random-feature” model, where the bottom-
layer weights are random and fixed, and only the top-layer
weights are trained. (In comparison, the NTK model for
such a two-layer neural network corresponds to training
only the bottom-layer weights.) However, the setting there
requires the number of neurons, the number of samples,
and the data dimension to all grow proportionally to infin-
ity. In contrast, we are interested in the setting where the
number of samples is given, and the number of neurons is
allowed to be much larger than the number of samples. As
a consequence of the different setting, in (Mei & Montanari,
2019) eventually only linear ground-truth functions can be
learned. (Similar settings are also studied in (d’Ascoli et al.,
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2020).) In contrast, we will show that far more complex
functions can be learned in our setting. In a related work,
(Ghorbani et al., 2019) shows that both the random-feature
model and the NTK model can approximate highly non-
linear ground-truth functions with a sufficient number of
neurons. However, (Ghorbani et al., 2019) mainly studies
the expressiveness of the models, and therefore does not
explain why overfitting solutions can still generalize well.
To the best of our knowledge, our work is the first to charac-
terize the double-descent of overfitting solutions based on
the NTK model.

Specifically, in this paper we study the generalization error
of the min /5-norm overfitting solution for a linear model
based on the NTK of a two-layer neural network with ReLU
activation that has no bias. Only the bottom-layer weights
are trained. We are interested in min ¢-norm overfitting
solutions because gradient descent (GD) can be shown to
converge to such solutions while driving the training error
to zero (Zhang et al., 2017) (see also Section 2). Given a
class of ground truth functions (see details in Section 3),
which we refer to as “learnable functions,” our main result
(Theorem 1) provides an upper bound on the generaliza-
tion error of the min ¢s-norm overfitting solution for the
two-layer NTK model with n samples and p neurons (for
any finite p larger than a polynomial function of n). This
upper bound confirms that the generalization error of the
overfitting solution indeed exhibits descent in the overpa-
rameterized regime when p increases. Further, our upper
bound can also account for the noise in the training samples.

Our results reveal several important insights. First, we find
that the (double) descent of the overfitted two-layer NTK
model is drastically different from that of linear models with
simple Gaussian or Fourier features (Belkin et al., 2018b;
2019; Bartlett et al., 2020; Hastie et al., 2019; Muthukumar
et al., 2019). Specifically, for linear models with simple
features, when the number of features p increases, the gener-
alization error will eventually grow again and approach the
so-called “null risk” (Hastie et al., 2019), which is the error
of a trivial model that predicts zero. In contrast, for the class
of learnable functions described earlier, the generalization
error of the overfitted NTK model will continue to descend
as p grows to infinity, and will approach a limiting value
that depends on the number of samples n. Further, when
there is no noise, this limiting value will decrease to zero
as the number of samples n increases. This difference is
shown in Fig. 1(a). As p increases, the test mean-square-
error (MSE) of min-¢; and min-/5 overfitting solutions for
Fourier features (blue and red curves) eventually grow back
to the null risk (the black dashed line), even though they
exhibit a descent at smaller p. In contrast, the error of the
overfitted NTK model continues to descend to a much lower
level.

The second important insight is that the aforementioned
behavior critically depends on the ground-truth function
belonging to the class of “learnable functions.” Further, this
class of learnable functions depend on the specific network
architecture. For our NTK model (with RELU activation
that has no bias), we precisely characterize this class of
learnable functions. Specifically, for ground-truth functions
that are outside the class of learnable functions, we show
a lower bound on the generalization error that does not
diminish to zero for any n and p (see Proposition 2 and
Section 4). This difference is shown in Fig. 1(b), where we
use an almost identical setting as Fig. 1(a), except a different
ground-truth function. We can see in Fig. 1(b) that the test-
error of the overfitted NTK model is always above the null
risk and looks very different from that in Fig. 1(a). We note
that whether certain functions are learnable or not critically
depends on the specific structure of the NTK model, such
as the choice of the activation unit. Recently, (Satpathi &
Srikant, 2021) shows that all polynomials can be learned by
2-layer NTK model with ReLU activation that has a bias
term, provided that the number of neurons p is sufficiently
large. (See further discussions in Remark 2. However, (Sat-
pathi & Srikant, 2021) does not characterize the descent of
generalization errors as p increases.) This difference in the
class of learnable functions between the two settings (ReLU
with or without bias) also turns out to be consistent with
the difference in the expressiveness of the neural networks.
That is, shallow networks with biased-ReLLU are known to
be universal function approximators (Ji et al., 2019), while
those without bias can only approximate the sum of linear
functions and even functions (Ghorbani et al., 2019).

A closely related result to ours is the work in (Arora et al.,
2019), which characterizes the generalization performance
of wide two-layer neural networks whose bottom-layer
weights are trained by gradient descent (GD) to overfit the
training samples. In particular, our class of learnable func-
tions almost coincides with that of (Arora et al., 2019). This
is not surprising because, when the number of neurons is
large, NTK becomes a close approximation of such two-
layer neural networks. In that sense, the results in (Arora
et al., 2019) are even more faithful in following the GD
dynamics of the original two-layer network. However, the
advantage of the NTK model is that it is easier to analyze.
In particular, the results in this paper can quantify how the
generalization error descends with p. In contrast, the results
in (Arora et al., 2019) provide only a generalization bound
that is independent of p (provided that p is sufficiently large),
but do not quantify the descent behavior as p increases. Our
numerical results in Fig. 1(a) suggest that, over a wide range
of p, the descent behavior of the NTK model (the green
curve) matches well with that of two-layer neural networks
trained by gradient descent (the cyan curve). Thus, we be-
lieve that our results also provide guidance for the latter



On the Generalization Power of Overfitted 2-layer NTK models

(a) learnable ground-truth

—
(=}
E)

—— min-I2, NTK
1041 —— min-I2, Fourier
=& min-I1, Fourier
) —— GD, real NN
é L null risk
g 10° A
1072
1074 T T T
102 10° 10*
p (num of features/neurons)
5 (b) not-learnable ground-truth
10°
10% 1
w102
=
g 1004
1072
107"

T T T
102 10% 10*
p (num of features/neurons)

Figure 1. The test mean-square-error(MSE) vs. the number of
features/neurons p for (a) learnable function and (b) not-learnable
function when n = 50, d = 2, ||€||3 = 0.01. The corresponding
ground-truth are (@) f(0) = > ;c0.1,2.4) (5in(k0) + cos(k0)),
and (b) f(0) = >_4c(3,57,0 (sin(k0) + cos(kf)). (Note that in
2-dimension every input & on a unit circle can be represented by
an angle § € [—m, 7]. See the end of Section 4.) Every curve
is the average of 9 random simulation runs. For GD on the real
neural network (NN), we use the step size 1/,/p and the number
of training epochs is fixed at 2000.

model. The work in (Fiat et al., 2019) studies a different
neural network architecture with gated ReLU, whose NTK
model turns out to be the same as ours. However, similar
to (Arora et al., 2019), the result in (Fiat et al., 2019) does
not capture the speed of descent with respect to p either.
Second, (Arora et al., 2019) only provides upper bounds on
the generalization error. There is no corresponding lower
bound to explain whether ground-truth functions outside a
certain class are not learnable. Our result in Proposition 2
provides such a lower bound, and therefore more completely
characterizes the class of learnable functions. (See further
comparison in Remark 1 of Section 3 and Remark 3 of Sec-
tion 5.) Another related work (Allen-Zhu et al., 2019) also
characterizes the class of learnable functions for two-layer
and three-layer networks. However, (Allen-Zhu et al., 2019)
studies a training method that takes a new sample in every
iteration, and thus does not overfit all training data. Finally,
our paper studies generalization of NTK models for the re-
gression setting, which is different from the classification
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Figure 2. A two-layer neural network where d = 2, p = 3.

setting that assumes a separability condition, e.g., in (Ji &
Telgarsky, 2019).

2. Problem Setup

We assume the following data model y = f(x) + €, with
the input x € R<, the output y € R, the noise ¢ € R,
and f : R? +— R denotes the ground-truth function.
Let (X;, yi), ¢ = 1,2,--- ,n denote n training samples.
We collect them as X = [X; X, --- X,] € R¥",
y=[yy2 - yn]m €ER" e=[ec16a - ] € R,
and F(X) = [f(X;) f(X2) --- f(X,)]" € R". Then,
the training samples can be written as y = F(X) + €. Af-
ter training (to be described below), we denote the trained
model by the function f . Then, for any new test data x, we
will calculate the test error by | f(z) — f(«)|, and the mean
squared error (MSE) by E[f(z) — f(z)]2.

For training, consider a fully-connected two-layer neural
network with p neurons. Let w; € R and Vi[j] € R?
denote the top-layer and bottom-layer weights, respectively,
of the j-th neuron, 7 = 1,2,---,p (see Fig. 2). We
collect them into w = [w; we --- wy]? € RP, and
Vo = [Vo[1T Vo[2]T -+ Vo[p]T]T € R (a column
vector with dp elements). Note that with this notation, for
any row or column vector v with dp elements, v[j] denotes
a (row/column) vector that consists of the (jd + 1)-th to
(jd + d)-th elements of v. We choose ReLU as the activa-
tion function for all neurons and there is no bias term in the
ReLU activation function.

Now we are ready to introduce the NTK model (Jacot et al.,
2018). We fix the top-layer weights w, and let the initial
bottom-layer weights V be randomly chosen. We then
train only the bottom-layer weights. Let Vj + AV denote
the bottom-layer weights after training. Thus, the change of
the output after training is

ijl{mT(vo[jHW[j]»O} - (Voljl + AV[i)) =

j=1

n
- Z w;1zrvyj50) - Voli]” .

j=1

In the NTK model, one assumes that AV is very small. As
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aresult, l{mT(VO G4 AVE])>0} = 1{mTVO[j]>'O} for most .
Thus, the change of the output can be approximated by

> wilarv,soy - AV @ = hy, 2 AV,
j=1

where AV € R is given by AV[j] := w;AV]j], j =
1,2,--+,p, and hy, » € R*(P) is given by

hVo,w[j] = 1{mTVg[j]>0} : mTv .7 = 1a27 Y (D

In the NTK model, we assume that the output of the trained
model is exactly given by Eq. (1), i.e.,

fAV,VO (.’1}) = hVO,:cAV~ (2)

In other words, the NTK model can be viewed as a linear
approximation of the two-layer network when the change
of the bottom-layer weights is small.

Define H € R"*(9P) such that its i-th row is H; := hv, x,.
Throughout the paper, we will focus on the following min-
{5-norm overfitting solution

AV* := argmin ||v||2, subject to Hv = y.
v

Whenever AV exists, it can be written in closed form as
AV = HT(HHT) ly. (3)

The reason that we are interested in AV*2 is that gradi-
ent descent (GD) or stochastic gradient descent (SGD) for
the NTK model in Eq. (2) is known to converge to AV*2
(proven in Supplementary Material, Appendix B).

Using Eq. (2) and Eq. (3), the trained model is then
f(x) == hy, 2 AV, 4)

In the rest of the paper, we will study the generalization
error of Eq. (4).

We collect some assumptions. Define the unit sphere in
R% as: 471 := {v € R?|||v|] = 1}. Let u(-) denote
the distribution of the input . Without loss of generality,
we make the following assumptions: (i) the inputs x are
i.i.d. uniformly distributed in S%~*, and the initial weights
Vo[j]’s are ii.d. uniformly distributed in all directions
in R%; (ii) p > n/d and d > 2; (iii) X; }f X; for any
i # j, and Volk] }f Vol[l] for any k # I. We provide
detailed justification of those assumptions in Supplementary
Material, Appendix C.

3. Learnable Functions and Generalization
Performance

We now show that the generalization performance of the
overfitted NTK model in Eq. (4) crucially depends on the

ground-truth function f(-), where good generalization per-
formance only occurs when the ground-truth function is
“learnable.” Below, we first describe a candidate class of
ground-truth functions, and explain why they may corre-
spond to the class of “learnable functions.” Then, we will
give an upper-bound on the generalization performance for
this class of ground-truth functions. Finally, we will give a
lower-bound on the generalization performance when the
ground-truth functions are outside of this class.

We first define a set F*2 of ground-truth functions.

Definition 1. F* N {r = fi] ful®) =
S 2T 22N 2 g (2)dp(z), lglly < oo}

Note that in Definition 1, = means two functions equals

almost everywhere, and ||glly = [qa_:|9(2)ldpu(2).
The function g(z) may be any finite-value function in
L'(8%! s R). Further, we also allow g(z) to contain
(as components) Dirac J-functions on 8?1, Note that a
§-function d,,(z) has zero value for all z € S1\ {2},
but |0z, |1 := [ga—1 0z, (2)dp(z) = 1. Thus, the function
g(z) may contain any sum of J-functions and finite-value
L!-functions.

To see why F“2 may correspond to the class of learnable
functions, we can first examine what the learned func-
tion fZZ in Eq. (4) should look like. Recall that H? =
[H] - HI|. Thus, hy, oHT = 7 (hy, <HD el
where e; € R" denotes the ¢-th standard basis. Combining
Eq. (3) and Eq. (4), we can see that the learned function in
Eq. (4) is of the form

7 (x) =hv, .HT (HH?) 1y

/1
=> (phvmmHiT) pel HH") 'y, (5)
i=1

For all z,z € &% define CYy = {j €
{1,2,--- ,p} | 2TVo[j] > 0,27V, [j] > 0}, and its cardi-
nality is given by

p
CY8] = D 1=rvoli1>0, 27 Vo lj]50)- (©)
j=1

Then, using Eq. (1), we can show %hvo,mHiT =

Cx0 ,
mTXiy. It is not hard to show that

ICYo| » 7 — arccos(xT z)
%

» o , asp — 0. (7)

! Alternatively, we can also interpret g(2) as a signed measure
(Rao & Rao, 1983) on S¢~!. Then, é-functions correspond to
point masses, and the condition ||g||1 < oo implies that the corre-
sponding unsigned version of the measure on S~ is bounded.
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where - denotes converge in probability. (see Supplemen-
tary Material, Appendix D.5). Thus, if we let

=Y pel (HH") 'yix,(2), ®)

i=1

then as p — 0o, Eq. (5) should approach a function in F*2.
This explains why F*2 is a candidate class of “learnable
functions.” However, note that the above discussion only
addresses the expressiveness of the model. It is still unclear
whether any function in F*2 can be learned with low gener-
alization error. The following result provides the answer.

For some m € {1, Inn } define (recall that d is the dimen-

sion of x)

T (n,d) = 2100554054y (245:)(@=1 - (g)

. a.e.
Theorem 1. Assume a ground-truth function f = f, €
F*2 where ||g|lc < 00%, n >2,m € {1 1“2], d <

2

’ In

andp > 6J,(n,d)In <4n1+%). Then, for any q € [1, )
3

and for almost every x € S, we must have

Pr {1f(x) - f(a)| = p ()

Te 1
(14 VT, D) p~ 20730 4 T el
\—/—/

Term 2 Term 3

foralleeIR” < 2¢? (exp( )
8llgl13

Term4
to ( ) ( ))+ 0
Xp .
8llgl? 8nllglli /n
Term 5 Term 6 Term 7

To interpret Theorem 1, we can first focus on the noiseless
case, where € and Term 3 are zero. If we fix n and let
p — oo, then Terms 2, 5, and 6 all approach zero. We
can then conclude that, in the noiseless and heavily over-
parameterized setting (p — 00), the generalization error
will converge to a small limiting value (Term 1) that de-
pends only on n. Further, this limiting value (Term 1) will
converge to zero (so do Terms 4 and 7) as n — oo, i.e.,

’The requirement of ||g||oc < oo can be relaxed. We show
in Supplementary Material, Appendix L that, even when g is
a d-function (so ||g|]lcc = 00), we can still have a similar re-
sult of Eq (10) but Term 1 will have a slower speed of decay
O(n~ s (- ) with respect to n instead of O(n~ B (1- E))
shown in Eq. (10). Term 4 of Eq. (10) will also be different when
g is a 6-function, but it still goes to zero when p and n are large.

*The notion ﬁlr in Eq. (10) emphasizes that randomness is in

M.

when there are sufficiently many training samples. Finally,
Theorem 1 holds even when there is noise.

The parameters of ¢ and m can be tuned to make Eq. (10)
sharper when n and p are large. For example, as we increase
¢, Term 1 will approach n =93, Although a larger ¢ makes
Terms 4, 5, and 6 bigger, as long as n and p are sufficiently
large, those terms will still be close to 0. Similarly, if we in-
crease m, then .J,,, (n, d) will approach the order of n2(¢=1),
As a result, Term 3 approaches the order of 24705 times

|l€||2 and the requirement p > 6.J,,,(n, d) In (4n1+#> ap-
proaches the order of n2(~1) Inn.

Remark 1. We note that (Arora et al., 2019) shows that,
for two-layer neural networks whose bottom-layer weights

are trained by gradient descent, the generalization error for
sufficiently large p has the following upper bound: for any

¢>0,
{ 1 ()] < /2L H2) Y
- n

/1
+O( Oggmmelg(H )>}>1_C, (11)

where H* = lim (HH” /p) € R™*". For certain class
p—r00

of learnable functions (we will compare them with our F*2
in Section 4), the quantity y” (H>) "'y is bounded. Thus,

1/ w also decreases at the speed 1/+/n. The sec-

ond O(+)-term in Eq. (11) contains the minimum eigenvalue
of H®°, which decreases with n. (Indeed, we show that this
minimum eigenvalue is upper bounded by O(n_dlj) in
Supplementary Material, Appendix G.) Thus, Eq. (11) may
decrease a little bit slower than 1/+/n, which is consistent
with Term 1 in Eq. (10) (when ¢ is large). Note that the term
29T (H>) "1y in Eq. (11) captures how the complexity of
the ground-truth function affects the generalization error.
Similarly, the norm of g(-) also captures the impact* of the
complexity of the ground-truth function in Eq. (10). How-
ever, we caution that the GD solution in (Arora et al., 2019)
is based on the original neural network, which is usually
different from our min ¢5-norm solution based on the NTK
model (even though they are close for very large p). Thus,
the two results may not be directly comparable.

Theorem 1 reveals several important insights on the general-
ization performance when the ground-truth function belongs
to Ft2.

(i) Descent in the overparameterized region: When p in-
creases, both sides of Eq. (10) decreases, suggesting that
the test error of the overfitted NTK model decreases with

4 Although Term 1 in Eq. (10) in its current form does not
depend on g(-), it is possible to modify our proof so that the norm
of g(+) also enters Term 1.
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p. In Fig. 1(a), we choose a ground-truth function in F*2
(we will explain why this function is in F*2 later in Sec-
tion 4). The test MSE of the aforementioned NTK model
(green curve) confirms the overall trend® of descent in the
overparameterized region. We note that while (Arora et al.,
2019) provides a generalization error upper-bound for large
p (i.e., Eq. (11)), the upper bound there does not capture the
dependency in p and thus does not predict this descent.

More importantly, we note a significant difference between
the descent in Theorem 1 and that of min /5-norm overfit-
ting solutions for linear models with simple features (Belkin
et al., 2018b; 2019; Bartlett et al., 2020; Hastie et al., 2019;
Muthukumar et al., 2019; Liao et al., 2020; Jacot et al.,
2020). For example, for linear models with Gaussian fea-
tures, we can obtain (see, e.g., Theorem 2 of (Belkin et al.,
2019)):

2

MSE = | f||2 (1—”) + 7" forp>n+2
p p—n-—1

12)

where o2 denotes the variance of the noise. If we let p — oo
in Eq. (12), we can see that the MSE quickly approaches
|| £113, which is referred to as the “null risk” (Hastie et al.,
2019), i.e., the MSE of a model that predicts zero. Note
that the null-risk is at the level of the signal, and thus is
quite large. In contrast, as p — oo, the test error of the
NTK model converges to a value determined by n and €
(and is independent of the null risk). This difference is
confirmed in Fig. 1(a), where the test MSE for the NTK
model (green curve) is much lower than the null risk (the
dashed line) when p — oo, while both the min /5-norm (the
red curve) and the min ¢;-norm solutions (the blue curve)
(Ju et al., 2020) with Fourier features rise to the null risk
when p — oo. Finally, note that the descent in Theorem 1
requires p to increase much faster than n. Specifically, to
keep Term 2 in Eq. (10) small, it suffices to let p increase a
little bit faster than (n*?~1). This is again quite different
from the descent shown in Eq. (12) and in other related work
using Fourier and Gaussian features (Liao et al., 2020; Jacot
et al., 2020), where p only needs to grow proportionally
with n.

(ii) Speed of the descent: Since Theorem 1 holds for finite
p, it also characterizes the speed of descent. In particu-

lar, Term 2 is proportional to pié(lfé), which approaches
1/,/p when g is large. Again, such a speed of descent is not
captured in (Arora et al., 2019). As we show in Fig. 1(a), the
test error of the gradient descent solution under the original
neural network (cyan curve) is usually quite close to that of

SThis curve oscillates at the early stage when p is small. We
suspect it is because, at small p, the convergence in Eq. (7) has
not occurred yet, and thus the randomness in V[j] makes the
simulation results more volatile.

(a) fix n = 50, change p

—— 2=0
—+ 02=0.04
> 02 =016
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(b) fix p = 20000, change n
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- difference
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Figure 3. The test MSE of the overfitted NTK model for the same
ground-truth function as Fig. 1(a). (a) We fix n = 50 and increase
p for different noise level o2. (b) We fix p = 20000 and increase
n. All data points in this figure are the average of five random
simulation runs.

the NTK model (green curve). Thus, our result provides use-
ful guidance on how fast the generalization error descends
with p for such neural networks.

(iii) The effect of noise: Term 3 in Eq. (10) characterizes
the impact of the noise €, which does not decrease or in-
crease with p. Notice that this is again very different from
Eq. (12), i.e., results of min ¢5-norm overfitting solutions
for simple features, where the noise term % — 0 when
p — oo. We use Fig. 3(a) to validate this insight. In
Fig. 3(a), we fix n = 50 and plot curves of test MSE of
NTK overfitting solution as p increases. We let the noise
€; in the i-th training sample be i.i.d. Gaussian with zero
mean and variance o2. The green, red, and blue curves in
Fig. 3(a) corresponds to the situation o2 = 0, 02 = 0.04,
and 02 = 0.16, respectively. We can see that all three curves
become flat when p is very large, and this phenomenon
implies that the gap across different noise levels does not
decrease when p — oo, which is in contrast to Eq. (12).

In Fig. 3(b), we instead fix p = 20000, and increase n). We
plot the test MSE both for the noiseless setting (green curve)
and for 02 = 0.01 (red curve). The difference between the
two curves (dashed blue curve) then captures the impact of
noise, which is related to Term 3 in Eq. (10). Somewhat
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surprisingly, we find that the dashed blue curve is insensitive
to n, which suggests that Term 3 in Eq. (10) may have room
for improvement.

In summary, we have shown that any ground-truth function
in F*2 leads to low generalization error for overfitted NTK
models. It is then natural to ask what happens if the ground-
truth function is not in 2. Let 72 denote the closure® of
F*2,and D(f, F*2) denotes the L2-distance between f and
F* (i.e., the infimum of the L?-distance from f to every
function in F%2).

Proposition 2. (i) For any given (X,y), there exists a
Sfunction ffg € F' such that, uniformly over all x €
Sd=1 fla () KA f(x) as p — oo. (ii) Consequently,
if the ground-truth function f ¢A}'Z2 (or equivalently,
D(f, F') > 0), then the MSE of f’2 (with respect to the
ground-truth function f) is at least D(f, F’2).

Intuitively, Proposition 2 (proven in Supplementary Mate-
rial Appendix J) suggests that, if a ground-truth function is
outside the closure of F%2, then no matter how large n is,
the test error of a NTK model with infinitely many neurons
cannot be small (regardless whether or not the training sam-
ples contain noise). We validate this in Fig. 1(b), where a
ground-truth function is chosen outside F*2. The test MSE
of NTK overfitting solutions (green curve) is above null risk
(dashed black line) and thus is much higher compared with
Fig. 1(a). We also plot the test MSE of the GD solution of
the real neural network (cyan curve), which seems to show
the same trend.

Comparing Theorem 1 and Proposition 2, we can clearly
see that, all functions in F*2 are learnable by the overfitted
NTK model, and all functions not in F*2 are not.

4. What Exactly are the Functions in F*2?

Our expression for learnable functions in Definition 1 is still
in an indirect form, i.e., through the unknown function g(-).
In (Arora et al., 2019), the authors show that all functions
of the form (z”'a)!, I € {0,1,2,4,6,---} are learnable by
GD (assuming large p and small step size), for a similar
2-layer network with ReLU activation that has no bias. In
the following, we will show that our learnable functions in
Definition 1 also have a similar form. Further, we can show
that any functions of the form (z”a)!, I € {3,5,7,---}
are not learnable. Our characterization uses an interesting
connection to harmonics and filtering on S?~!, which may
be of independent interest.

Towards this end, we first note that the integral form in Def-

We consider the normed space of all functions in L?(S*~*
R). Notice that although g(z) in Definition 1 may not be in
L, f, is always in L. Specifically, f,(a) is bounded for every
x € S when ||g|1 < .

inition 1 can be viewed as a convolution on S¢~! (denoted
by ®). Specifically, for any f, € F ‘2 we can rewrite it as

fy(x) = g ® h(z) = / g(Se)h(S'z)dS, (13)
SO(d)
LT arccos(a:Te)7
27

where e := [00 --- 01]7 € R% and S is a d x d orthogonal
matrix that denotes a rotation in S¢~1, chosen from the
set SO(d) of all rotations. An important property of the
convolution Eq. (13) is that it corresponds to multiplication
in the frequency domain, similar to Fourier coefficients. To
define such a transformation to the frequency domain, we
use a set of hyper-spherical harmonics =4 (Vilenkin, 1968;
Dokmanic & Petrinovic, 2009) when d > 3, which forms an
orthonormal basis for functions on S?~!. These harmonics
are indexed by [ and K, where K = (k1,ko, - ,kq—2)
andl = kg > k1 > ko > -+ > kg_o > 0 (those k;’s
and [ are all non-negative integers). Any function f €
L?(S%! — R) (including even J-functions (Li & Wong,
2013)) can be decomposed uniquely into these harmonics,
ie, f(x) = X, >k cr(l,K)E (x), where cg(-,-) are
projections of f onto the basis function. In Eq. (13), let
¢q(+,-) and ¢ (-, -) denote the coefficients corresponding to
the decompositions of g and h, respectively. Then, we must
have (Dokmanic & Petrinovic, 2009)

cr, (LK) = A~ cy(1, K)en (1, 0), 15)

where A is some normalization constant. Notice that in
Eq. (15), the coefficient for A is ¢y (I, 0) instead of ¢y (I, K),
which is due to the intrinsic rotational symmetry of such
convolution (Dokmanic & Petrinovic, 2009).

h(x) : (14)

The above decomposition has an interesting “filtering” in-
terpretation as follows. We can regard the function h as a
“filter” or “channel,” while the function g as a transmitted
“signal.” Then, the function f; in Eq. (13) and Eq. (15) can
be regarded as the received signal after g goes through the
channel/filter h. Therefore, when coefficient ¢y (1, 0) of h is
non-zero, then the corresponding coefficient cy, (I, K) for
fq can be any value (because we can arbitrarily choose ¢).
In contrast, if a coefficient ¢;, (I, 0) of h is zero, then the
corresponding coefficient cy, (I, K) for f, must also be zero
for all K.

Ideally, if h contains all “frequencies,” i.e., all coefficients
cr (1, 0) are non-zero, then f,; can also contain all “frequen-
cies,” which means that %2 can contain almost all functions.
Unfortunately, this is not true for the function h given in
Eq. (14). Specifically, using the harmonics defined in (Dok-
manic & Petrinovic, 2009), the basis = for (, 0) turns out
to have the form
L%

(—1)’“ Sapk - (wTe)l_Zk, (16)
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where a;  are positive constants. Note that the expres-
sion Eq. (16) contains either only even powers of e (if
[ is even) or odd powers of e (if [ is odd). Then, for
the function h in Eq. (14), we have the following propo-
sition (proven in Supplementary Material, Appendix K.4).
We note that (Basri et al., 2019) has a similar harmonics
analysis, where the expression of ¢ (1, 0) is given. How-
ever, it is not obvious that the expression of ¢ ((, 0) for all
1 =0,1,2,4,6,--- given in (Basri et al., 2019) must be
non-zero, which is made clear by Proposition 3 as follows.

Proposition 3. ¢ (1, 0) is zero for | = 3,5,7,--- and is

non-zero forl = 0,1,2,4,6,---.

We are now ready to characterize what functions are in
F*2. By the form of Eq. (16), for any non-negative inte-

ger k, any even power (x”'e)?" is a linear combination of

29,22, ,Z2F and any odd power (x”e)?* 1 is a linear
combination of 2§, =3, - - - , 221, By Proposition 3, we

thus conclude that any function f,(z) = (xe)! where

1€{0,1,2,4,6, -} can be written in the form of Eq. (15)
in the frequency domain, and thus are in F*2. In con-
trast, any function f(x) = (z7e)! where ! € {3,5,7,---}
cannot be written in the form of Eq. (15), and are thus
not in F*2. Further, the ¢5-norm of any latter function
will also be equal to its distance to F°°. Therefore, the
generalization-error lower-bound in Proposition 2 will ap-
ply (with D(f, F*2) = || f||2) Finally, by Eq. (13), F*2 is
invariant under rotation and finite linear summation. There-
fore, any finite sum of (z7a)!, I = 0,1,2,4,6,--- must
also belong to F*.

For the special case of d = 2, the input & corresponds
to an angle § € [—m, 7], and the above-mentioned har-
monics become Fourier series sin(kf) and cos(kf), k =
0,1,---. We can then get similar results that frequencies of
k €{0,1,2,4,6, -} are learnable (while others are not),
which explains the learnable and not-learnable functions
in Fig. 1. Details can be found in Supplementary Material,
Appendix K.5.

Remark 2. We caution that the above claim on non-learnable
functions critically depends on the network architecture.
That is, we assume throughout this paper that the ReLU acti-
vation has no bias. It is known from an expressiveness point
of view that, using ReLLU without bias, a shallow network
can only approximate the sum of linear functions and even
functions (Ghorbani et al., 2019). Thus, it is not surprising
that other odd-power (but non-linear) polynomials cannot
be learned. In contrast, by adding a bias, a shallow network
using ReLLU becomes a universal approximator (Ji et al.,
2019). The recent work of (Satpathi & Srikant, 2021) shows
that polynomials with all powers can be learned by the cor-
responding 2-layer NTK model. These results are consistent
with ours because a ReLU activation function operating on
& € R ! with a bias can be equivalently viewed as one

operating on a d-dimension input (with the last-dimension
being fixed at 1/+/d) but with no bias. Even though only a
subset of functions are learnable in the d-dimension space,
when projected into a (d — 1)-dimension subspace, they
may already span all functions. For example, one could

. T
write (z”a)? as a linear combination of ([1/%] b))k,

where i € {1,2,--- 5}, [l1, -+ ,I5] = [4,4,2,1,0], and
b; € R? depends only on a. (See Supplementary Mate-
rial, Appendix K.6 for details.) It remains an interesting
question whether similar difference arises for other network
architectures (e.g., with more than 2 layers).

5. Proof Sketch of Theorem 1

In this section, we sketch the key steps to prove Theorem 1.
Starting from Eq. (3), we have

AV2 =HTHHT)" (F(X) +¢). (17)

For the learned model f%(x) = hv, . AV* given in
Eq. (4), the error for any test input « is then

f(x) — f(z) = (hv, H (HH") 'F(X) - f(z))
+ hv, LH (HH") e (18)

In the classical “bias-variance” analysis with respect to MSE
(Belkin et al., 2018a), the first term on the right-hand-side
of Eq. (18) contributes to the bias and the second term
contributes to the variance. We first quantify the second
term (i.e., the variance) in the following proposition.

Proposition 4. For any n > 2, m € {1, 11:7;}

2
d < nY if p > 6Ju(n,dh (4n1+rh), we
P HT(HHT)-! <
X,\'}o {|hV07w ( ) 6‘

VJm(n,d)n|€l|z, foralle e R"} > 1 — m%/ﬁ

The proof is in Supplementary Material Appendix F. Propo-
sition 4 implies that, for fixed n and d, when p — oo, with
high probability the variance will not exceed a certain factor
of the noise ||€]|2. In other words, the variance will not
go to infinity when p — oco. The main step in the proof
is to lower bound min eig (HHT) /p, which is given by
1/(Jm(n,d)n). Note that this is the main place where we
used the assumption that x is uniformly distributed. We
expect that our main proof techniques can be generalized to
other distributions (with a different expression of J,,,(n, d)),
which we leave for future work.

must have

Remark 3. In the upper bound in (Arora et al., 2019) (i.e.,
Eq. (11)), any noise added to y will at least contribute to
the generalization upper bound Eq. (11) by a positive term
€’ (H>)~'e/n. Thus, their upper bound may also grow as
min eig(H>) decreases. One of the contribution of Propo-
sition 4 is to characterize this minimum eigenvalue.
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We now bound the bias part. We first study the class of
ground-truth functions that can be learned with fixed V.
We refer to them as pseudo ground-truth, to differentiate
them with the set F*2 of learnable functions for random V.
They are defined with respect to the same g(-) function, so
that we can later extend to the “real” ground-truth functions
in 7“2 when considering the randomness of V.

Definition 2. Given V, for any learnable ground-truth
Sfunction f, € F* with the corresponding function g(-),
define the corresponding pseudo ground-truth as

of
@)= [ o= 2 i),

The reason that this class of functions may be the learnable
functions for fixed V| is similar to the discussions in Eq. (5)
and Eq. (6). Indeed, using the same choice of g(z) in Eq. (8),
the learned function fez in Eq. (5) at fixed V| is always of
the form in Definition 2.

The following proposition gives an upper bound of the gen-
eralization performance when the data model is based on
the pseudo ground-truth and the NTK model uses exactly
the same V.

Proposition 5. Assume fixed Vo (thus p and d are also
fixed), there is no noise. If the ground-truth function is
[ = 3, in Definition 2 and ||g||c < 00, then for any x €

SV and q € [1, o), we have Prx {|f%(z) — f(z)| <
-3(1-1 9,2 __¥Yn

n 5 ( )} >1-2e exp( 8”9‘&).

The proof is in Supplementary Material, Appendix H. Note
that both the threshold of the probability event and the
upper bound coincide with Term 1 and Term 4, respec-
tively, in Eq. (10). Here we sketch the proof of Propo-
sition 5. Based on the definition of the pseudo ground-
truth, we can rewrite 3, as f3; (¢) = hv, zAV*, where
AV* € R is given by, for all j € {1,2,---,p},

AV*[j] = [sa1 Lizrvos012 22 dp(z). From Eq. (3)

and Eq. (4), we can see that the learned model is f2(z) =
hv, «PAV* where P := H” (HH”)~'H. Note that P
is an orthogonal projection to the row-space of H. Fur-
ther, it is easy to show that |hv, 4|2 < /p. Thus,
we have |7 (@) — f5 (@)] = |hvya(P — DAV <
VPl(P —I)AV*|5. The term (P — I)AV* can be inter-
preted as the distance from AV™* to the row-space of H.
Note that this distance is no greater than the distance be-
tween AV™ and any point in the row-space of H. Thus, in
order to get an upper bound on ||(P — I)AV*||5, we only
need to find a vector a € R™ that makes ||[AV* — H  a||,
as small as possible, especially when n is large. Our proof
uses the vector a such that its i-th element is a; := g(n—);i).
See Supplementary Material, Appendix H for the rest of the
details.

The final step is to allow V{ to be random. Given any
random V), any function f;, € F 2 can be viewed as the
summation of a pseudo ground-truth function (with the same
¢g(+)) and a difference term. This difference can be viewed as
a special form of “noise”, and thus we can use Proposition 4
to quantify its impact. Further, the magnitude of this “noise’
should decrease with p (because of Eq. (7)). Combining this
argument with Proposition 5, we can then prove Theorem 1.
See Supplementary Material, Appendix I for details.

i

6. Conclusions

In this paper, we studied the generalization performance of
the min /5-norm overfitting solution for a two-layer NTK
model. We provide a precise characterization of the learn-
able ground-truth functions for such models, by providing a
generalization upper bound for all functions in F*2, and a
generalization lower bound for all functions not in F*¢2. We
show that, while the test error of the overfitted NTK model
also exhibits descent in the overparameterized regime, the
descent behavior can be quite different from the double
descent of linear models with simple features.

There are several interesting directions for future work. First,
based on Fig. 3(b), our estimation of the effect of noise
could be further improved. Second, it would be interesting
to explore whether the methodology can be extended to
NTK model for other neural networks, e.g., with different
activation functions and with more than two layers.
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