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A. Proof of Theorem 1
We state the full version of our concentration result.

Theorem 5. Let δ ≤ e−1. Let θ̂t be the solution of Eq. (1) in the main text where, for every s ∈ [t], ys is conditionally
independent from x1, . . . , xs−1, xs+1, . . . , xt given xs (i.e., fixed design). Let teff be the number of distinct vectors in
{xs}ts=1. Fix x ∈ Rd such that ‖x‖ ≤ 1. Define γ(d) = 64(d log(6)+log((2+teff)/δ)). If ξ2

t := maxs∈[t] ‖xs‖2Ht(θ∗)−1 ≤
1

γ(d) ,

P
(
|x>(θ̂t − θ∗)| ≤ 2.4 · ‖x‖Ht(θ∗)−1

√
log(2(2 + teff)/δ),

∀x′ ∈ Rd,
1√
2.2
‖x′‖(Ht(θ∗))−1 ≤ ‖x′‖(Ht(θ̂t))−1 ≤

√
2.2‖x′‖(Ht(θ∗))−1

)
≥ 1− δ ,

which implies the following empirical variance bound:

P
(
|x>(θ̂t − θ∗)| ≤ 3.6 · ‖x‖Ht(θ̂t)−1

√
log(2(2 + teff)/δ)

)
≥ 1− δ .

To improve the concentration inequality from Li et al. (2017), we follow their analysis closely but exploit the variance term
whenever possible.

We define the following:

• Let H := Ht(θ
∗) =

∑t
s=1 µ̇(x>s θ

∗)xsx
>
s .
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• Let ys ∈ {0, 1} be the binary reward when arm xs is pulled at time s. Let ηs := ys − µ(x>s θ
∗) and σ2

s := µ̇(x>s θ
∗).

• Define zt :=
∑t
s=1 ηsxs.

• Let α(x, θ1, θ2) = µ(x>θ1)−µ(x>θ2)
x>(θ1−θ2)

. We use the shorthand αs(θ̂t, θ∗) := α(xs, θ̂t, θ
∗).

• Let G :=
∑t
s=1 αs(θ̂t, θ

∗)xsx
>
s . Note that by the optimality condition,

zt =
∑
s

(µ(x>s θ̂t)− µ(x>s θ
∗))xs =

∑
s

αs(θ̂t, θ
∗)xsx

>
s (θ̂t − θ∗) = G(θ̂t − θ∗) . (10)

• Define gt :=
∑t
s=1 µ(x>s θ)xs. The following identity is well-known (e.g., (Filippi et al., 2010, Proposition 1)):

‖θ̂t − θ∗‖G = ‖gt(θ̂t)− gt(θ∗)‖G−1 (11)

• Let E := G−H .

First, we assume the following event:

E0 :=

∀s ∈ [t],

∣∣∣∣∣αs(θ̂t, θ∗)− µ̇(x>s θ
∗)

µ̇(x>s θ
∗)

∣∣∣∣∣ ≤ Q for some Q > 0

 , (12)

which we will show is true later under suitable stochastic events.

The main decomposition: We use the following decomposition based on Eq. (10) and tackle those two terms separately.

|x>(θ̂t − θ∗)| = |x>G−1zt| = |x>(H + E)−1zt| = |x>H−1zt − x>H−1E(H + E)−1zt|
≤ |x>H−1zt|+ |x>H−1E(H + E)−1zt| .

We bound the two terms separately.

Term 1: |x>H−1zt| = |
∑
s 〈x,H−1xs〉ηs|

Note that H−1 is deterministic (unlike G−1) conditioning on {x1, . . . , xt}, so we can apply the standard argument for the
concentration inequality. With the following Bernstein’s inequality in mind, we assume the event E1(x) defined below.

Lemma 1. Let δ ≤ e−1 and define

E1(x) :=

{
|x>H−1zt| ≤

√
2‖x‖H−1

√
log(2/δ) +

2

3
‖x‖H−1ξt log(2/δ)

}
.

Then, P
(
E1(x)

)
≥ 1− δ.

Proof. The proof can be found in Section A.2.

Term 2: |x>H−1E(H + E)−1zt|

We have

|x>H−1E(H + E)−1zt| = |x>H−1EG−1zt| ≤ ‖x‖H−1‖H−1/2EH−1/2‖‖G−1zt‖H
= ‖x‖H−1‖H−1/2EH−1/2‖‖θ̂t − θ∗‖H

Let us study the term ‖H−1/2EH−1/2‖. For a symmetric matrix A, the singular values are the absolute values of the
eigenvalues. Thus, we have

‖A‖ = max

{
max

x:‖x‖≤1
x>Ax, max

x:‖x‖≤1
x>(−A)x

}
.

With this, we need to study both x>H−1/2EH−1/2x and x>H−1/2(−E)H−1/2x. Under the event E0,

max{x>H−1/2EH−1/2x, x>H−1/2(−E)H−1/2x}

≤ x>H−1/2

(∑
s

|αs(θ̂t, θ∗)− µ̇(x>s θ
∗)|xsx>s

)
H−1/2x
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≤ x>H−1/2

(∑
s

Qµ̇(x>s θ
∗)xsx

>
s

)
H−1/2x

= Q‖x‖2 ≤ Q (∵ ‖x‖ ≤ 1)

=⇒ ‖H−1/2EH−1/2‖ ≤ Q .

For ‖θ̂t − θ∗‖H , we first use the lemma below to bound it by (1 + D)‖zt‖H−1 . The key is to use the self-concordance
control lemma (Faury et al., 2020, Lemma 9), we can relate G and H as a function of D. If A and B are matrices, then we
use A � B to mean that A−B is positive semi-definite.

Lemma 2. Let D = maxs∈[t] |x>s (θ̂t − θ∗)|.

G � 1

1 +D
·H

where A � B means that A−B is positive semi-definite.

Proof. We first note that, by the self-concordance control lemma (Faury et al., 2020, Lemma 9),

αs(θ1, θ2) ≥ µ̇(x>s θ2)

1 + |x>s (θ1 − θ2)|
.

Then,

G =

t∑
s

α(xs, θ1, θ2)xsx
>
s �

1

1 + maxs∈[t] |x>s (θ1 − θ2)|

t∑
s

µ̇(x>s θ2)xsx
>
s .

Notice that the sum on the RHS is Ht(θ2).

We then bound ‖zt‖H−1 by the following concentration result via the covering argument.

Lemma 3. Recall ξt = maxs∈[t] ‖xs‖H−1 . Let δ ≤ e−1. Define E2 and βt as:

E2 :=


∥∥∥∥∥∥

t∑
s

ηsxs

∥∥∥∥∥∥
H−1

≤ 2
√

2 ·
√
d log(6) + log(1/δ) +

4

3
ξt(d log(6) + log(1/δ)) =:

√
βt

 .

Then, P(E2) ≥ 1− δ.

Proof. See Section A.2.

Let D := maxs≤t |x>s (θ̂t − θ∗)|. Therefore,

|x>H−1E(H + E)−1zt| ≤ ‖x‖H−1(1 +D)Q
√
βt (Lemma 2)

To summarize, under E0 ∩ E1(x) ∩ E2, we have

|x>(θ̂t − θ∗)| ≤
√

2‖x‖H−1

√
log(2/δ) +

2

3
‖x‖H−1ξt log(2/δ)

+ ‖x‖H−1(1 +D)Q

(
2
√

2
√
d log(6) + log(1/δ) +

4

3
ξt(d log(6) + log(1/δ))

)
.

(13)

We now aim to control (1 +D)Q to be small so that the entire RHS is O(‖x‖H−1

√
log(1/δ)).

A.1. Controlling (1+D)Q

Assume E2. We first assume that for every s ∈ [t], E1(xs) is true and then take the maximum over s on the inequality
implied by E1(xs) to obtain

D = max
s
|x>s (θ̂t − θ∗)| ≤

√
2ξt
√

log(2/δ) +
2

3
ξ2
t log(2/δ) + ξt(1 +D)Q

√
βt (14)

where
√
βt is defined in Lemma 3.
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To control (1 + D)Q, one can show that the self concordance control lemma (Faury et al., 2020, Lemma 9) implies the
following, which we use to motivate our choice of Q and satisfy E0:∣∣∣∣∣αs(θ̂t, θ∗)− µ̇(x>s θ

∗)

µ̇(x>s θ
∗)

∣∣∣∣∣ ≤ eD − 1−D
D

=: Q .

Then, one can show that

D ≤ 3

5
=⇒ (1 +D)Q = (1 +D)

eD − 1−D
D

≤ D . (15)

So, if we can ensure D ≤ 3
5 , then we have (1 +D)Q ≤ D, which can be applied to Eq. (14) to arrive at

D ≤
√

2ξt
√

log(2/δ) + 2
3ξ

2
t log(2/δ)

1− ξt
√
βt

, (16)

assuming that 1− ξt
√
βt > 0. Thus, it remains to

(A) find a sufficient condition for D ≤ 3
5 and 1− ξt

√
βt > 0,

(B) bound the RHS of Eq. (16) to obtain the bound on D, and
(C) use the bound on Eq. (13) to get the final bound.

For (A), we prove the following lemma.

Lemma 4. Under E2, we have

ξt ≤
0.12√

d log(6) + log(1/δ)
=⇒ ξt

√
βt ≤

3

8
=⇒ D ≤ 3

5
. (17)

Proof. Using Lemma 2,

D2 ≤ ξ2
t ‖θ̂t − θ∗‖2H ≤ ξ2

t (1 +D)‖θ̂t − θ∗‖2G
= ξ2

t (1 +D) · ‖gt(θ̂t)− gt(θ∗)‖2G−1

≤ ξ2
t · (1 +D)2‖gt(θ̂t)− gt(θ∗)‖2H−1

≤ (1 +D)2ξ2
t βt (by Eq. (10) and E2)

=⇒ D ≤ (1 +D)ξt
√
βt

=⇒ D ≤
√
βtξt

1−
√
βtξt

.

where the last line requires an assumption that 1−
√
βtξt > 0. For this, we require that

√
βtξt ≤ 3

8 . Then,

D ≤ 8

5

√
βtξt .

In order to control the RHS above by 3/5, we need to satisfy ξt ≤ 5
8
√
βt
· 3

5 . However, βt depends on ξt, so we need to solve
for ξt. Let C := d log(6) + log(1/δ). Then, we need to solve

ξt ≤
3

8(2
√

2 ·
√
C + 4

3ξtC)
,

which is quadratic in ξt. Solving for ξt, we have ξ ≤ 1√
C
·
(

6

16
√

2+
√

162·2+12· 32
3

)
= 0.125...√

C
. Thus, it suffices to require

ξt ≤ 1
8
√
C

.

Hereafter, we assume that ξt ≤ 1

8
√
d log(6)+log(1/δ)

.

For (B), by Lemma 4, we can deduce from Eq. (16) that

D ≤ 8

5
·
(√

2ξt
√

log(2/δ) +
2

3
ξ2
t log(2/δ)

)
.
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For (C), we now turn back to the initial concentration inequality (13). We first bound the last term of Eq. (13):

‖x‖H−1(1 +D)Q
√
βt ≤ ‖x‖H−1D

√
βt (∵ Lemma 4 & Eq. (15))

≤ ‖x‖H−1

8

5
·
(√

2ξt
√

log(2/δ) +
2

3
ξ2
t log(2/δ)

)
·
√
βt

≤ ‖x‖H−1

8

5
·
(√

2 · 3

8

√
log(2/δ) +

1

4
ξt log(2/δ)

)
(∵ Lemma 4)

≤ ‖x‖H−1

8

5
·

(
√

2 · 3

8

√
log(2/δ) +

1

4
· 1

8
√
d log(6) + log(1/δ)

√
log(2/δ)

√
log(2/δ)

)

≤ ‖x‖H−1

8

5
·
(√

2 · 3

8

√
log(2/δ) +

1

32

√
log(2/δ)

)
≤ 0.9 · ‖x‖H−1

√
log(2/δ) .

Similarly, one can show that 2
3‖x‖H−1ξt log(2/δ) ≤ 1

12‖x‖H−1

√
log(2/δ). Altogether, under our condition on ξt, E2,

E1(x), and ∩ts=1E1(xs), Eq. (13) implies that

|x>(θ̂t − θ∗)| ≤ 2.4 · ‖x‖H−1

√
log(2/δ) .

Note that P(E2, E1(x),∩s∈[t]E1(xs)) ≥ 1− (teff + 2)δ. To obtain our theorem statement, we replace δ with δ/(teff + 2).
Here, we have teff instead of t because E(x) and E(x′) are identical events when x = x′.

Furthermore, the following lemma shows that the empirical variance is within a constant factor of the true variance. One can
easily check that the condition in the lemma is satisfied under the events we have assumed and the condition on ξt, which
implies the theorem statements.

Lemma 5. Suppose D = maxs∈[t] |x>s (θ̂t − θ∗)| ≤ 1. Then, for all x,

1√
2D + 1

‖x‖(Ht(θ∗))−1 ≤ ‖x‖(Ht(θ̂t))−1 ≤
√

2D + 1‖x‖(Ht(θ∗))−1 .

Proof. See Section A.2.

A.2. Proof of Auxiliary Results

Proof of Lemma 1. It suffices to bound P(E1(x) | x1, . . . , xt) ≥ 1 − δ because this implies that P(E1(x)) =∫
x1,...,xt

P(E1(x) | x1, . . . , xt) dF (x1, . . . , xt) ≥ 1 − δ. For brevity, we omit the conditioning on x1, . . . , xt from
probability statements for the rest of the proof.

Define τs := 〈x,H−1xs〉ηs. We have that E τs = 0, σ2
s = E τ2

s = x>H−1xsx
>
s H
−1x, and |τs| ≤ |〈x,H−1xs〉| for all

s ∈ [t]. Let F = maxs fs and S =
∑t
s=1 σ

2
s . Using the standard Bernstein inequality, we have

∀ε > 0,P(
t∑

s=1

τs ≤ ε) ≤ exp

(
− ε2

2S + 2
3Fε

)
This leads to, with probability at least 1− δ,∑

s∈[t]

τs ≤
2

3
F log(1/δ) +

√
2S log(1δ)

By union bound, w.p. at least 1− 2δ,

|
∑
s∈[t]

τs| ≤
2

3
F log(1/δ) +

√
2S log(1δ)

Noting that S =
∑
s σ

2
s = ‖x‖2H−1 and F ≤ ‖x‖H−1 maxs ‖xs‖H−1 concludes the proof.

Proof of Lemma 3. As done in Proof of Lemma 1, we condition on x1, . . . , xt. The proof closely follows Li et al. (2017)
but we employ the Bernstein inequality. Let B(1) be the Euclidean ball of radius 1 and B̂(1) be a 1/2-cover of B(1). It
is well-known that one can find a cover B̂(1) of cardinality 6d; see Pollard (1990, Lemma 4.1). In this proof, we use the
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shortcut H := Ht(θ
∗).

Note that ‖zt‖H−1 = ‖H−1/2zt‖2 = supa∈B(1) 〈a,H−1/2zt〉. Fix x ∈ Rd. Let x̂ be the closes point to x in the cover B̂(1).
Then,

〈x,H−1/2zt〉 = 〈x̂, H−1/2zt〉+ 〈x− x̂, H−1/2zt〉

= 〈x̂, H−1/2zt〉+ ‖x− x̂‖〈 x− x̂
‖x− x̂‖

, H−1/2zt〉

≤ 〈x̂, H−1/2zt〉+
1

2
· sup
a∈B(1)

〈a,H−1/2zt〉

= 〈x̂, H−1/2zt〉+
1

2
· ‖zt‖H−1 .

Taking sup over x ∈ B(1) on both sides, we have

‖zt‖H−1 ≤ 〈x̂, H−1/2zt〉+
1

2
· ‖zt‖H−1 =⇒ ‖zt‖H−1 ≤ 2〈x̂, H−1/2zt〉 .

This implies that, for q > 0,

P(‖zt‖H−1 > q) ≤ P(2 sup
x̂∈B̂(1)

〈x̂, H−1/2zt〉 > q) ≤
∑

x̂∈B̂(1)

P(〈x̂, H−1/2zt〉 > q/2) . (18)

It remains to bound P(〈x̂, H−1/2zt〉 > q/2) for any x̂ and then apply the union bound. Using the standard Bernstein
inequality (see the proof of Lemma 1), we have, w.p. at least 1− δ,∑

s

〈x̂, H−1/2xs〉ηs ≤
√

2‖x̂‖2 log(1/δ) +
2

3
ξt log(1/δ)

Let us set q such that the RHS above is equal to q/2. Replacing δ above with δ
6d

and taking a union bound over all possible
x̂ ∈ B(1) concludes the proof.

Proof of Lemma 5. Let α(z1, z2) = µ(z1)−µ(z2)
z1−z2 . Let s ∈ [t]. Because α(z1, z2) = α(z2, z1), Faury et al. (2020, Lemma

9) imply

µ̇(x>s θ
∗)

1− exp(−D)

D
≤ α(x>s θ

∗, x>s θ̂t) ≤ µ̇(x>s θ
∗) · exp(D)− 1

D
and

µ̇(x>s θ̂t)
1− exp(−D)

D
≤ α(x>s θ

∗, x>s θ̂t) ≤ µ̇(x>s θ̂t) ·
exp(D)− 1

D
.

Then,

µ̇(x>s θ̂t) ≥
D

exp(D)− 1
· α(x>s θ

∗, x>s θ̂t) ≥
D

exp(D)− 1

1− exp(−D)

D
· µ̇(x>s θ

∗)
(a)

≥ 1

2D + 1
µ̇(x>s θ

∗)

where (a) is due to the following fact: using z ≤ 1 =⇒ ez ≤ z2 + z + 1, we have D
exp(D)−1

1−exp(−D)
D = eD−1

eD(eD−1)
=

1
eD
≥ 1

D2+D+1 ≥
1

2D+1 . This implies that Ht(θ̂t) � 1
2D+1Ht(θ

∗). This concludes the proof of the second inequality. One
can prove the other inequality similarly.

B. κ−1-free conditioning for Theorem 5
In this section, we consider a case where the burn-in condition (i.e., the requirement on ξt) in our Theorem 5 can be satisfied
without spending κ−1 = minx:‖x‖≤1 µ̇(x>θ∗) = Θ(exp(S)) samples where S = ‖θ∗‖. More specifically, we show that
it is possible to use a sample size that is polynomial rather than exponential in S∗ to satisfy our burn-in condition. The
implication of this is that our improved burn-in condition ξ2

t = maxs∈[t] ‖xs‖2Ht(θ∗)−1 ≤ O( 1
d+log(t/δ) ) is fundamentally

different from that of Li et al. (2017, Theorem 1) which requires 1
λmin(V ) ≤ O( 1

κ−4(d2+log(1/δ)) ). Indeed their condition
can only be satisfied after Ω(exp(S)) burn-in samples at all times. The construction is based on the Gaussian measurements
that are common in practice and often considered in the compressed sensing literature (Plan & Vershynin, 2012).

Gaussian Assumption: We consider t arms sampled from the following Gaussian distribution: xs ∼ N (0, 1
dI), 1 ≤ s ≤ t.
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We define r := S2/d and further assume d = Ω(S2) so that r ≤ 1.

Note: though this will violate the assumption that ‖xs‖ ≤ 1, needed for the theorem, one can show that for large enough
d, the norm of xs concentrates around 1. Using this, one can find a constant c ≤ 1 so that with high probability a sample
x ∼ N (0, cdI) satisfies ‖x‖ ≤ 1, and then apply our argument below.

Continuing, under our Gaussian assumption, we have x>s θ
∗ ∼ N (0, S2/d). This implies that, w.p. at least 1− δ, we have

∀s ∈ [t], |x>s θ∗| ≤
√

2S2

d log(2t/δ) =: W . Let V =
∑t
s=1 xsx

>
s . Then with high probability,

H(θ∗) � µ̇(−W )V = µ̇(W )V

Furthermore utilizing Li et al. (2017, Proposition 1) and our Gaussian assumption on the samples {xs}ts=1 implies that,
given B > 0, there exists an absolute constant C1 such that, w.p. at least 1− δ,

t ≥ C1 · d2(d+ log(1/δ)) + 2dB =⇒ λmin(V ) ≥ B (19)

Thus, under the condition on t above, on a high probability event we have that

ξ2
t ≤ max

x:‖x‖≤1
‖x‖2H(θ∗)−1 ≤

1

µ̇(W )
max

x:‖x‖≤1
‖x‖2V −1 ≤

1

µ̇(W )

1

λmin(V )
≤ 1

µ̇(W )B

It remains to control the RHS above to be no larger than 1
d+log(6(2+t)/δ) , which means that we will satisfy the burnin

condition of Theorem 5. Since 6(2 + t) ≤ 18t, it suffices to show that

µ̇

(√
S2

d
log(t/δ)

)
B ≥ d+ log(18t/δ)

Using the fact that µ̇(z) ≥ 1
4e
−z , it thus suffices to show that

1

4
exp

(
−
√

2r log(2t/δ)
)
·B ≥ d+ log(18t/δ)

We will make the simple choice of

B :=
1

4
exp

(√
2r log(2t/δ)

) (
d+ log(18t/δ)

)
≤ 1

4
exp

(
1 + log((2t/δ)1/2)

) (
d+ log(18t/δ)

)
(r ≤ 1 and AM-GM ineq.)

=
e

4
(
2t

δ
)1/2

(
d+ log(18t/δ)

)
With this choice of B it suffices to compute the lower bound on the right hand side of Eq. (19). With algebra, one can show
that there exists

t0 = Õ(d2 log(1/δ) +
d4

δ
)

where Õ hides polylogarithmic factors. such that t ≥ t0 implies the condition of Eq. (19).

To summarize, we just showed that, there exists an absolute constant C such that, w.p. at least 1− 2δ,

t ≥ C · (d2 log(1/δ) +
d4

δ
) =⇒ ξt ≤

1

γ(d)

when r = S2/d ≤ 1. Simply setting r = 1, we have d = S2, so our the statement above implies that the sample size needs
to be only polynomial in S for our choice of measurements. This is in stark contrast to the result of Li et al. (2017) that
requires the sample size to be exponential in S for any set of measurements.

C. Proofs for GLM-Rage
Burn-In Results

Lemma 6. For δ ≤ 1/16 and d ≥ 4, with probability greater than 1−δ, for all λ ∈ ∆X , we have 1
3H(λ, θ∗) ≤ H(λ, θ̂0) ≤

3H(λ, θ∗).
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Proof. Firstly note that,

H(λ0, θ
∗) ≥

∑
x∈X

λ0,xκ0xx
> ≥ κ0A(λ0)

So for any x ∈ X ,

‖x‖2H(λ0,θ∗)−1 ≤ κ−1
0 ‖x‖2A(λ0)−1

Define H0(θ∗) =
∑n0

s=1 µ̇(x>s θ
∗)xsx

>
s . Thus at the end of the burn-in phase,

max
x∈X
‖x‖2

H−1
0 (θ∗)

≤ (1 + ε)

n0
max
x∈X
‖x‖2H−1(λ0,θ∗)

(Lemma 13 rounding)

≤ 3(1 + ε)

n0
κ−1

0 max
x∈X
‖x‖2A−1(λ0)

≤ 3(1 + ε)κ−1
0 d

n0
(Kiefer-Wolfowitz)

≤ 1

γ(d) log(2|X |(2 + |X |)/δ)
where we have employed the Kiefer-Wolfowitz theorem (Lattimore & Szepesvári, 2020, Theorem 21.1), which states that
minλ∈∆X maxx∈X ‖x‖2A(λ)−1 = d. In particular this implies using Theorem 5,

|x>(θ∗ − θ̂0)| ≤ 2.4
√
‖x‖2(H0(θ∗))−1 log(2|X |(2 + |X |)/δ)

≤ 2.4

√
log(2|X |(2 + |X |)/δ)

γ(d) log(2|X |(2 + |X |)/δ)

≤ 1

With this, we apply Lemma 14 to conclude the proof.

Define the events

Rk = {1

3
H(λ, θ∗) ≤ H(λ, θ̂k) ≤ 3H(λ, θ∗),∀λ ∈ ∆X }, k ≥ 0

and

E2,k = {∀z ∈ Zk, |〈z∗ − z, θ̂k − θ∗〉| ≤ 2−k}, k ≥ 1.

In addition, define E1 = ∩∞k=0Rk and E2 = ∩∞k=1E2,k.

Lemma 7 (Closeness of θt). We have that P(Rk|Rk−1, · · · ,R0) ≥ 1 − 2δ, i.e. for all k ≥ 1, 1
3H(λk, θ

∗) ≤
H(λk, θ̂k−1) ≤ 3H(λk, θ

∗)

Proof. We proceed by induction. The base case of t = 0, is handled by Lemma 6 above. Assume that the eventRk−1 holds.
On this event, for k > 1, we first verify that maxx∈X ‖x‖2Ht(θ∗)−1 ≤ 1/γ(d)

max
x∈X
‖x‖2

H−1
k (θ∗)

≤ (1 + ε)

nk
max
x∈X
‖x‖2H−1(λk,θ∗)

(Lemma 13 rounding)

≤ 3(1 + ε)

nk
max
x∈X
‖x‖2

H−1(λk,θ̂k−1)
(On eventRk−1)

=
1

γ(d) log(2|X |k2(2 + |X |)/δ)

Thus with probability greater than 1− δ/(k2|X |) conditioned onRk−1

|x>(θ∗ − θ̂k)| ≤ 2.4
√
‖x‖2Hk(θ∗)−1 log(2|X |k2(2 + |X |)/δ) (By Theorem 5)
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≤ 2.4

√
(1 + ε)‖x‖2H(λk,θ∗)−1 log(2|X |k2(2 + |X |)/δ)

nk
(By Lemma 13)

≤ 2.4

√
3(1 + ε)‖x‖2

H(λk,θ̂k−1)−1
log(2|X |k2(2 + |X |)/δ)

nk
(By the induction hypothesisRk−1)

≤ 2.4

√
3(1 + ε) log(2|X |k2(2 + |X |)/δ)

3(1 + ε)γ(d) log(2|X |k2(2 + |X |)/δ)

≤ 1

Then, union bounding over X gives that conditioned onRk−1, we have the event ∪x∈X {|x>(θ̂k−1 − θ∗)| ≤ 1} is true with
probability greater than 1− δ/k2. In particular, now applying Lemma 14 proves the claim.

Lemma 8 (Concentration). In round k, if we take nk samples as specified in the algorithm, then

|(z∗ − z)>(θ̂k − θ∗)| ≤ 2−k

for all z ∈ Zk with probability greater than 1− δ
k2 given {Rs, E2,s}k−1

s=1 ∩R0, or in other words P(E2,k|{Rs, E2,s}k−1
s=1 ∩

R0) ≥ 1− δ
k2 .

Proof. In the previous lemma we showed that conditioned on {Rs, E2,s}k−1
s=1 , maxx∈X ‖x‖2Hk(θ∗)−1 ≤ 1/γ(d) . Given Zk

(a random set), we can apply Theorem 5, to calculate for any z ∈ Zk

(z∗ − z)>(θ̂k − θ∗) ≤ 2.4
√
‖z∗ − z‖2Hk(θ∗)−1 log(2|Z|k2(2 + |X |)/δ) (Theorem 5)

≤ 2.4

√
(1 + ε)‖z∗ − z‖2H(λk,θ∗)−1 log(2|Z|k2(2 + |X |)/δ)

nk
(Lemma 13)

≤ 2.4

√
3(1 + ε)‖z∗ − z‖2

H(λk,θ̂k−1)−1
log(2|Z|k2(2 + |X |)/δ)

nk
(Lemma 7)

≤ 2.4

√
3(1 + ε) log(2|Z|k2(2 + |X |)/δ)

22k · 2.42 · 3(1 + ε) log(2|Z|k2(2 + |X |)/δ)

≤ 2−k

Now

P(E2,k|{Rs, E2,s}k−1
s=1 ∩R0) ≤

∑
V⊂Z

P(E2,k,Zk = V|{Rs, E2,s}k−1
s=1 ∩R0)

≤
∑
V⊂Z

P(E2,t|Zk = V, {Rs, E2,s}k−1
s=1 ∩R0)P(Zk = V|{Rs, Es}k−1

s=1 ∩R0)

≤ δ

k2

∑
V⊂Z

P(Zk = V|{Rs, E2,s}k−1
s=1 ∩R0)

≤ δ

k2

Finally we record a consequence of the previous computation for later use, namely,

(z∗ − z)>(θ̂k − θ∗) ≤ 2.4‖z∗ − z‖Ht(θ̂k−1)−1

√
3 log(2|Z|k2(2 + |X |)/δ) ≤ 2−k (20)

Lemma 9 (Correctness.). On E1(x) and E2, we have that z∗ ∈ Zk, and maxz∈Zk+1
〈z∗ − z, θ∗〉 ≤ 2 · 2−k for all t.

Furthermore, we have P(E1, E2) ≥ 1− δ.
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Proof. Firstly note for any set of events {Ak}∞k=1,

P(∪∞k=1Ak) = P(∪∞k=1

(
Ak \ (∪j<kAj)

)
) ≤

∞∑
k=1

P(Ak \ (∪j<kAj)) ≤
∞∑
k=1

P(Ak | (∩j<kAj)) .

Then, with Ak = Rk ∪ E2,k, we have, using Lemma 6, Lemma 8, and Lemma 9,

P(E2 ∪ E1) ≤ P(∪∞k=1(Rk ∪ E2,k) ∪R0)

≤
∞∑
k=1

P(Rk ∪ E2,k | Rk−1, E2,k−1, . . . ,R1, E2,1) + P(R0)

≤
∞∑
k=1

P(E2,k | Rk−1, E2,k−1, . . . ,R1, E2,1) +

∞∑
k=1

P(Rk | Rk−1, E2,k−1, . . . ,R1, E2,1) + δ

≤
∞∑
k=1

2δ

k2
+ δ

≤ 3δ .

For the following we will assume that event E1 ∩ E2 holds. Now we argue that z∗ will never be eliminated. Indeed for any
z ∈ Zk, note that

〈z − z∗, θ̂k〉 = 〈z − z∗, θ̂k − θ∗〉+ 〈z − z∗, θ∗〉

≤ 2.4‖z∗ − z‖Hk(θ̂k−1)−1

√
3 log(2|Z|k2(2 + |X |)/δ) + 〈z − z∗, θ∗〉

≤ 2.4‖z∗ − z‖Hk(θ̂k−1)−1

√
3 log(2|Z|k2(2 + |X |)/δ) ,

implying that z∗ is not kicked out. Finally, if 〈z∗ − z, θ∗〉 ≥ 2× 2−k, then

〈z∗ − z, θ̂k〉 = 〈z∗ − z, θ̂k − θ∗ + θ∗〉

= 〈z∗ − z, θ∗〉 − ‖z∗ − z‖H(λk,θ̂k−1)−1

√
3 log(2|Z|k2(2 + |X |)/δ) (From(20))

≥ 2× 2−k − 2−k

≥ 2−k

≥ 2.4‖z∗ − z‖Hk(θ̂k−1)−1

√
3 log(2|Z|k2(2 + |X |)/δ)

which is precisely the condition for z to be removed. Finally, we have 〈z∗ − z, θ∗〉 = 〈z∗ − z, θ∗ − θ̂k〉+ 〈z∗ − z, θ̂k〉 ≤
2−k + 2−k, which concludes the proof.

Theorem 6 (Sample Complexity). Define Sk = {z ∈ Z : (z∗ − z)>θ∗ ≤ 2 · 2−(k−1)}, and take ε ≤ 1/2. up constant
factors, Algorithm 1 returns z∗ with probability greater than 1− 3δ in a number of samples no more than

O

(
(1 + ε)

dlog2(2/∆min)e∑
k=1

min
λ∈∆X

max

[
22k max

z,z′∈Sk
‖z − z′‖2H(λ,θ∗)−1 , γ(d) max

x
‖x‖2H(λ,θ∗)−1

]
log(max(|X |, |Z|2)k2/δ)

+ d(1 + ε)κ−1
0 log(|X |/δ) + r(ε) log2(

1

∆min
)

)
.

Proof. For the remainder of the proof we will assume that E1 ∩ E2 holds.

By Lemma 9 on E2, we have that Zk ⊆ Sk, in particular this implies that when 2× 2−k ≤ ∆min, we have |Zk| = 1, so this
implies that the algorithm will terminate in a number of rounds not exceeding dlog2(2/∆min)e

By Lemma 7 on E1, we have that H(λk, θ̂k) ≥ 1
4H(λk, θ

∗). Thus, in each round,
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min
λ∈∆X

max

[
22k2.42 max

z,z′∈Zt
‖z − z′‖2

H(λ,θ̂k−1)−1 , γ(d) max
x∈X
‖x‖2

H(λ,θ̂k−1)−1

]
≤ O

(
min
λ∈∆X

max

[
22k max

z,z′∈Sk
‖z − z′‖2H(λ,θ∗)−1 , γ(d) max

x∈X
‖x‖2H(λ,θ∗)−1

])

Let c be an absolute constant. Thus up to doubly logarithmic factors our final sample complexity is given by

n0 +

dlog2(2/∆min)e∑
k=1

nk

≤ d(1 + ε)γ(d) log(|X |/δ)
κ0

+ c1(1 + ε)

dlog2(2/∆min)e∑
k=1

min
λ∈∆X

max

[
22k max

z,z′∈Sk
‖z − z′‖2H(λ,θ∗)−1 , γ(d) max

x
‖x‖2H(λ,θ∗)−1

]
log(max(|X |, |Z|)k

2

δ
)

+ c2 log2(∆−1
min)r(ε) .

Lemma 10. Define, Sk = {z ∈ Z : (z∗ − z)>θ∗ ≤ 2 · 2−(k−1)}.

log2(2/δmin)∑
k=1

22k min
λ∈∆X

max
z,z′∈Sk

‖z − z′‖2H(λ,θ∗) ≤ log

(
1

∆min

)
min
λ∈∆X

max
z∈Z\z∗

‖z∗ − z‖2H(λ,θ∗)−1

〈θ∗, z∗ − z〉2

=
1

4
log

(
2

∆min

)(
max
λ∈∆X

min
θ∈C
‖θ∗ − θ‖2H(λ,θ∗)

)−1

where C = {θ ∈ Rd : ∃z ∈ Z \ z∗, θ>(z∗ − z) ≤ 0}

Proof. Note that,

log

(
2

∆min

)
min
λ∈∆X

max
z∈Z\z∗

‖z∗ − z‖2H(λ,θ∗)−1

〈θ∗, z∗ − z〉2
= log

(
2

∆min

)
min
λ∈∆X

max
k≤log2(2/∆min)

max
z∈Sk\z∗

‖z∗ − z‖2H(λ,θ∗)−1

〈θ∗, z∗ − z〉2

= log

(
2

∆min

)
min
λ∈∆X

max
k≤log2(2/∆min)

2−2k+4 max
z∈Sk\z∗

‖z∗ − z‖2H(λ,θ∗)−1

a
≥ 16

log(2/∆min)∑
k=1

22k min
λ∈∆X

max
z∈Sk\z∗

‖z∗ − z‖2H(λ,θ∗)−1

b
≥ 4

log(2/∆min)∑
k=1

22k min
λ∈∆X

max
z,z′∈Sk

‖z′ − z‖2H(λ,θ∗)−1

where a is replacing a max with an average and b is using maxz,z′∈Sk ‖z−z′‖2H(λ,θ∗)−1 = maxz,z′∈Sk ‖z−z∗‖2H(λ,θ∗)−1 +

‖z′ − z∗‖2H(λ,θ∗)−1 − 2‖z′ − z∗‖H(λ,θ∗)−1‖z − z∗‖H(λ,θ∗)−1 ≤ 4 maxz∈Sk ‖z − z∗‖2H(λ,θ∗)−1 .

We now tackle the second equality in the theorem statement. Define Cz = {θ ∈ Rd : θ>(z∗ − z) ≤ 0}. Note that,

max
λ∈∆X

min
θ∈C
‖θ∗ − θ‖2H(λ,θ∗) = max

λ∈∆X
min

z∈Z\z∗
min
θ∈Cz
‖θ∗ − θ‖2H(λ,θ∗)

For a fixed λ, standard computation with Lagrange multipliers (as in Theorem 9) shows that the projection,

θz := arg min
θ∈Cz
‖θ∗ − θ‖2H(λ,θ∗) = θ∗ − (z∗ − z)>θ∗H(λ, θ∗)−1(z∗ − z)

‖z∗ − z‖2H(λ,θ∗)−1
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Thus,

‖θ∗ − θ∗‖2H(λ,θ∗) =
(z∗ − z)>θ∗

‖z∗ − z‖2H(λ,θ∗)−1

and the result follows.

D. RAGE-GLM-2
D.1. Review of confidence bounds of (Faury et al., 2020)

Assume that we have observed a sequence of samples (xs, ys)
T
s=1, where, {xs}Ts=1 ∈ X and the xs’s are potentially chosen

adaptively, that is xs, 1 ≤ s ≤ T is allowed to depend on the filtration Fs−1 = {(xr, yr)}s−1
r=1.

For a regularization parameter η > 0, define

HT (η, θ) :=

T∑
s=1

µ̇(x>s θ)xsx
>
s + ηI

We begin by defining our estimator. Let

θ̂MLE
η,T =arg max

θ∈Rd

T∑
s=1

ys logµ(x>s θ)+(1−ys) log(1−µ(x>s θ))−
λ

2
‖θ‖22. (21)

Define,

θ̂T = arg min
‖θ‖2≤S∗

‖gt(θ)− gt(θ̂MLE
η,T )‖HT (η,θ)−1 (22)

where gT (θ) =
∑T
s=1 µ(x>s θ)xs + ηθ. Finally, define

γT (δ) =
√
η(S∗ + 1/2) +

2
√
η

log(1/δ) +
2d
√
η

log(2(1 +
T

dη
)1/2)

We recall the following lemma from (Faury et al., 2020).

Lemma 11 (Lemma 11 of (Faury et al., 2020)). On an event E which is true with probability greater than 1− δ, for all
t ≥ 1

θ∗ ∈ {θ ∈ Rd : ‖θ‖ ≤ S∗, ‖θ − θ̂T ‖HT (η,θ) ≤ (2 + 4S∗)γT (δ)}

In the following we will take η = (d+ log(1/δ))/(S∗ + 1/2). Plugging this in to γT (δ)

√
η(S∗ + 1/2) +

2
√
η

log(1/δ) +
2d
√
η

log

(
2(1 +

T

dη

)1/2

)

=

√
d+ log(1/δ)

S∗ + 1/2
(S∗ + 1/2) +

2√
d+log(1/δ)
S∗+1/2

log(1/δ) +
2d√

d+log(1/δ)
S∗+1/2

log

2

1 +
T

dd+log(1/δ)
S∗+1/2

1/2


≤
√
d+ log(1/δ)

√
S∗ + 1/2 + 2

√
S∗ + 1/2

√
log(1/δ) +

2d
√
S∗ + 1/2√
d

log(2(1 +
T (2S∗ + 1)

2d
)1/2)

=
√
S∗ + 1/2

√d+ log(1/δ) + 2
√

log(1/δ) + 2
√
d log

(
2

(
1 +

T (2S∗ + 1)

2d

)1/2
)

≤
√
S∗ + 1/2

√d(1 + 2 log(2) +
1

2
log

(
1 +

T (2S∗ + 1)

2d

))
+ 3
√

log 1/δ


≤ 3
√
S∗ + 1/2

(
√
d log

(
T (2S∗ + 1)

2d

)
+
√

log 1/δ

)
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Algorithm 4 RAGE-GLM-2
Input: ε, δ, X , Z , κ0, S∗, effective rounding procedure round(n, ε, λ), η = (d+ log(1/δ))/(S∗ + 1/2)

1: initialize t = 1,Z1 = Z, r(ε) = d2/ε, c = c(S∗, ε) = 48
√

(1 + ε)(2S∗ + 1)3

2: θ0 ← BurnIn(X , κ0) . Burn-in phase
3: while |Zt| > 1 do . Elimination phase
4: f(λ) := minz,z′∈Zt ‖z − z′‖2H(λ,θ0)−1

5: λt = arg minλ∈∆X f(λ)

6: rt =

⌈
22tc2f(λt)

(√
d log(c222t(2S∗ + 1)f(λt)/d) +

√
log(t2|Z|2/δ)

)2
⌉

7: nt = max{rt, r(ε)}
8: x1, · · · , xnt ← round(n, ε, λ)
9: Observe rewards y1, · · · , ynt ∈ {0, 1}

10: Compute θ̂t on the samples {(xs, ys)nts=1} . (Use Eq (22))
11: ẑt = arg maxz∈Zt θ̂

>
t z

12: Zt+1 ← Zt \
{
z ∈ Zt : θ̂>t (ẑt − z) ≥ 2−t

}
13: t← t+ 1

14: return ẑt

where the last line uses, (1 + 2 log(2) + 1/2 log(1 + x)) ≤ 3 log(x), x ≥ 2. So as long as T ≥ 4d, we have the following
bound.

γT (δ) ≤ 3
√

2S∗ + 1

[√
d log

(
T (2S∗ + 1)

2d

)
+
√

log(1/δ)

]
=: ΓT (δ) .

The guarantee that T ≥ 4d will be satisfied by the rounding procedures in the algorithm - indeed, taking ε ≤ 1/2 guarantees
that the minimum number of samples we take in each round r(ε) = (d(d+ 1) + 2)/ε ≥ 4d.

D.2. Proof of Sample Complexity

We now provide a sample complexity for Algorithm 4. In this section, we take θt as defined in Eq. (22) using the samples
{(xs, ys)}nts=1 in each round t.

In the regularized setting, rounding implies that,

Ht(η, θ
∗) := Ht(θ

∗) + ηI (23)

≥ n

1 + ε

∑
x∈X

λxµ̇(x>θ∗)xx> + ηI (24)

≥ n

1 + ε
H(λ, θ∗) + ηI (25)

≥ n

1 + ε
H(λ, θ∗) (26)

Define

E1 :=

{
1

3
H(λ0, θ

∗) ≤ H(λ0, θ̂0) ≤ 3H(λ0, θ
∗)

}
By Lemma 6, P(E1) ≥ 1− δ.

Define

E2 = ∩∞t=1{∀z ∈ Zt, |〈z∗ − z, θ̂t − θ∗〉| ≤ 2−t}
Lemma 12. P(E2 ∩ E1) ≥ 1− 3δ and on E1 ∩ E2, z∗ ∈ Zt for all t.

Proof. Claim 1: P(E2|E1) ≥ 1− δ. Assuming E1, For z ∈ Zt, with probability greater than 1− δ
t2|Z|

|(z∗ − z)>(θ̂t − θ∗)| ≤ ‖z∗ − z‖Ht(η,θ∗)−1‖θ∗ − θ̂t‖Ht(η,θ∗)
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≤ (2 + 4S∗)‖z∗ − z‖Ht(η,θ∗)−1Γnt(δ) (Lemma 11)

≤ 2(1 + 2S∗)

√
1 + ε

n
‖z∗ − z‖H(λt,θ∗)−1Γnt(δ) (Rounding Lemma 13)

≤ 8(1 + 2S∗)

√
1 + ε

n
‖z∗ − z‖H(λt,θ0)−1Γnt(δ) (E1)

≤ 8(1 + 2S∗)

√
(1 + ε)f(λt)

n
Γnt(δ)

We wish for this quantity to be bounded above by 2−t. Plugging in Γnt(δ), it suffices to take
√
nt ≥ 24 · 2t(2S∗ + 1)3/2

√
(1 + ε)ft

[√
d log

(
nt(2S∗ + 1)

2d

)
+
√

log(t2|Z|/δ)
]

where for ease of notation we have denoted ft = f(λt). Using Lemma 15 below, shows that it suffices to take,

nt =

⌈
c222tft

(√
d log(c222t(2S∗ + 1)ρ̂t/d) +

√
log(t2|Z|/δ)

)2
⌉

where c = 2 · 24
√

1 + ε(2S∗ + 1)3/2, which is precisely the number of samples we take in the algorithm. Union bounding
over z ∈ Zt ⊂ Z and t ≥ 1 now gives the result.

Claim 2: P(E1 ∩ E2) ≥ 1− 3δ. Note that,

P(Ec1 ∪ Ec2) ≤ P(Ec2) + P(Ec1)

= P(Ec2 |Ec1)P(Ec1) + P(Ec2 |E1)P(E1) + P(Ec1)

≤ P(Ec2 |E1) + 2P(Ec1)

≤ δ + 2δ

≤ 3δ

Claim 3: On E1 ∩ E2, z∗ ∈ Zt for all t ≥ 1. Identical argument to Lemma 9

Remark. We point out that this analysis is not particularly tight, and many constants and the dependence upon S∗ can be
improved upon in practice. In particular, we can trade off a smaller constant for a larger burn-in phase.

Theorem 7 (Sample Complexity). Algorithm 4, returns z∗ with probability greater than 1− 2δ in a number of samples no
more than

O

(
(1 + ε)(2S∗ + 1)3

log2(1/∆min)∑
r=1

22tρt

(
d log2

(
(2S∗ + 1)ρt

∆min

)
+ log(t2|Z|2/δ)

)

+ r(ε) log2(1/∆min) + κ−1
0 (1 + ε)dγ(d) log(|X |/δ)

)
where St = {z ∈ Z : (z∗ − z)>θ∗ ≤ 2 · 2−t} and ρt = minλ∈∆X maxz,z′∈St ‖z − z′‖2H(λ,θ∗)−1 and we assume ε ≤ 1/2.

Proof. Firstly note that P(Ec1 ∪ Ec2) ≤ 2δ. For the remainder of the proof we will assume that E1 ∩ E2 holds.

By Lemma 12, we have that Zt ⊂ St, likewise on E1 we have that H(λt, θ0) ≥ 1
4H(λt, θ

∗). Thus, in each round,

max
z,z′∈Zt

‖z − z′‖2H(λt,θ0)−1 ≤ 4 max
z,z′∈St

‖z − z′‖2H(λ,θ∗)−1

Denoting ρt = minλ∈∆X maxz,z′∈St ‖z − z′‖2H(λ,θ∗)−1 , we see that ft ≤ ρt. This implies that nt ≤
4c222tρt[

√
d log(2c222t(2S∗ + 1)ρt/d) +

√
log(t2|Z|2/δ)]2.
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Thus an upper bound on our final sample complexity is given by
log2(1/∆min)∑

t=1

nt + r(ε) log(1/∆min) + n0

≤
log2(1/∆min)∑

t=1

4c222tρt[
√
d log(c222t(2S∗ + 1)ρt/d) +

√
log(t2|Z|2/δ)]2 + r(ε) log(1/∆min) + n0

≤ 8c2
log2(1/∆min)∑

t=1

22tρt[d log2(c222t(2S∗ + 1)ρt/d) + log(t2|Z|2/δ)] + r(ε) log(1/∆min) + n0

≤ 8c2
log2(1/∆min)∑

t=1

22tρt[d log2(c2
4

∆2
min

(2S∗ + 1)ρt/d) + log(t2|Z|2/δ)] + r(ε) log(1/∆min) + n0

= O

(
(1 + ε)(2S∗ + 1)3

log2(1/∆min)∑
r=1

22tρt[d log2((2S∗ + 1)ρt/∆min)

+ log(t2|Z|2/∆min)] + r(ε) log(1/δ) + κ−1
0 (1 + ε)dγ(d) log(|X |/δ)

)

D.3. Miscellaneous results

We let round(λ, n) denote an efficient rounding procedure as explained in Chapter 12 of (Pukelsheim, 2006), or summarized
in Section B of the Appendix of (Fiez et al., 2019).

Lemma 13 (Rounding ). Assume that λ ∈ ∆X , and that we have sampled x1, · · · , xn ∼ round(λ, n, ε) with n ≥ r(ε) =
(d(d+ 1) + 2)/ε, and ε ≤ 1. Then, for any θ,

∑n
s=1 µ̇(x>s θ)xsx

>
s � n

1+ε

∑
x∈X λxµ̇(x>θ)xx>. This in particular implies

• For any z,

‖z‖2(∑n
s=1 µ̇(x>s θ)xsx

>
s )−1 ≤

(1 + ε)

n
‖z‖2(∑x∈X λxµ̇(x>θ)xx>)−1

• λmin(
∑n
s=1 µ̇(x>s θ)xsx

>
s ) ≥ n

1+ελmin(
∑
x∈X λxµ̇(x>θ)xx>)

Proof. Let s = (nx)x∈X ∈ NX denote the allocation returned by the rounding procedure and let γ = s/n ∈ ∆X denote the
associated fractional allocation. Now consider,

εγ/λ = min
x∈supp(λ)

γx
λx

= max{κ ≥ 0 : γx ≥ κλx for all x ∈ X}

By definition of εγ/λ, ∑
x∈X

γxµ̇(x>θ)xx> ≥ εγ/λ
∑
x∈X

λxµ̇(x>θ∗)xx
>

By Theorem 12.7 of (Pukelsheim, 2006), εγ/λ ≥ 1 − p/n where p = |suppλ|. When dim spanX = d, Caratheodory’s
Theorem (Vershynin, 2018), implies p ≤ d(d+ 1)/2 + 1. Hence,

n∑
s=1

µ̇(x>s θ)xsx
>
s = n

∑
x∈X

γxµ̇(x>θ)xx>

≥ n(1− p

n
)
∑
x∈X

λxµ̇(x>θ)xx>

≥ n

1 + ε

∑
x∈X

λxµ̇(x>θ)xx>

as long as n ≥ (d(d+ 1) + 2)/ε. The result now follows.
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As long as nt ≥ r(ε), we have a guarantee that Ht(θ) ≥ nt
1+εH(λt) for any θ. This implies, Ht(θ)

−1 ≤ 1+ε
nt
H(λt)

−1. This
is a modification of the argument in Fiez et al. (2019).

Lemma 14. Let θ ∈ Rd. Suppose D = maxx∈X |x>(θ − θ∗)| ≤ 1. Then, for all x,
1

2D + 1
H(λ, θ∗) ≤ H(λ, θ) ≤ (2D + 1)H(λ, θ∗)

Proof. The proof is identical to Lemma 5.

Lemma 15. Assume a > 0, b > 2, then for any t ≥ max[(2a)2(log((2a)2/c) + log b + d)2, 2c] we have that
√
t ≥

a[log(b+ t/c) + d]

Proof. Note that if t > 2c, a log(b+ t/c) ≤ a log(b) + a log(t/c), so it suffices to show
√
t ≥ a(log(b) + log(t/c)) + ad

or equivalently, 1
a

√
t − log(b) − d ≥ log(t/c), or doing the substitution u = t/c,

√
c
a

√
u − log(b) − d ≥ log(u) for

t ≥ (2a)2(log (2a)2/c+ log b+ d)2. However, this follows directly from Proposition 6 of (Antos et al., 2010).

E. Lower Bounds
E.1. Instance Dependent Lower Bound
The lemma shows that the main term of the sample complexity of Theorem 2 (from the main paper) given as ρ∗ in Section
3.1 is bounded by a natural experimental design arising from the true problem parameter.

Finally, we provide the following information theoretic lower bound for any PAC-δ algorithm. Define,

β(a, b) =

∫ 1

0

(1− t)µ̇(a+ t(b− a))dt

and analogous to H(λ, θ) we define two additional matrix valued functions,

G(λ, θ1, θ2) =
∑
x∈X

λxα(x, θ1, θ2)xx> (27)

K(λ, θ1, θ2) =
∑
x∈X

λxβ(x, θ1, θ2)xx> (28)

Theorem 8. Any PAC-δ algorithm for the pure exploration logistic bandits problem has a stopping time τ satisfying,

E[τ ]≥ min
λ∈∆Z

max
z∈Z\z∗

θ∈Rd
θ>(z∗−z)≤0

1∑
x∈X λxKL(νx,θ∗ |νx,θ)

log

(
1

2.4δ

)

=c(λ)−1 log
1

2.4δ
, c(λ) = max

λ∈∆X
min
Z\z∗

‖θ − θz‖2K(λ,θ∗,θz),

where firstly, νx,θ = Bernoulli(x>θ), and secondly θz := minθ∈Rd:θ>(z∗−z)≤0 ‖θ− θz‖2K(λ,θ∗,θz) and is given explicitly as
the solution to the fixed-point equation

θz = θ∗ − (z∗ − z)>θ∗G(λ, θz, θ
∗)−1(z∗ − z)

‖z∗ − z‖2G(λ,θz,θ∗)−1

.

In general, it is not clear how to compare our upper bound from Theorem 1 to this lower bound due to the non-explicit
nature of G(λ, θz, θ

∗). The quantity, maxλ∈∆X minz∈Z\{z∗} ‖θ∗ − θz‖2H(λ,θ∗) can be interpreted as a lower bound arising
from a quadratic approximation of the KL-divergence in the first line of the lower bound by the Fisher information matrix.

In this section, we provide an information theoretic lower bound for any PAC-δ algorithm. Define,

β(a, b) =

∫ 1

0

(1− t)µ̇(a+ t(b− a))dt

and analogous to H(λ, θ) we define two additional matrix valued functions,

G(λ, θ1, θ2) =
∑
x∈X

λxα(x, θ1, θ2)xx> (29)
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K(λ, θ1, θ2) =
∑
x∈X

λxβ(x, θ1, θ2)xx> (30)

Theorem 9. Any PAC-δ algorithm for the pure exploration logistic bandits problem has a stopping time τ satisfying,

E[τ ] ≥ c(λ)−1 log
1

2.4δ
, c(λ) = max

λ∈∆X
min

z 6=z∗∈Z
‖θ − θz‖2K(λ,θ∗,θz)

where θz := minθ∈Rd:θ>(z∗−z)≤0 ‖θ − θz‖2K(λ,θ∗,θz) and is given explicitly as the solution to the fixed-point equation

θz = θ∗ − (z∗ − z)>θ∗G(λ, θz, θ
∗)−1(z∗ − z)

‖z∗ − z‖2G(λ,θz,θ∗)−1

Proof. Let C = {θ ∈ Θ : ∃z ∈ Z, θ>(z∗ − z) ≤ 0}. The transportation theorem of (Kaufmann et al., 2016) implies that
any algorithm that is δ-PAC, takes at least T samples with

E[T ] ≥ log

(
1

2.4δ

)
min
λ∈∆Z

max
θ∈C

1∑
x∈X λxKL(νx,θ∗ |νx,θ)

≥ log

(
1

2.4δ

)
min
λ∈∆Z

max
z∈Z\z∗

max
θ∈Rd,θ>(z∗−z)≤0

1∑
x∈X λxKL(νx,θ∗ |νx,θ)

where νx,θ is the distribution of arm x under the parameter vector θ, i.e. νx,θ = Bernoulli(x>θ)

For a fixed z′ ∈ Z , s.t. z′ 6= z∗ consider

min
θ∈Rd,θ>(z∗−z′)≤0

∑
x∈X

λxKL(νx,θ∗ |νx,θ).

We have that

KL(νx,θ∗ |νx,θ) = µ(x>θ∗) log

 ex
>θ∗

1+ex>θ∗

ex>θ

1+ex>θ

+ (1− µ(x>θ∗)) log

 1

1+ex>θ∗

1

1+ex>θ


= µ(x>θ∗)x>(θ∗ − θ) + log

 1

1+ex>θ∗

1

1+ex>θ


= µ(x>θ∗)x>(θ∗ − θ) + log

(
1− µ(z>θ∗)

1− µ(x>θ)

)
= µ(x>θ∗)x>(θ∗ − θ) + log(1− µ(x>θ∗))− log(1− µ(x>θ))

Differentiating with respect to θ gives,

∇θKL(νx,θ∗ |νx,θ) = −µ(x>θ∗)x+
µ̇(x>θ)x

1− µ(x>θ)
= (µ(x>θ)− µ(x>θ∗))x

using the fact that µ̇(a) = µ(a)(1− µ(a)) so this implies

∇θ
∑
x∈X

λxKL(νx,θ∗ |νx,θ) =
∑
x∈X

λx(µ(x>θ)− µ(x>θ∗))x

Assuming Θ = Rd and letting ψ denote the Lagrange Multiplier corresponding to the constraint θ>(z∗ − z) ≤ 0 gives that
the minimal θ satisfies, ∑

x∈X
λx(µ(x>θ)− µ(x>θ∗))x = ψ · (z∗ − z)
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Now by definition, µ(x>θ)− µ(x>θ∗) = α(x, θ, θ∗)x>(θ − θ∗) so, this reduces to,∑
x∈X

λxα(x, θ, θ∗)xx>

 (θ − θ∗) = ψ(z∗ − z)⇒ θ = θ∗ + ψG(λ, θ, θ∗)−1(z∗ − z)

Let θz be the solution to this fixed point equation. Since we are saturating the constraint, it should be true that θz(z∗−z) = 0.
With this, we take an inner product with z∗ − z on both sides to obtain

ψ = − (z∗ − z)>θ∗

‖z∗ − z‖2G(λ,θ,θ∗)−1

.

So finally, we see that

θz = θ∗ − θ∗>(z∗ − z)G(λ, θz, θ
∗)−1(z∗ − z)

‖z∗ − z‖2G(λ,θz,θ∗)−1

and

θz = arg min
θ∈Rd,θ>(z∗−z′)≤0

∑
x∈X

λxKL(νx,θ∗ |νx,θ)

Now to finish the proof, note

KL(νx,θ∗ |νx,θ) = µ(x>θ∗)x>(θ∗ − θ) + log(1− µ(x>θ∗))− log(1− µ(x>θ))

= (θ∗ − θ)

[
µ(x>θ∗)

(x>(θ∗ − θ))2
+

log(1− µ(z>θ∗))

(x>(θ∗ − θ))2
− log(1− µ(x>θ))

(x>(θ∗ − θ))2

]
xx>(θ∗ − θ)

(a)
= ‖θ∗ − θ‖2β(z>θ,z>θ∗)zz>

where the last expression follows from the computation,

β(a, b) =

∫ 1

0

(1− t)µ̇(a+ t(b− a))dt

=
log
(
e−a + 1

)
(b− a)

2 −
log
(
e−b + 1

)
(b− a)

2 − 1(
eb + 1

)
(b− a)

In general, it is not clear how to compare our upper bound from Theorem 2 (in the main paper) to this lower bound due
to the non-explicit nature of G(λ, θz, θ

∗). In the case of Gaussian linear bandits, previous work has shown an elimination
scheme similar to Algorithm 1 is indeed near optimal.

E.2. 1/κ0 Lower Bounds

In this section, we prove that there exist bounds where a dependence on 1/κ0 is necessary. Throughout, we take Eθ and Pθ
to denote expectation and probability under an instance where parameter vector θ∗ is equal to θ.

Theorem 10. Fix δ1 < 1/16, d ≥ 4, and ε ∈ (0, 1/2] such that dε2 ≥ 12.2. Let Z denote the action set and Θ denote a
family of possible parameter vectors. There exists instances satisfying the following properties simultaneously

1. |Z| = |Θ| = eε
2d/4 and ‖z‖ = 1 for all z ∈ Z .

2. S = ‖θ∗‖ = O(ε2d)

3. Any algorithm that succeeds with probability at least 1− δ1 satisfies

∃θ ∈ Θ such that Eθ[Tδ1 ] > Ω
(
eε

2d/4
)

= c

(
1

κ0

) 1−ε
1+3ε

where Tδ1 is the random variable of the number of samples drawn by an algorithm and c is an absolute constant.

To prove this, we first state a more general theorem about lower bounds for logistic bandits.
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Theorem 11. Fix δ1 < 1/16, n ∈ N : n > 20, and a set of arms Z = {z1, · · · , zn} ∈ Rd. Consider a family of parameter
vectors Θ = {θ1, · · · , θn} ∈ Rd such that for every i ∈ [n],

1. µ(θTi zi) ∈ [1− δ2, 1]

2. µ(θTi zj) ∈ [0, δ2] for all j 6= i

If δ2 ≤ 1
2n , then any δ1-PAC algorithm satisfies

∃θ ∈ Θ such that Eθ[Tδ1 ] >
n

16
where Tδ1 is the random variable of the number of samples drawn by an algorithm.

Proof of Theorem 10. We begin with a construction based on the technique from (Dong et al., 2019) but optimized for our
setting. Then we choose S to satisfy the conditions of Theorem 11 while controlling κ0.

Step 1: Constructing A and Θ

There exists at least n = bexp(ε2d/4)c > 20 vectors on the sphere in Rd−1, a1, · · · , an such that |aTi aj | < 1/2 and
‖ai‖ = 1 for all i. Define arms z1, · · · zn such that

zi = (cos(u), sin(u)ai) ∈ Rd

where u = tan−1

(√
2

1+ε

)
. Similarly, define a family of θ’s such that

θi
S

= (− cos(u), sin(u)ai) ∈ Rd

where S is the norm of all of the θi’s to be specified later. Since ‖ai‖ = 1 for all i, we have that ‖zi‖ = 1 and ‖θi‖ = S for
all i. Then we have that

zTi
θi
S

= − cos(u)2 + sin(u)2.

Plugging in our choice of u and recalling that sin(tan−1(x)) = x√
1+x2

and cos(tan−1(x)) = 1√
1+x2

. Therefore,

zTi
θi
S

=
−1

1 + 2
1+ε

+
2

1+ε

1 + 2
1+ε

=
1− ε
3 + ε

> 0

Furthermore, we have that

zTj
θi
S

= −1 + sin(u)2(1 + aTi aj).

We have that |aTi aj | ≤ ε. Therefore,

zTj
θi
S
≤ −1 +

2
1+ε

1 + 2
1+ε

(1 + ε) =
ε− 1

3 + ε
< 0

and

zTj
θi
S
≥ −1 +

2
1+ε

1 + 2
1+ε

(1− ε) =
−1− 3ε

3 + ε
.

Taken together, we have that

max
i,j
|zTi θj | ∈

[
S

1− ε
3 + ε

, S
1 + 3ε

3 + ε

]
.

Step 2: Choosing S to satisfy Theorem 11

To invoke the result of Theorem 11, we require that µ(θTi zi) ≥ 1− δ2 and µ(θTi zj) ≤ δ2 for j 6= i for δ2 defined therein.

For the above construction, we require an S that satisfies: 1) µ
(
S 1−ε

3+ε

)
≥ 1− δ2 and 2) µ(S ε−1

3+ε ) ≤ δ2. Clearly this can be
achieved by taking S →∞. Using the fact that µ(−x) = 1− µ(x) for the logistic function as well as its monotonicity, we
see that both are satisfied for S such that µ(S ε−1

3+ε ) ≤ δ2.
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Note that µ(x) is invertible with inverse µ−1(x) = log
(

x
1−x

)
. Hence

S ≥ 3 + ε

ε− 1
µ−1(δ2) =

3 + ε

1− ε
log

(
1− δ2
δ2

)
.

implies that for any δ1-PAC algorithm there exists a θ ∈ Θ such that

Eθ[Tδ1 ] >
n

16
=

1

16
bedε

2/4c.

Step 3: Choosing S to control 1/κ0

Any S that satisfies the constraint in step 2 satisfies the conditions of Theorem 11 and implies a sample complexity lower
bounds. As κ−1

0 = O
(
eS
)
, to have the tightest correspondence between κ and n, we want S as small as possible. Therefore,

we take

S =
3 + ε

1− ε
log

(
1− δ2
δ2

)
.

By construction, we have

max
i,j
|zTi θj | ≤ S

1 + 3ε

3 + ε
.

This implies that

min
i,j

µ
(
zTi θj

)
≥ µ

(
−S 1 + 3ε

3 + ε

)
= µ

(
−1 + 3ε

3 + ε
× 3 + ε

1− ε
log

(
1− δ2
δ2

))

= µ

(
−1 + 3ε

1− ε
log

(
1− δ2
δ2

))

=
1

1 +
(

1−δ2
δ2

)αε =: δ3

where in the final line we have defined αε := 1+3ε
1−ε . Then, using 1/(1− δ3) ≤ 2 for all n ≥ 1,

1

κ0
=

1

δ3(1− δ3)
≤ 2

δ3
= 2

(
1 +

(
1− δ2
δ2

)αε)
.

Step 4: Putting it all together

By Theorem 11, the above holds for δ2 ≤ 1
2n . Choose δ2 = 1

2n . Hence,

1

κ0
≤ 2

(
1 +

(
1− δ2
δ2

)αε)
⇐⇒ n ≥ 1

2

(
1

2
· 1

κ0
− 1

)−αε
+ 1 = c1

(
1

κ0

)− 1−ε
1+3ε

for an absolute constant c1. Furthermore, there exists a constant c2 such that S = c2 log(n). Noting that n = Ω(eε
2d)

completes the proof.

Proof of Theorem 11. Suppose not. Then, for every θ ∈ Θ, we have Eθ[Tδ1 ] ≤ n/16.

Step 1: Defining event Ei that leads to errors

Let Rt be the reward received at time t. Let τ to be the first time t the algorithm receives Rt = 1:

τ =

{
∞ if {t ∈ [1, Tδ1 ] : Rt = 1} is empty
mint∈[1,Tδ1 ]:Rt=1 t otherwise

. (31)

If τ =∞, then the algorithm only sees reward 0 until termination. Note that τ is a stopping time. Let i(θ) be the best arm
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under the parameter θ. Let Tj be the number of pulls of arm j up to (and including) time Tδ1 . We define the following event:

Eν,θ =
{
A returns i(ν)

}
∩
{
Tδ1 ≤

n

4

}
∩
{
Ti(θ) = 0

}
∩ {τ =∞} ,

which is bad and should not happen frequently when θ is true but is likely to happen under ν, roughly speaking. Define

K̂L(ν, θ) :=

Tδ1∑
t=1

∑
z∈Z

1[z = at]

Rt log

(
µ(νT z)

µ(θT z)

)
+ (1−Rt) log

(
1− µ(νT z)

1− µ(θT z)

) .
On the event Eν,θ using the assumptions of the theorem, we have that

K̂L(ν, θ) ≤ n

4
log

(
1

1− δ2

)
Then,

Pθ(A returns i(ν)) ≥ Pθ(Eν,θ)

= Eν
[
1{Eν,θ} exp(−K̂L(ν, θ))

]
≥ (1− δ2)

n/4 Eν
[
1{Eν,θ}

]
= (1− δ2)

n/4 Pν
(
Eν,θ

)
.

(32)

Let us fix an arbitrary circular ordering of the members of Θ.8 Let q(θ) be member of Θ that comes immediately after θ in
the order, and p(θ) be member of Θ that comes immediately before θ. Then,

1

n

∑
θ∈Θ

Pθ(A returns i(q(θ))) ≥ (1− δ2)
n/4 1

n

∑
θ∈Θ

Pq(θ)

(
Eq(θ),θ

)
(By (32))

(a)
= (1− δ2)

n/4 1

n

∑
ν∈Θ

Pν
(
Eν,p(ν)

)
(b)
= (1− δ2)

n/4 P
(
Eθ,p(θ)

)
.

where (a) is simply a reindexing and (b) is by treating the parameter θ to be drawn from Uniform(Θ). Hereafter, P and E
without subscripts are w.r.t. the measure on all the random variables including the prior on θ. Note that the terminology
‘prior’ is just for brevity in this proof and does not imply that our problem setup is Bayesian.

Step 2: Bounding P(Eθ,p(θ))

Hereafter, we shorten the notation Eθ,p(θ) as Eθ. We aim to find a lower bound on P(Eθ). For this, we upper bound P(Eθ):

P(Eθ)

≤ P
(
A returns i(θ)

)
+ P

(
Tδ1 >

n

4

)
+ P

(
Tδ1 ≤

n

4
, τ 6=∞

)
+ P

(
Tδ1 ≤

n

4
, τ =∞, Ti(p(θ)) ≥ 1)

) (33)

Note that P
(
A returns i(θ)

)
= 1

n

∑
θ Pθ

(
A returns i(θ)

)
≤ δ1 by the assumption of the theorem. Also, by Markov’s

inequality,

Pθ
(
Tδ1 >

n

4

)
≤ Eθ[Tδ1 ]

n
4

≤
n
16
n
4

=
1

4
=⇒ P

(
Tδ1 >

n

4

)
≤ 1

4

where the second inequality is by our assumption made for the sake of contradiction. For the last term in (33),

P
(
Tδ1 ≤

n

4
, τ =∞, Ti(p(θ)) ≥ 1

)
=

1

n

∑
θ

Pθ
(
Tδ1 ≤

n

4
, τ =∞, Ti(p(θ)) ≥ 1

)
=

1

n

∑
θ

Pν
(
Tδ1 ≤

n

4
, τ =∞, Ti(p(θ)) ≥ 1

)
for any ν ∈ Θ ,

where the last equality uses the fact that under τ =∞ the algorithm’s behavior is independent of the unknown θ because the

8For example, a circular orderings for {a, b, c} is a ≺ b ≺ c ≺ a. Another example is c ≺ b ≺ a ≺ c.
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algorithm’s behavior is determined by its observed reward (and its internal randomization if any). Therefore,

P
(
Tδ1 ≤

n

4
, τ =∞, Ti(p(θ)) ≥ 1

)
=

1

n

∑
θ

1

n

∑
ν

Pν
(
Tδ1 ≤

n

4
, τ =∞, Ti(p(θ)) ≥ 1

)
(a)
=

1

n

n∑
j=1

1

n

∑
ν

Pν
(
Tδ1 ≤

n

4
, τ =∞, Tj ≥ 1

)

=
1

n

n∑
j=1

P
(
Tδ1 ≤

n

4
, τ =∞, Tj ≥ 1

)

=
1

n

n∑
j=1

E

[
1

{
Tδ1 ≤

n

4
, τ =∞, Tj ≥ 1

}]

≤ 1

n

n∑
j=1

E

[
1

{
Tδ1 ≤

n

4
, τ =∞, Tj ≥ 1

}
· Tj

]

= E

1{Tδ1 ≤ n

4
, τ =∞

}
· 1

n

n∑
j=1

Tj


≤ 1

4

(34)

where (a) is by reindexing.

It remains to bound the third term in Eq. (33). This case becomes a bit tricky for the following reasons. We would like
to use the event Tδ1 ≤ n/4 in the same way as the display (34), but, now that τ 6= ∞, the random variable Tδ1 depends
on the instance θ. Thus, we cannot employ the same independence argument used above. To get around, we construct a
surrogate algorithm A′ that follows a δ1-PAC algorithm A but still selects arms after A terminates. Specifically, for t ≤ Tδ1
the algorithm A′ follows the selection at of A exactly, and for t > Tδ1 the algorithm A′ employs an arbitrary policy. For
example, one can choose to select arms uniformly at random for t > Tδ1 . However, any policy works for our proof as long
as the policy does not change as a function of θ.

Let χj be the time step t ≤ n
4 where i(θ) is pulled for the first time:

χj :=

{
∞ if

{
t ≤ n/4 : at = i(θ)

}
is empty

min
{
t ≤ n/4 : at = i(θ)

}
otherwise

.

We also define τ ′ as the same as (31) except that we replace Tδ1 therein with n/4. Then, by introducing the notation PA to
indicate the dependency on the algorithm A,

PA
(
Tδ1 ≤

n

4
, τ 6=∞

)
≤ PA

′ (
τ ′ 6=∞

)
= PA

′
(
τ ′ 6=∞, χi(θ) ≤ τ ′

)
+ PA

′
(
τ ′ 6=∞, χi(θ) > τ ′

)
(a)

≤ PA
′
(
aχi(θ) = i(θ), χi(θ) 6=∞, R1:(χi(θ)−1) = 0

)
+ PA

′ (
τ ′ 6=∞, aτ ′ 6= i(θ), Rτ ′ = 1

)
(35)

where (a) introduces the notation R1:t = 0 for Ri = 0,∀i ∈ [t].

Hereafter, we omit the dependence on A′ for brevity. Denote by T (n/4)
j the number of pulls of arm j up to (and including)

time n/4. The first term above is equal to
1

n

∑
θ

Pθ
(
aχi(θ) = i(θ), χi(θ) 6=∞, R1:(χi(θ)−1) = 0

)
=

1

n

∑
θ

P
(
aχi(θ) = i(θ), χi(θ) 6=∞, R1:(χi(θ)−1) = 0

)
(independence)
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=
1

n

n∑
j=1

P
(
aχj = j, χj 6=∞, R1:(χj−1) = 0

)
(reindexing)

≤ 1

n

n∑
j=1

P
(
T

(n/4)
j ≥ 1

)
≤ 1

n

n∑
j=1

E
[
T

(n/4)
j

]
(Markov’s inequality)

=
1

n
· n

4
=

1

4
where the reasoning is mostly the same as the display (34).

The second term of the display (35) is equal to
1

n

∑
θ

Pθ
(
τ ′ 6=∞, aτ ′ 6= i(θ), Rτ ′ = 1

)
=

1

n

∑
θ

Pθ
(
∃t ≤ n/4 : at 6= i(θ), Rt = 1, a1:t−1 6= i(θ), R1:t−1 = 0

)
≤ 1

n

∑
θ

n/4∑
t=1

Pθ
(
Rt = 1 | at 6= i(θ), a1:t−1 6= i(θ), R1:t−1 = 0

)
· Pθ

(
at 6= i(θ), a1:t−1 6= i(θ), R1:t−1 = 0

)
≤ 1

n

∑
θ

n/4∑
t=1

δ2 · 1

≤ δ2 ·
n

4
.

Step 3: Putting it all together

Using the results of the previous two steps, we have that
1

n

∑
θ

Pθ(A returns i(q(θ))) ≥ (1− δ2)
n/4 P (Eθ)

≥ (1− δ2)
n/4

(
1−

(
δ1 +

1

4
+

1

4
+ δ2 ·

n

4

))

≥
(

1− 1

2n

)n/4
1

8
(δ1 < 1

16 <
1
4 , δ2 ≤

1
2n )

≥ 1

16
(n ≥ 20)

> δ1 (assumption)

However, we have by design that i(q(θ)) 6= i(θ). As we have assumed thatA is δ1-PAC, we have the following contradiction,
which concludes the proof:

1

n

∑
θ

Pθ(A returns i(q(θ))) ≤ 1

n

∑
θ

δ1 = δ1 .

E.2.1. COMPARISON TO THEOREM 9 ON THE SAME INSTANCES

The family of θ’s is important to the statement of Theorems 10 and 11. It captures the complexity of exploration for logistic
bandits and rules out pathological algorithms that have knowledge of θ∗. Otherwise, if we restrict to finding the best arm and
fix a set Z and a single θ∗ ∈ Θ as defined in Theorems 10 and 11, then an oracle that knows i(θ∗) can put all of its samples
on it. Indeed, the constraint on Z and θ ∈ Θ imposed by Theorem 10 implies that µ(i(θ)T θ) ≥ 1− δ2 and µ(zTj θ) ≤ δ2 for
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this is repeated theme in the community. delicate dependency // the troublesome dependency is colored orange with thick lines. 
only the relevant variables are shown (e.g., we omitted the dependence between X’s such as X_1:tau to X_{tau+1} and X_{tau+2})
1. at time tau+1, sample X_(tau+1), no MLE is used.
2. at time tau+2, sample X_(tau+2), hat_(tau+1) is used
3. at time tau+3, s=1 step (c) relies on \hat\theta^(1)_(tau+2) to filter arms. Proceeds to s=2 step (c). At this point, there is a

dependency from y_1 to y_tau to X_tau+2. Thus, the concentration inequality involving hat\theta_tau+2, which depends both 
on y_1 to y_tau and X_tau+2, cannot applied as far as fixed-design inequalities are concerned. While one can use known 
adaptive-design inequalities, they introduce \sqrt{d} dependence in the confidence width, resulting in a suboptimal regret 
bound.

at ! + 2,
s=1, step (c)

… …

Φ

Figure 2. A diagram showing the dependency of the variables in SupCB-GLM of Li et al. (2017). The troublesome dependency is
colored orange with thick lines. Note that we did not show all the dependencies here to avoid clutter. For example, Xτ+1 depends on
X1, . . . , Xτ .

all zj 6= i(θ) and all θ ∈ Θ. Hence, for θ∗ ∈ Θ, the set of alternates to θ∗ for the bound given in Theorem 9 is Θ\{θ∗}. For
every θ′ ∈ Θ\{θ∗}, KL(µ(i(θ∗)T θ∗)||µ(i(θ∗)T θ′) ≥ KL(1− δ2||δ2)) = Ω(1). Therefore, the allocation

λa =

{
1 if a = i(θ∗)

0 otherwise

which puts all of the samples on arm i(θ∗) is feasible for the optimization in Theorem 9. However, this would imply a
lower bound of KL(1− δ2||δ2)−1 log(1/2.4δ) = O(log(1/δ)) independent of both the dimension and the number of arms.
Naturally, this is pathological since the allocation depends on knowledge of ß(θ). In order to rule out such pathological
instances, we consider a family of θ’s.

F. Comments on Li et al. (2017)
Li et al. (2017) collects the burn-in samples in a different way from our SupLogistic. They collect burn-in samples (denoted
by Φ here) for the first τ =

√
dT rounds, and the buckets Ψ1, . . . ,ΨS are empty at the beginning of time step τ + 1. Then,

at time t > τ , when they compute the estimate θ(s)
t , they use both the samples from Ψs and Φ. However, we claim that this

scheme invalidates the concentration inequality. We explain below how this happens with the help of Figure 2.

• At time τ + 1, we choose Xτ+1 in s = 1 with step (a).
• At time τ + 2, we pass s = 1 and then choose Xτ+2 in s = 2 with step (a). Note that the set of arms that has survived
s = 1 and passed onto s = 2 are dependent on θ(1)

τ+1 that is a function of y1, . . . , yτ ; see the orange thick line in
Figure 2.

• At time τ + 3, we pass s = 1, arrive at s = 2 step (c), and we perform the arm rejections using θ(2)
τ+2. At this point, the

fixed design assumption of our concentration inequality for θ(2)
τ+2 is violated as we describe below.

Let τ = 1 for convenience. The estimator θ(2)
3 is computed based on {X1, X3, y1, y3}, but X3 depends on y1. That is,

y1 | X1 is not conditionally independent from X3. Specifically,

p(y1, y3 | X1, X3) =
p(y1, y3, X1, X3)

p(X1, X3)
=
p(y3 | X3)p(y1 | X1, X3)p(X1, X3)

p(X1, X3)
= p(y3 | X3)p(y1 | X1, X3)

where we use p to denote both the PDF and PMF. Note that p(y1 | X1, X3) 6= p(y1 | X1) in general; the distribution of
y1 | X1, X3 is algorithm-dependent and thus hard to control. To be clear, note that p(y1 | X1, X3) must follow a Bernoulli
distribution. It is just that we cannot guarantee that it has the mean µ(X>1 θ

∗).

Our algorithm SupLogistic circumvents this issue by collecting burn-in samples for each bucket Ψ1, . . . ,ΨS , but there
is another challenge in dealing with the confidence width that depends on θ

(s)
t due to our novel variance-dependent
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concentration inequality.

G. Proofs for SupLogistic
While SupLogistic is inspired by the standard SupLinRel-type algorithms (Auer, 2002; Li et al., 2017), its design and
analysis are challenging due to the fact that the confidence width scales with the unkonwn θ∗ unlike standard linear bandits.
To get around this issue, we design the algorithm so that the mean estimate and the variance estimate are computed from
different buckets — {Ψs(t− 1)}s and Φ respectively. Such a design was necessary (as far as we stick to the SupLinRel
type) because using the confidence widths based on θ(s)

t would introduce a dependency issue similar to what we described
in Section F and invalidate our confidence bound.

While our regret bound improves upon the dependence on ‖θ∗‖ in the leading term, we believe it should also be possible to
incorporate recent developments of SupLinRel-type algorithms by Li et al. (2019) to shave off the logarithmic factors from
log3/2(T ) to log1/2(T ). The focus of our paper is, however, to show the impact of our novel confidence bounds.

We first define our notations for the proof.

• We define a shorthand Xt := xt,at for the arm chosen at time step t.
• Denote by Ψs(t) the set of time steps at which the pulled arm at was included to the bucket s up to (and including)

time t. In other words, Ψs(t) is the variable Ψs in the pseudocode of SupLogistic at the end of time step t.

• Define H(s)
t (θ) =

∑
u∈Ψs(t)

µ̇(X>u θ)XuX
>
u ,∀s ∈ [S], and HΦ

t (θ) :=
∑
u∈Φ(τ) µ̇(X>u θ)XuX

>
u . We remark that

this definition depends on three variables: bucket index, time step, and the parameter θ for computing the variance
µ̇(X>u θ). Note that the bucket Φ is never updated after time step τ , so we often use the notation Φ to mean Φ(τ).

We present the proof by a bottom-up approach:

• Lemma 16 sets up the basic lemma concerned with T0, the smallest budget for which we can enjoy a regret guarantee,
and the key stochastic events that hold with high probability.

• Lemma 17 analyzes the instantaneous regret.
• Lemma 18 analyzes the cumulative regret per bucket Ψs(T ).
• Theorem 12 analyzes the final cumulative regret.

Note that the proof of the final regret bound becomes a matter of invoking the Cauchy-Schwarz inequality and the elliptical
potential lemma (Lemma 19 below), which is standard in linear bandit analysis.

We first begin with the condition under which the algorithm collects enough burn-in samples and guarantees concentration
of measure after time step τ .

Lemma 16. Consider SupLogistic with δ = 1/T , T ≥ d, τ =
√
dT , and α = 2.4

√
log(2(2 +K) · 2STK

δ ). Let

H
(S+1)
t (θ∗) := HΦ

t (θ∗). Define the following event:

Emean :=

{
∀t ∈ {τ + 1, . . . , T} , a ∈ [K], s ∈ [S], |x>t,aθ

(s)
t−1 − x>t,aθ∗| ≤ α‖xt,a‖(H(s)

t−1(θ∗))−1 ,

1√
2.2
‖x‖

(H
(s)
t−1(θ∗))−1 ≤ ‖x‖(H(s)

t−1(θΦ))−1 ≤
√

2.2‖x‖
(H

(s)
t−1(θ∗))−1

}

Ediversity :=

{
∀s ∈ [S + 1], λmin(H(s)

τ (θ∗)) ≥ d log(6) + log

(
2(2 +K) · 2STK

δ

)}
.

(36)

Then, there exists

T0 = Θ(Z log4(Z)) where Z =
1

σ4
0

(
1

σ4
0

+ κ−2

)(
d+

1

d
log2(K)

)
(37)

such that ∀T ≥ T0, P(Emean, Ediversity) ≥ 1− δ.

Proof. To avoid clutter, let us fix s and drop the superscript from H
(s)
τ (θ∗) and use Hτ (θ∗). Note that each bucket has
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at least b τ
S+1c samples. Since λmin(Hτ (θ∗)) ≥ κλmin(Vτ ) where Vτ =

∑τ
u=1XuX

>
u , to ensure Ediversity, it suffices to

show that λmin(Vτ ) ≥ κ−1

(
d log(6) + log

(
2(2 +K) · 2STK

δ

))
=: F . Recall our stochastic assumption on the context

vectors xt,a, the definition of Σ, and our assumption λmin(Σ) ≥ σ2
0 . By Li et al. (2017, Proposition 1), there exists

C1, C2 > 0 such that if ⌊
τ

S + 1

⌋
≥

(
C1

√
d+ C2

√
log(2STK/δ)

σ2
0

)2

+
2

σ2
0

· F ,

then P(λmin(V ) ≥ F ) ≥ 1− δ
2STK . Since τ =

√
dT , we have T in both LHS and RHS. It remains to find the smallest T

that satisfies the inequality above. Omitting the dependence on σ2
0 , one can show that it suffices to find a sufficient condition

for T such that

T ≥ C3
1

σ4
0

(
1

σ4
0

+ κ−2

)(
d+

1

d
log2(K)

)
︸ ︷︷ ︸

=:Z

log4(T ) (38)

for some absolute constants C3. One can show that T < Z log4(T ) implies T < Θ(Z log4(Z)), whose contraposition
implies that there exists T0 = O(Z log4(Z)) such that if T ≥ T0, then Eq. (38) is true. Which in turn implies that
P(Ediversity) ≥ 1− δ

2STK · (S + 1) via union bound over s ∈ [S + 1].

When Ediversity is true, it is easy to see that the condition on νt in Theorem 5 is satisfied if we substitute δ ← δ/(2STK).
Thus, by the union bound,

P(Emean | Ediversity) ≥ 1− δ

2STK
· STK .

Note that P(A ∪B) = P((A ∩ B̄) ∪B) ≤ P(A ∩ B̄) + P(B) ≤ P(A | B̄) + P(B). Setting A = Ēmean and B = Ēdiversity,
we have

P(Ēmean ∪ Ēdiversity) ≤ δ

2STK
· STK +

δ

2STK
(S + 1) ≤ δ

where the last inequality is by K ≥ 2.

Lemma 17. Take τ and α from Lemma 16. Recall that M = 1/4. Suppose Emean. Consider the time step t ≥ τ + 1. Let
st be the while loop counter s at which the arm at is chosen. Let a∗t = arg maxa∈[K] µ(x>t,aθ

∗) be the best arm at time t.
Then, the best arm a∗t survives through st, i.e., a∗t ∈ As for all s ≤ st. Furthermore, we have

µ(x>t,∗θ
∗)− µ(x>t,atθ

∗) ≤

{
µ̇(x>t,atθ

∗)8 · 2−st +M · 64 · 2−2st if at is selected in step (a)
µ̇(x>t,atθ

∗)2T−1/2 +M · 4 · T−1 if at is selected in step (b)
.

Proof. This proof is adapted from Li et al. (2017, Lemma 6) while keeping the dependence on the variance µ̇(x>t,atθ
∗) to

avoid introducing κ−1 explicitly. Fix t. To avoid clutter, let us omit the subscript t from
{
xt,a, a

∗
t

}
and use {xa, a∗} instead,

respectively. We also drop the subscript t− 1 from H
(s)
t−1(θ). Let us refer to the iteration index of the while loop as level.

We use the notation m(s)
a to denote mt,a at level s.

We prove the first part of the lemma by induction. For the base case, we trivially have a∗ ∈ A1. Suppose that a∗ has survived
through the beginning of the s-th level (i.e., a∗ ∈ As) where s ≤ st − 1. We want to prove a∗ ∈ As+1. Since the algorithm
proceeds to level s+ 1, we know from step (a) at s-th level that, ∀a ∈ As,

|m(s)
a − x>a θ∗| ≤ α‖xa‖(H(s)(θ∗))−1 ≤ α

√
2.2‖xa‖(H(s)(θΦ))−1 ≤ 2−s (39)

where both inequalities are due to Emean. Specifically, it holds for a = a∗ because a∗ ∈ As by our induction step. Then, the
optimality of a∗ implies that, ∀a ∈ As,

m
(s)
a∗

(39)
≥ x>a∗θ

∗ − 2−s ≥ x>a θ∗ − 2−s
(39)
≥ m(s)

a − 2 · 2−s .
Thus we have a∗ ∈ As+1 according to step (c).

For the second part of the lemma, suppose at is selected at level st in step (a). If st = 1, obviously the lemma holds because
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µ(z) ∈ (0, 1),∀z. If st > 1, since we have proved a∗ ∈ Ast , Eq. (39) implies that for a ∈ {at, a∗},
|m(st−1)

a − x>a θ∗| ≤ 2−st+1 .

Step (c) at level st − 1 implies

m
(st−1)
a∗ −m(st−1)

at ≤ 2 · 2−st+1 .

Combining the two inequalities above, we get

x>atθ
∗ ≥ m(st−1)

at − 2−st+1 ≥ m(st−1)
a∗ − 3 · 2−st+1 ≥ x>a∗θ∗ − 4 · 2−st+1 .

Recall that M = 1/4 is an upper bound on µ̈(z). The inequality above implies that, using Taylor’s theorem,

µ(x>a∗θ
∗)− µ(xat , θ

∗) = α(x>a∗θ
∗, x>atθ

∗) · (xa∗ − xat)>θ∗

≤ α(x>a∗θ
∗, x>atθ

∗) · 4 · 2−st+1

≤
(
µ̇(x>atθ

∗) +M · (xa∗ − xat)>θ∗
)
· 4 · 2−st+1

= µ̇(x>atθ
∗)4 · 2−st+1 +M · (4 · 2−st+1)2

≤ µ̇(x>atθ
∗)8 · 2−st +M · 64 · 2−2st .

(40)

When at is selected in step (b), since m(st)
at ≥ m

(st)
a∗ , we have

x>atθ
∗ ≥ m(st)

at − 1/
√
T ≥ m(st)

a∗ − 1/
√
T ≥ x>a∗θ∗ − 2/

√
T .

We now apply a similar reasoning as (40), we have

µ(x>a∗θ
∗)− µ(x>atθ

∗) ≤ µ̇(x>a∗θ
∗)2T−1/2 +M · 4 · T−1 .

Lemma 18 (Regret per bucket). Assume Emean and take α from Lemma 16. Recall that L = 1/4. Then, ∀s ∈ [S],∑
t∈Ψs(T )\[τ ]

µ(x>t,∗θ
∗)− µ(X>t θ

∗) ≤ 18
√
L · α

√
|Ψs(T )|d log(LT/d) +

320Mα2

κ
d log(LT/d) .

Proof. By Lemma 17 and the fact that µ(z) ∈ (0, 1),∀z, we have∑
t∈Ψs(T )

µ(x>t,∗θ
∗)− µ(X>t θ

∗) ≤
∑

t∈Ψs(T )

1 ∧
(
µ̇(X>t θ

∗) · 8 · 2−s + 64M · 2−2s
)

≤

 ∑
t∈Ψs(T )

1 ∧ µ̇(X>t θ
∗) · 8 · 2−s

+

 ∑
t∈Ψs(T )

1 ∧ 64M · 2−2s


where the last inequality is true by 1 ∧ (a+ b) ≤ 1 ∧ a+ 1 ∧ b. For the first summation, we use w(s)

t,at > 2−s due to step (a)
of the algorithm: ∑

t∈Ψs(T )

1 ∧ µ̇(X>t θ
∗) · 8 · 2−s

 ≤ ∑
t∈Ψs(T )

1 ∧ µ̇(X>t θ
∗) · 8 · w(s)

t,at

=
∑

t∈Ψs(T )

1 ∧ µ̇(X>t θ
∗) · 8 · α

√
2.2‖Xt‖(H(s)

t−1(θΦ))−1 (Def’n of w(s)
t,at )

≤
∑

t∈Ψs(T )

1 ∧ µ̇(X>t θ
∗) · 18 · α‖Xt‖(H(s)

t−1(θ∗))−1 (Emean)

≤
∑

t∈Ψs(T )

1 ∧ 18α
√
L‖
√
µ̇(X>t θ

∗)Xt‖(H(s)
t−1(θ∗))−1 (∵

√
µ̇(X>t θ

∗) ≤
√
L)

(a)

≤

√√√√|Ψs(T )|
∑

t∈Ψs(T )

1 ∧ (18α
√
L)2‖

√
µ̇(X>t θ

∗)Xt‖2
(H

(s)
t−1(θ∗))−1
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(b)

≤ 18α
√
L
√
|Ψs(T )| · d log

(
LT/d

)
where (a) by the Cauchy-Schwarz inequality and (b) by Lemma 19, with the fact that (18α

√
L)2 ≥ 1

2 , and λmin(Hτ (θ∗)) ≥
1 (∵ Ediversity).

The second summation follows a similar derivation:∑
t∈Ψs(T )

1 ∧ 64M · 2−2s ≤
∑

t∈Ψs(T )

1 ∧ 64M · α2 · 2.2‖Xt‖2(Ht−1(θΦ))−1

≤
∑

t∈Ψs(T )

1 ∧ 64M · α2 µ̇(X>t θ
∗)

µ̇(X>t θ
∗)

5‖Xt‖2(Ht−1(θ∗))−1

≤
∑

t∈Ψs(T )

1 ∧ 64Mα2

κ
5 ·
∥∥∥∥√µ̇(X>t θ

∗)Xt

∥∥∥∥2

(Ht−1(θ∗))−1

≤ 320Mα2

κ
d log(LT/d)

where (a) is by Lemma 19 and 320Mα2

κ ≥ 320M2α2/L ≥ 1/2, and λmin(Hτ (θ∗)) ≥ 1.

Finally, we prove the regret bound of SupLogistic below. Note that the statement here is slightly different from that of the
main paper because we state the regret bound for large enough T only. This is only an aesthetic difference. Indeed, assume
that we have a regret bound RegT ≤ A

√
T +B for T ≥ C. Then, using RegT ≤ T , we have RegT ≤ C for T < C. This

implies that, for all T , we have RegT ≤ A
√
T +B + C.

Theorem 12 (Regret of SupLogistic). Consider SupLogistic with δ, τ , α, and T0 from Lemma 16. Then, if T ≥ T0, then

E[RegT ] ≤ 10α
√
dT log(T/d) log2(T ) +O

(
α2

κ
d · (log(T/d)) · log T

)
.

Proof. Assume Emean. Recall that Ψ0 contains the time step indices at which the choice at happened in step (b). Recall that
we set τ =

√
dT . Let ∆t := µ(x>t,∗θ

∗)− µ(x>t,atθ
∗). Then,

RT =

τ∑
t=1

∆t +

T∑
t=τ+1

∆t

≤
√
dT +

∑
t∈Ψ0(T )

∆t +

S∑
s=1

∑
t∈Ψs(T )\[τ ]

∆t .

For the first term, using Lemma 17,∑
t∈Ψ0(T )

∆t ≤ T ·
(
µ̇(X>t θ

∗) · 2√
T

+
4M

T

)
≤ 2L

√
T + 4M .

For the second term, using Lemma 18, using the Cauchy-Schwarz inequality,
S∑
s=1

∑
t∈Ψs(T )\[τ ]

∆t ≤
S∑
s=1

(
18α

√
L|Ψs(T )|d log(LT/d) +

320Mα2

κ
d log(LT/d)

)

≤ 18α
√
Ld log(LT/d)

√√√√S

S∑
s=1

|Ψs(T )|+ S · 320Mα2

κ
d log(LT/d)

≤ 18α
√
Ld log(LT/d) ·

√
T log2(T ) + log2(T ) · 320Mα2

κ
d log(LT/d) .

Using L = 1/4 and α ≥ 7, the terms involving
√
T is:

√
dT + 2L

√
T + 18α

√
LdT log(LT/d) log2(T ) ≤

10α
√
dT log(T/d) log2(T ). This gives us a regret bound under the event Emean. One can obtain the expected regret

bound by noticing that this event Emean does not happen with probability at most δ = 1/T .
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G.1. Auxiliary Results

Lemma 19 (Elliptical potential). Let s ∈ [S] and F > 0. Then,∑
t∈Ψs(T )

min

{
1, F‖

√
µ̇(X>t θ

∗)Xt‖2(H∗(Ψs(t−1)))−1

}
≤ (2F ∨ 1) · d log

(
L|Ψs(T )|

dλmin(H∗(Ψs(τ)))

)
.

Proof. Using Lemma 3 of Jun et al. (2017), we have that ∀q, x > 0,min{q, x} ≤ max {2, q} log(1 + x). Thus,

min

{
1, F‖

√
µ̇(X>t θ

∗)Xt‖2(H∗(Ψs(t)))−1

}
= F min

{
1

F
, ‖
√
µ̇(X>t θ

∗)Xt‖2(H∗(Ψs(t)))−1

}
≤ F ·max

{
2,

1

F

}
log

(
1 + ‖

√
µ̇(X>t θ

∗)Xt‖2(H∗(Ψs(t)))−1

)
where the last inequality is by max{2, 1/F} = 2. Then,∑

t∈Ψs(T )

min

{
1, F‖

√
µ̇(X>t θ

∗)Xt‖2(H∗(Ψs(t)))−1

}
≤ (2F ∨ 1)

∑
t∈Ψs(T )

log

(
1 + ‖

√
µ̇(X>t θ

∗)Xt‖2(H∗(Ψs(t)))−1

)

= (2F ∨ 1) log

(
|H∗(Ψs(T ))|
|H∗(Ψs(τ))|

)
≤ (2F ∨ 1) · d log

(
L|Ψs(T )|

d · λmin(H∗(Ψs(τ)))

)
where the last inequality is by the arithmetic-geometric mean inequality.

H. Some Additional Empirical Insights
In this section we dive a bit more into what RAGE-GLM is doing in its process of sampling. We utilized the Zappos
pairwise comparison dataset (Yu & Grauman, 2014), focusing on the most “pointy” setting. As in the main text, we used the
collected pairwise comparisons to learn θ∗. We then sampled 10,000 shoes randomly from the set of 50,000 to be our Z set,
and an additional randomly chosen 3,000 pairs of pairs of shoes from Z to be our X set (after being PCA-ed down to 25
dimensions). Given a query from the x ∈ X set we then hallucinate the response using P(y = 1) = µ(x>θ∗) according to
the logistic model.

RAGE-GLM required roughly 5× 106 samples to complete. In figure 3, the top row shows the allocation of RAGE-GLM
over X (where we have sorted the elements of X by the number of times each element was pulled). As we can see only a
few hundred items received any pulls.

Figure 3. The top row is the allocation of samples for each of the 3000 pairs represented in X . The bottom row is the cosine similarity,
〈x, z1 − z2(‖x‖‖z1 − z2‖)〉 of each x ∈ X with the difference z1 − z2 between the top two pairs of shoes.



Improved Confidence Bounds for the Linear Logistic Model and Applications to Bandits

Within a few tens of thousands of samples RAGE-GLM was able to narrow down to the top two different pair of shoes and
then spent it’s sampling budget differentiating between them. The second row of Figure 3 shows the absolute value of the
cosine similarity between the elements of X and the difference between the top two pairs of shoes (we show a windowed
average over 50 items to mitigate some spikes). As we can see, the most sampled items have higher average cosine similarity
with the difference between the last best two items. This has an interpretation in terms of analogies - the algorithm focuses
on two pairs of shoes in X whose difference is most aligned with that of the best two pairs of shoes Z .

Figure 4. In the top row we present the top two shoes z1, z2. The following rows show the most asked queries to distinguish between the
top two shoes along with their proportion in the allocation and their cosine similarity with z1 − z2.

In Figure 4 we show the top two pairs of shoes along with the 10 pairs that were most queried (corresponding to the
allocations above). Even though the pairwise comparisons shown may not be similar to those of the pointed shoes, asking
them still gives us information about the difference between the best two, illuminating the advantage of the transductive
setting.
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