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Abstract
We propose improved fixed-design confidence
bounds for the linear logistic model. Our bounds
significantly improve upon the state-of-the-art
bound by Li et al. (2017) via recent developments
of the self-concordant analysis of the logistic loss
(Faury et al., 2020). Specifically, our confidence
bound avoids a direct dependence on 1/κ, where
κ is the minimal variance over all arms’ reward
distributions. In general, 1/κ scales exponentially
with the norm of the unknown linear parameter
θ∗. Instead of relying on this worst case quan-
tity, our confidence bound for the reward of any
given arm depends directly on the variance of that
arm’s reward distribution. We present two applica-
tions of our novel bounds to pure exploration and
regret minimization logistic bandits, improving
upon state-of-the-art performance guarantees. For
pure exploration we also provide a lower bound
highlighting a dependence on 1/κ for a family of
instances.

1. Introduction
Multi-armed bandits algorithms offer a principled approach
to solve sequential decision problems under limited feed-
back (Thompson, 1933). In bandit problems, at each time
step, an agent chooses an arm to pull from an available
pool of arms and receives an associated reward. Under this
setting, two major objectives arise: pure exploration (aka
best-arm identification) where the goal is to identify the
arm with the highest average reward; and regret minimiza-
tion where the goal is to maximize the total rewards gained.
Bandit algorithms are widely deployed in industry, with ap-
plications spanning news recommendation (Li et al., 2010),
ads (Sawant et al., 2018; Nabi et al., 2021), online retail
(Teo et al., 2016), and drug discovery (Kazerouni & Wein,
2019). In such applications, the agent often has access to
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a feature vector for each arm. A common assumption is
that the reward is a noisy linear measurement of the under-
lying feature vector of the arm being pulled. In other words,
the binary reward received from a pull of the arm x ∈ Rd
is yt = x>θ∗ + ε, where θ∗ is a latent parameter vector,
and ε is subGaussian noise. In this case, there are several
algorithms that are near-optimal and/or practical for pure
exploration (Xu et al., 2018; Fiez et al., 2019) and for regret
minimization (Auer, 2002; Chu et al., 2011; Dani et al.,
2008; Russo & Van Roy, 2014).

Unfortunately, in abundant real-world use-cases the linear
reward model is not realistic and instead rewards are binary.
For example, the prevalent form of data arising from user
interactions is binary click/no-click feedback in the web and
e-commerce domains (Geng et al., 2020). Another example
is the problem of learning the best candidate from binary
pairwise comparisons, used in matching recommender sys-
tems (Biswas et al., 2019). In this setting, the agent has
access to a set of items (e.g., shoes), and repeatedly chooses
a pair of items to present to the user to choose from. The
goal of the agent is to infer the user’s favorite shoe. In
this paper, we use the linear logistic model for binary feed-
back. In other words, the binary reward received from a
pull of the arm x ∈ Rd is yt ∼ Bernoulli(µ(x>θ∗)), where
µ(z) := (1 + e−z)−1 is the logistic link function.

Existing effective bandit algorithms in the linear feedback
setting attempt to estimate θ∗ to drive sampling. To do
so, they require tight confidence intervals on the estimated
mean reward x>θ∗ of arm x. To adapt these algorithms
to the logistic model, we require confidence intervals that
account for the non-linearity introduced by the link function
µ. However, there is a lack of tight confidence intervals
in this setting. Our work builds on previous attempts in
this area to a) provide tight confidence intervals, b) adapt
existing linear bandit algorithms to the logistic setting. We
now detail our contributions.

The first variance-dependent fixed design confidence in-
terval for the linear logistic model. We first consider
the fixed design setting. Assume we have access to data
(xs, ys) ⊂ Rd × {0, 1} for 1 ∈ [t] := {1, . . . , t} where the
reward ys is generated according to the logistic model. In
addition we assume ys is conditionally independent from
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{xi}ti=1 \{xs} given xs. Let θ̂t be the maximum likelihood
estimator (MLE) of θ∗. We propose the first fixed design
concentration inequalities such that the width: i) scales with
the actual variance instead of the worst-case variance κ−1

that scales exponentially with ‖θ∗‖, and ii) is independent
of d. Our bound takes the form of
P
(
|x>(θ̂t − θ∗)| ≤ O(‖x‖H−1

t (θ∗)

√
log(t/δ))

)
≥ 1− δ,

where Ht(θ
∗) is the Fisher information matrix at θ∗ match-

ing the asymptotic bound for the MLE.1 By contrast, the
bounds by Li et al. (2017) take a significantly looser form
of O(κ−1‖x‖V −1

t

√
log(1/δ)) where Vt satisfies κVt �

Ht(θ
∗). Our improvements in fixed design confidence

bounds parallel that of Faury et al. (2020) for adaptive sam-
pling, but reduce a

√
d factor required by adaptive bounds.

Our confidence bound is a fundamental result in statistical
learning. It tightly quantifies the amount of information
learned from the training set {xs, ys}ts=1 that transfers to
a test point x, in a data-dependent non-asymptotic manner
and without distributional assumptions on {xs}ts=1. We
present the full theorem and provide detailed comparisons
in Section 2.

Improved pure exploration algorithms. In Section 3 we
propose RAGE-GLM, a new algorithm for pure exploration
in transductive linear logistic bandits, which is a novel ex-
tension of RAGE by Fiez et al. (2019). RAGE-GLM signifi-
cantly improves both theoretical and empirical performance
over the state-of-the-art algorithm by Kazerouni & Wein
(2019), reducing the sample complexity by a multiplica-
tive factor of κ−1. We perform empirical evaluations on a
pairwise comparison problem.

Novel fundamental limits for pure exploration. While
the sample complexity of RAGE-GLM does not have κ−1

in the leading term of log(1/δ) where δ is the target failure
rate, it has an additive dependence on κ−1. In Section 4, we
show that such an additive dependence is necessary via a
novel moderate confidence lower bound that captures the
non-asymptotic complexity of learning and is independent
of transportation inequality techniques (Kaufmann et al.,
2016). Our results also imply that there are settings where
O(ed) samples are necessary even when gaps are large, a
phenomena that does not exist for linear rewards.

Improved K-armed contextual bandits. We employ our
confidence bounds to develop improved algorithms for con-
textual logistic bandits. The proposed algorithm SupLo-
gistic makes nontrivial extensions over the state-of-the-art
algorithm SupCB-GLM by Li et al. (2017). The main chal-
lenge is to i) handle the confidence width that depends
on the unknown θ∗, and ii) design a novel sample bucket

1While θ∗ appears on the RHS as well, our full theorem shows
that θ̂t can be used in place of θ∗ with a slightly larger constant
factor, although this is not useful in bandit analysis.

scheme to fix an issue of SupCB-GLM that invalidates its
regret bound. We show that SupLogistic enjoys a regret
bound of Õ(

√
dT log(K)) (ignoring o(

√
T ) terms), which

is a significant improvement over SupCB-GLM that has
an extra κ−1 factor, along with improvements in the lower-
order terms. Such an improvement parallels that of Faury
et al. (2020) over UCB-GLM of Li et al. (2017) where they
achieve a regret bound Õ(d

√
T ) that shaves of the factor

κ−1 from UCB-GLM. We discuss our improved bounds and
provide more detailed comparisons in Section 5.

2. Improved Confidence Intervals for the
Linear Logistic MLE

In this section we consider the fixed design setting We as-
sume that we have a fixed θ∗ ∈ Rd, a set of measurements
{(xs, ys)}ts=1 ⊂ Rd × R where each ys ∈ {0, 1}, and

P (ys = 1) = µ(x>s θ
∗) =

1

1 + e−x>θ∗
.

Let ηs = ys − µ(x>s θ
∗). Denote by µ̇(z) the first order

derivative of µ(z). Define κ = minx:‖x‖≤1 µ̇(x>θ∗).

The maximum likelihood estimate (MLE) is given by:

θ̂=arg max
θ∈Rd

t∑
s=1

ys logµ(x>s θ)+(1−ys) log(1−µ(x>s θ)).

(1)
We also define the Fisher information matrix at θ as

Ht(θ) =

t∑
s=1

µ̇(x>s θ)xsx
>
s . (2)

We now introduce our improved confidence interval for the
linear logistic model under this fixed design setting.

Theorem 1. Let δ ≤ e−1. Let θ̂t be the solution of
Eq. (1) where, for every s ∈ [t], ys is conditionally in-
dependent from {xi}ti=1 \ {xs} given xs (i.e. the xs’s
are a fixed design). Fix x ∈ Rd with ‖x‖ ≤ 1. Let
teff be the number of distinct vectors in {xs}ts=1. De-
fine γ(d) = 64(d log(6) + log((2 + teff)/δ)). Define the
event Evar = {∀x′, 1√

2.2
‖x′‖Ht(θ∗)−1 ≤ ‖x′‖Ht(θ̂t)−1 ≤√

2.2 ‖x′‖Ht(θ∗)−1}. If ξ2
t := maxs∈[t] ‖xs‖2Ht(θ∗)−1 ≤

1
γ(d) , then

P
(
|x>(θ̂t−θ∗)|>2.4‖x‖Ht(θ∗)−1

√
log 2(2+teff)

δ , Evar

)
≤δ

Remark 1. One can see that Theorem 1 implies
empirical concentration inequality |x>(θ̂t − θ∗)| ≤
3.6‖x‖Ht(θ̂t)−1

√
log 2(2+teff)

δ . This seemingly useful bound
is in fact never used in our bandit analysis for technical
reasons. Specifically, bandits select arms adaptively, which
breaks the fixed design assumption of Theorem 1, so care is
needed for algorithmic design.

Asymptotically, under some conditions we expect for any
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x ∈ Rd, x>(θ̂ − θ) → N(0, ‖x‖2H(θ∗)−1) (Lehmann &
Casella, 2006). Our bound matches this asymptotic rate up
to constant factors.

Comparison to previous work. Our theorem is a signifi-
cant improvement upon Li et al. (2017). Their bound de-
pends on 1

κ‖x‖V −1
t

, with Vt :=
∑t
s=1 xsx

>
s . In general

since κVt � Ht(θ
∗), our bound is tighter and depends on

the asymptotic variance. For the bound in (Li et al., 2017)
to hold, they require that λmin(Vt) ≥ Ω(d2κ−4), which we
call the burn-in condition. Recall that κ−1 = Θ(exp(‖θ∗‖))
can be large even for moderate θ∗. In contrast, our bound’s
burn-in condition does not directly depend on κ−1, and more
importantly, it is possible to satisfy it without κ−1 samples
in certain cases. For example, we show in Appendix B a case
where a sample size of polynomial(‖θ∗‖)� exp(‖θ∗‖) can
satisfy the burn-in condition. For the sake of comparison,
we can use the bound ξ2

t ≤ κ−1λmin(Vt) to derive an infe-
rior burn-in condition of λmin(Vt) ≥ Ω(dκ−1). This is still
a strict improvement over Li et al. (2017), saving a factor
of d and a cubic factor in κ−1 as well as shaving off their
large constant factor of 512.

We now compare our bound with that of Faury et al. (2020).
The proof of Lemma 3 of Faury et al. (2020), under the
assumption that ‖θ∗‖ ≤ S∗ and with a proper choice of
regularization constant, implies the following confidence
bound: w.p. at least 1− δ, ∀t ≥ 1,∀x ∈ Rd : ‖x‖ ≤ 1,

x>(θ̂t − θ∗) ≤ Θ
(
‖x‖Ht(θ∗)−1S

3/2
∗
√

(d+ log(t/δ))
)
.

While their bound also does not directly depend on κ, it
is an anytime confidence bound that holds for all x ∈ Rd
simultaneously, and in addition allows for an adaptively
chosen sequence of measurements. As a result, their bound
suffers an additional factor of

√
d. Furthermore, their bound

introduces a factor S3/2
∗ and requires the knowledge of both

S∗ and κ.2 In contrast, our bound does not directly depend
on the confidence width nor require the knowledge of S∗
or κ, though these quantities may be needed to satisfy the
burn-in condition.

Tightness of our bound. Empirically, we have observed
that ξ2

t ≤ O(1) is necessary to control the confidence width
as a function of ‖x‖Ht(θ∗)−1 , but have not found a case
where ξ2

t must be smaller than O(1/d); studying the opti-
mal burn-in condition is left as future work. We believe
one can improve log(teff) to the metric entropy of the mea-
surements {xs}ts=1. Note that it is possible to remove the
burn-in condition if we derive a regularized MLE version of
Theorem 1, but this comes with an extra factor of

√
d in the

confidence width, which is not better than the confidence
bound of Faury et al. (2020).

2We believe the factor S3/2
∗ can be removed by imposing an

assumption on ξt like ours.

Proof Sketch of Theorem 1. The novelty of our argument is
to exploit the variance term without introducing κ explic-
itly in the confidence width. We follow the main decom-
position of Li et al. (2017, Theorem 1) but deviate from
their proof by: i) employing Bernstein’s inequality rather
than Hoeffding’s to obtain Ht(θ

∗) in the bound (as opposed
to κ−1Vt); and ii) deriving a novel implicit inequality on
maxs∈[t] |x>s (θ̂t − θ∗)|. The latter leads to the significant
improvements in both d and κ−1 in the condition on ξt.

Let αs(θ̂t, θ∗) :=
µ(x>s θ̂t)−µ(x>s θ

∗)

x>s (θ̂t−θ∗)
, z :=

∑t
s ηsxs, and

G :=
∑t
s αs(θ̂t, θ

∗)xsx
>
s . By the optimality condition of

θ̂t, we have:

z = G(θ̂t − θ∗). (3)
We use the shorthandH := Ht(θ

∗) and defineE := G−H .
The main decomposition is
|x>(θ̂t − θ∗)|= |x>(H + E)−1z| (4)

≤|x>H−1z|+ |x>H−1E(H + E)−1z| .
We bound x>H−1z by O(‖x‖H−1

√
log(1/δ)) which uses

Bernstein’s inequality and the assumption on ξ2
t . We control

the second term by:
|x>H−1E(H + E)−1z|
≤ ‖x‖H−1‖H−1/2EH−1/2‖‖G−1z‖H
(a)

≤ ‖x‖H−1‖H−1/2EH−1/2‖(1 +D)‖z‖H−1

(b)

≤ ‖x‖H−1‖H−1/2EH−1/2‖(1 +D) ·O(
√
d+ log(1/δ))

(c)

≤ ‖x‖H−1D ·O(
√
d+ log(1/δ)), (5)

where (a) is by introducing D := maxs∈[t] |x>s (θ̂ − θ∗)|
and using the self-concordance property of the logistic
loss (Faury et al., 2020) i.e. |µ̈| ≤ µ̇, (b) is Bernstein’s
inequality with a covering argument along with the assump-
tion on ξt, and (c) is by a novel result which again employs
self-concordance and the assumption to show that E can
be bounded by D · H . Our key observation is to apply
Eq. (4) for every distinct vector x in {xs}s∈[t] and employ
‖x‖H−1 ≤ ξt to see:

D = max
s∈[t]
|x>s (θ̂ − θ∗)|

≤ O(ξt
√

log(1/δ)) + ξtD ·O(
√
d+ log(1/δ)) .

The assumption on ξt implies ξt ·O(
√
d+ log(1/δ)) ≤ 1.

We solve for D to obtain the implicit equation

D = O(ξt
√

log(1/δ)) .

Plugging this back into Eq. (5) gives ‖x>(θ̂ − θ∗)‖ ≤
O(‖x‖H−1

√
log(1/δ)), which holds with probability at

least 1 − Θ(teffδ), as we use the concentration inequality
Θ(teff) times. To turn this into a statement that holds w.p. at
least 1− δ, we substitute δ with Θ(δ/teff), concluding the
proof. See Appendix A for the statement on Evar.
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3. Transductive Pure Exploration
We now consider the linear logistic pure exploration prob-
lem. Specifically, the learner is given a confidence level
δ ∈ (0, 1) and has access to finite arm subsets X ,Z ⊂ Rd
but not the problem parameter θ∗ ∈ Rd. The goal is to dis-
cover z∗ = arg maxz∈Z z

>θ∗ with probability at least 1−δ
using as few measurements from X as possible. This is a
generalization of the standard linear pure exploration (Soare
et al., 2014) and is referred to as the transductive setting
(Fiez et al., 2019). In each time step t, the learner chooses
an arm xt, which is measurable with respect to the history
Ft−1 = {(xs, ys)s<t}, and observes a reward yt ∈ {0, 1}.
It stops at a random stopping time τ and recommends ẑ ∈ Z ,
where τ and ẑ are both measurable w.r.t. the history Fτ . We
assume that P(yt = 1|xt,Ft−1) = µ(x>t θ

∗). Let Pθ,Eθ de-
note the probability and expectation induced by the actions
and rewards when the true parameter is θ. Formally, we
define a δ-PAC algorithm as follows: An algorithm for the
logistic-transductive-bandit problem is δ-PAC for (X ,Z) if
Pθ(zτ 6= z∗) ≤ δ ,∀θ ∈ Rd.

Example: Pairwise Judgements. As a concrete and natu-
ral example, consider an e-commerce application where
the goal is to recommend an item from a set of items
based on relative judgements by the user. For example,
the user may be repeatedly shown two items to compare,
and must choose one. The use of relative judgements is natu-
ral when trying to build a user preference profile (Jain et al.,
2016) or in adaptive interactive search (Biswas et al., 2019).
In each round, the system chooses two items z, z′ ∈ Z ,
and observes the binary user preference of item z or item
z′. A natural model is to give each item z ∈ Z a score
z>θ∗, with the goal of finding z∗ = maxz∈Z z

>θ∗. The
probability the user prefers item z over z′ is modeled by
P(z > z′) = µ((z − z′)>θ∗). Hence the set of measure-
ment vectors is naturally X = {z − z′ : z, z′ ∈ Z}. Note
that our setting is a natural generalization of the dueling
bandit setting (Yue et al., 2012). As far as we are aware, this
is the first work to propose the dueling bandit problem as
a natural extension of the transductive linear bandit setting
under a logistic noise model.

Related Work. Soare et al. (2014) first proposed the
problem of pure exploration in linear bandits with Gaussian
noise whenX = Z . Fiez et al. (2019) introduced the general
transductive setting, provided the RAGE elimination based
method which is the main inspiration for our algorithm.
RAGE achieves the lower bound up to logarithmic factors
with excellent empirical performance. Other works include
Degenne et al. (2020); Karnin et al. (2013), which achieve
the lower bound asymptotically. Finally we mention Katz-
Samuels et al. (2020), which follows a similar approach
to Fiez et al. (2019) but uses empirical process theory to
replace the union bound over the number of arms with a
Gaussian width.

Despite its importance in abundant real-life settings, pure-
exploration for logisitic bandits has received little attention.
The only work we are aware of is Kazerouni & Wein (2019)
which defines the problem and provides an algorithm mo-
tivated by Xu et al. (2018). However, their theoretical and
empirical performance are both far behind our proposed
algorithm RAGE-GLM as we elaborate more below.

Notation. Define κ0 = minx∈X µ̇(x>θ∗), the smallest
derivative of the link function among elements in X (dif-
fering slightly from the previous section). Let ∆X = {λ ∈
R|X |, λ ≥ 0,

∑
x∈X λx = 1} be the probability simplex

over X . Given a design λ ∈ ∆X , define:

H(λ, θ) :=
∑
x∈X

λxµ̇(x>θ)xx>, A(λ) :=
∑
x∈X

λxxx
>.

3.1. Algorithm

Algorithm 1 RAGE-GLM
Input: ε, δ, X , Z , κ0, effective rounding procedure

round(n, ε, λ)
1: initialize k = 1,Z1 = Z, r(ε) = d2/ε

2: θ̂0 ← BurnIn(X , κ0) . Burn-in phase
3: while |Zk| > 1 do . Elimination phase
4: δk = δ/(2k2 max{|Z|, |X |}(2 + |X |))
5: f(λ) := max

[
γ(d) maxx∈X ‖x‖2H(λ,θ̂k−1)−1

,

22k · (2.4)2 maxz,z′∈Zk ‖z − z′‖2H(λ,θ̂k−1)−1

]
6: λk = arg minλ∈∆X f(λ)
7: nk = max{3(1 + ε)f(λk) log(1/δk), r(ε)}
8: x1, · · · , xnk ← round(n, ε, λ)
9: Observe rewards y1, · · · , ynk ∈ {0, 1}.

10: Compute the MLE θ̂k with {(xi, yi)}nki=1. . Eq (1)
11: ẑk = arg maxz∈Zk θ̂

>
k z

12: Zk+1 ← Zk \
{
z ∈ Zk : θ̂>k (ẑk − z) ≥ 2−k

}
13: k ← k + 1

14: return ẑk

Our RAGE-GLM algorithm (Alg. 1) proceeds in rounds.
In each round k, it maintains a set of active arms Zk. It
computes an experimental design that is dependent on θ̂k−1,
the estimate of θ∗ from the previous round, and uses this ex-
perimental design to draw nk samples. Then, the algorithm
eliminates any arms verified to be sub-optimal using θ̂k. We
now go into the algorithmic details.

Rounding. In the k-th round, we have Hk(θ) :=∑nk
s=1 µ̇(x>s θ)xsx

>
s .3 The algorithm utilizes an efficient

rounding procedure to ensure that Hk(θ̂k−1) is within a
constant factor of nk ·H(λk, θ̂k−1). Given distribution λk,
tolerance ε, and a number of samples nk ≥ r(ε), the pro-

3We abuse notation in this section and use the subscript k to
denote the round, not the number of samples as in section 2.
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Algorithm 2 BurnIn
Input: X , κ0

1: initialize λ0 = arg minλ∈∆X maxx∈X ‖x‖2A(λ)−1

2: n0 = 3(1 + ε)κ−1
0 dγ(d) log(2|X |(2 + |X |)/δ)

3: x1, · · · , xn0 ← round(n0, λ0, ε)
4: Observe associated rewards y1, · · · , yn0

.
5: return MLE θ̂0 . Use Eq (1)

cedure round(nk, ε, λ) returns an allocation {xs}nks=1 such
that for any θ ∈ Rd, Hk(θ) ≥ nk

1+εH(λ, θ). Efficient round-
ing procedures with r(ε) = d2/ε are described in (Fiez
et al., 2019); see Appendix C for more details.

Burn-In Phase. The burn-in phase computes θ̂0, an es-
timate of θ∗ to be used in the first round. To do so, we
need to guarantee that θ∗ is well-estimated in all direc-
tions X , i.e., |x>(θ̂ − θ∗)| < 1,∀x ∈ X . Ensuring this
requires that we can employ the confidence interval in
Theorem 1. Thus, burn-in Algorithm 2 must ensure that
maxx∈X ‖x‖2(∑n0

s=1 µ̇(x>s θ
∗)xsx>s )−1 ≤ 1/γ(d). As we yet

lack information on θ∗, we take the naive approximation:
n0∑
s=1

µ̇(θ∗>xs)xsx
>
s ≥

n0

1 + ε
H(λ, θ) (from rounding)

≥ n0

1 + ε
κ0A(λ),

and instead consider the optimization problem
minλ∈X maxx∈X ‖x‖2A(λ)−1 . This is a G-optimal
experimental design, and has a value of d by the Kiefer-
Wolfowitz theorem (Soare et al., 2014). For the burn-in
phase we assume we have access to an upper bound on κ−1

0 ,
which is equivalent to knowing an upper bound on ‖θ∗‖.

Experimental Design. In each round, line 5 of Algorithm 1
optimizes a convex experimental design that minimizes two
objectives simultaneously. The main objective is

22k min
λ∈∆X

max
z,z′∈Zk

‖z − z′‖2
H(λ,θ̂k−1)−1 . (6)

which ensures the the gap θ>(z∗ − z) is estimated to an
error of 2−k for each z. This allows us to eliminate arms
whose gaps are significantly larger than 2−k in each round,
guaranteeing that Zk ⊂ Sk := {z : (z∗−z)>θ∗ ≤ 2 ·2−k}.

The other component of line 5 minimizes
maxx∈X ‖x‖2H(λ,θ̂k−1)−1

similarly to the burn-in phase.
This guarantees that we satisfy the conditions of Theorem 1.
It additionally guarantees that the estimate θ̂k is sufficiently
close to θ∗ for all directions in X . Combining this with
self-concordance, |µ̈| ≤ µ̇, we show that H(λk, θ

∗) is
within a constant factor of H(λk, θ̂k) (see the Appendix C).
We stop when |Zk| = 1 and return the remaining arm.

Theorem 2 (Sample Complexity). Take δ < 1/e and as-

sume ‖z‖ ≤ 1/2 for all z ∈ Z . Define

βk = min
λ∈∆X

max

[
22k max

z,z′∈Sk
‖z − z′‖2H(λ,θ∗)−1 ,

γ(d) max
x
‖x‖2H(λ,θ∗)−1

]
Algorithm 1 returns z∗ with probability greater than 1− 3δ
in a number of samples no more than

O

( dlog2(2/∆min)e∑
k=1

βk log(max{|Z|, |X |}k2/δ)

+ d(1 + ε)γ(d)κ−1
0 log(|X |/δ) + r(ε) log(∆−1

min)

)
where ∆min = minz 6=z∗∈Z〈θ∗, z∗ − z〉.

Interpreting the Upper Bound. Before comparing our
bound with prior work, we show concrete examples that
show the strength of our sample complexity bound.

Example 1. Consider a simple setting where Z = X =
{e1, e2} ⊂ R2, and θ∗ = (r, r − ε), for r ≥ 0. In this case,
κ−1

0 = maxi∈{1,2} µ̇(z>i θ
∗)−1 ≤ er. Thus in the burn-in

phase, we take roughly Õ(er) samples. Now, for small ε, the
minimizer of minλ∈∆X ‖e1 − e2‖2H(θ∗)−1 places roughly
equal mass on e1 and e2, giving an objective value that is
roughly bounded by er. Thus the sample complexity of
Algorithm 1 is O(

∑log2(1/ε)
k=1 22ker log(1/δ)) ≈ er

ε2 .

Note this problem is equivalent to a standard best-arm identi-
fication algorithm with two Bernoulli arms (Kaufmann et al.,
2015). Standard results in Pure Exploration show that a
lower bound on this problem is given by the KL-divergence
KL(Bernoulli(µ(θ>z1)),Bernoulli(µ(θ>z2)))−1 ≈ er

2ε2 for
sufficiently small ε. This shows that our bound is at least no
worse than the well-studied unstructured case.

Example 2. We extend the above setting and consider
X = {e1, e2, e1 − e2}, Z = {e1, e2} and the same θ∗.
As above, the burn-in phase requires κ−1 ≈ er samples.
Starting from the first round, our computed experimental
design will place all of its samples on the third arm. In this
case, minλ ‖e1 − e2‖2H(θ∗)−1 = 1/µ̇(ε) ≤ C, for small ε.4

The main term of the sample complexity becomes

O

log2(1/∆min)∑
k=1

22k log
1

δ

 ≤ O( 1

ε2
log

1

δ

)
.

Hence ignoring burn-in or the additional samples we take
in each round to guarantee the confidence interval, the total
sample complexity would be Õ( 1

ε2 ). This is exponentially
smaller than in Example 1 and demonstrates the power of
an informative arm in reducing the sample complexity.

On the other hand, the burn-in phase, common to all logis-

4With H(θ∗)−1 interpreted as a pseudo-inverse.
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tic bandit algorithms based on the MLE, may potentially
take a number of samples exponential in r. This example
demonstrates the need for further work on understanding the
precise dependence of κ in pure exploration. In Section 4,
we take a first step towards this by showing κ−1 burn-in is
unavoidable in some cases.

Comparison to past work. As βk grows exponentially
each round, the first element in the maximum for βk domi-
nates our sample complexity. Focusing on this term while
ignoring logarithmic terms and the burn-in samples, the
sample complexity in Theorem 2 scales as

ρ∗ :=

log2(2/∆min)∑
k=1

22k min
λ∈∆X

max
z,z′∈Sk

‖z − z′‖2H(θ∗) .

Importantly, this depends onH(θ∗) instead of a loose bound
based on κ−1. In Appendix E.1 we show

ρ∗ ≤ log

(
2

∆min

)
min
λ∈∆X

max
z∈Z\z∗

‖z∗ − z‖2H(λ,θ∗)−1

〈θ∗, z∗ − z〉2
.

This is reminiscent of a similar quantity that is within a
log(·) factor of being optimal for pure exploration linear
bandits (Fiez et al., 2019). We provide a close connection
between our upper bound and information theoretic lower
bounds in Appendix E.1, although they do not match exactly.
We also prove a novel lower bound in moderate confidence
regimes, which we elaborate more in Section 4.

We now compare to the result of Kazerouni & Wein (2019).
Using a variant of the UGapE algorithm for linear bandits
(Xu et al., 2018), they demonstrate a sample complexity
Õ( d|X |

κ2∆2
min

) in the setting where X = Z . This sample com-
plexity, unlike ours, scales linearly with the number of arms,
and only captures a dependency on the smallest gap. We
note that one can improve on their sample complexity by
using a naive passive algorithm that uses a fixed G-optimal
design, along with the trivial bound H(λ, θ∗) ≥ κ0A(λ),
resulting in Õ(d/(κ0∆2

min)) (Soare et al., 2014).5 In con-
trast, the bound of Theorem 2 only depends on the number
of arms logarithmically, captures a local dependence on θ∗,
and has a better gap dependence.

Extra samples. Algorithm 1 potentially samples in each
round to ensure the confidence interval is valid (i.e., the first
argument of the max in line 5). In Appendix D, we propose
RAGE-GLM-2 that removes these samples needed in each
round (but not the burn-in samples) by employing the con-
fidence interval of Faury et al. (2020). This algorithm has
a better asymptotic behavior as δ → 0, but could perform
worse with large d or S∗ due to an additional factor of

√
d

and a factor of S3
∗ .

5This is equivalent to computing the allocation from Algo-
rithm 2, and sampling until all arms are eliminated.

Figure 1. Standard Baseline Example

open pointy sporty comfort
|Z| 3327 2932 3219 3374

RAGE-GLM-R 9.17e+07 2.38e+05 2.29e+05 3.34e+06
RAGE-GLM 9.17e+07 2.38e+05 2.29e+05 4.55e+06

Passive 2.69e+08 2.38e+05 2.29e+05 8.54e+06

Table 1. Zappos pairwise comparison data, bold indicates a win.

3.2. Experiments

This section evaluates the empirical performance of RAGE-
GLM, alongside two additional algorithms:

• RAGE-GLM-R: This is a heuristic version of RAGE-
GLM that makes two changes. First, it does not do a burn-
in in each round and samples from λk = minz,z′ ‖z −
z′‖2

H(λ,θ̂k−1)−1
directly. Second, to compute the estimate

θ̂k, it uses all samples up to round k.
• Passive Baseline: This baseline runs the burn-in pro-

cedure and then computes the static design λ =
minz,z′∈Z ‖z − z′‖2H(λ,θ̂0)−1

. It then proceeds in rounds,

drawing 2k samples in round k, terminating when we are
able to verify that each arm is sub-optimal using the fixed
design confidence interval (see Appendix H for details).
As in the heuristic, we recycle samples over rounds.

Remark. We also implemented the algorithm of (Kazerouni
& Wein, 2019). However a) the algorithm was extremely
slow to run since an MLE and a convex optimization had to
be run each round, b) the confidence bounds do not exploit
the true variance. As a result, the algorithm did not terminate
on any of our examples.

Our first experiment (Fig. 1) is a common baseline in
the linear bandits literature. We consider d + 1 arms in
d dimensions with arm i ∈ [1, n] being the i-th basis
vector, and arm i + 1 as cos(.1)e1 + sin(.1)e2. We use
d ∈ {10, 20, 30, 40, 50} and 10 repetitions for each value
of d. In all instances, all algorithms found the best arm cor-
rectly. RAGE-GLM was competitive against the heuristic
RAGE-GLM-R and took roughly a factor of 10 less samples
compared to Random.

Our next experiment is based on the Zappos pairwise com-
parison dataset (Yu & Grauman, 2014; 2017). This dataset
consists of pairwise comparisons on 50k images of shoes
and 960 dimensional vision-based feature vectors for each
shoe. Given a pair of shoes, participants were asked to com-
pare them on the the attributes of “open”, “pointy”, “sporty”
and “comfort” obtaining several thousand queries. For each
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one of these categories, we fit a logistic model to the set
of pairwise comparisons after PCA-ing the features down
to 25 dimensions (for computational tractability) and used
the underlying weights as θ∗. We then set Z to be the set
of shoes that were considered in that category and X to be
5000 random pairs. Table 1 shows the result. For the “open”
and “comfort” category, RAGE-GLM took about a factor of
3 less samples compared to Random. The large sample com-
plexity for “open” is due to an extremely small minimum
gap of O(10−4). For “pointy” and “sporty” the empirical
gaps were large and all three algorithms terminated after the
burn-in phase. Finally, κ for all instances was on the order
of 0.1. See Appendix H for a deeper discussion, alongside
pictures of winning and informative shoes.

4. 1/κ0 Is Necessary
In this section, we turn to lower bounds on the sample
complexity of pure exploration problems.

Theorem 3. Fix δ1 < 1/16, d ≥ 4, and ε ∈ (0, 1/2] such
that dε2 ≥ 12.2. LetZ denote the action set and Θ denote a
family of possible parameter vectors. There exists instances
satisfying the following properties simultaneously

1. |Z| = |Θ| = eε
2d/4 and ‖z‖ = 1 for all z ∈ Z .

2. S = ‖θ∗‖ = O(ε2d)

3. Any algorithm that succeeds with probability at least
1− δ1 satisfies

∃θ∈Θ s.t. Eθ[Tδ1 ] > Ω
(
eε

2d/4
)

= c

(
1

κ0

) 1−ε
1+3ε

where Tδ1 is the random variable of the number of sam-
ples drawn by an algorithm and c is an absolute constant.

The implications of this bound are two-fold. Firstly, it
shows a family of instances where the dependence on 1/κ0

in the sample complexity of Algorithm 1 is necessary. Sec-
ondly, this bound demonstrates a particular phenomenon
of the logistic bandit problem: there are settings where
κ−1

0 ≈ ed samples are needed despite θ∗ ∈ Rd. By contrast,
for linear bandits, O(d/∆2

min) samples are always suffi-
cient (Soare et al., 2014). For the instances in the theorem,
∆min ≥ Ω(1 − e−d). In Appendix E.2, we state a second
lower bound that captures the asymptotic sample complexity
as δ → 0, but show that this bound would suggest that only
O(log(1/δ)) samples are necessary, which is vacuous for
δ > e−e

d

. Instead, the above moderate confidence bound
reflects the true sample complexity of the problem for values
of δ seen in practice, e.g. δ ≈ .05. This dichotomy high-
lights that there are important challenges to logistic bandit
problems that are not captured by their asymptotic sample
complexity. In particular, this demonstrates that there exist

instances of pure exploration logistic bandits that are expo-
nentially harder than their linear counterparts. The proof
is in Appendix E.2, inspired by a construction from Dong
et al. (2019).

5. K-Armed Contextual Bandits
We now switch gears and consider the contextual bandit set-
ting where at each time step t the environment presents the
learner with an arm set Xt = {xt,1, . . . , xt,K} ⊂ Rd inde-
pendently of the learner’s history (Auer, 2002). The learner
then chooses an arm index at ∈ [K] and receives a re-
ward yt ∼ Bernoulli(µ(x>t,atθ

∗)), where parameter θ∗ is un-
known to the learner. Let xt,a∗ = arg maxx∈Xt µ(x>t,aθ

∗)
be the best arm at time step t. The goal is to minimize the
cumulative (pseudo-)regret over the time horizon T :

RegT =

T∑
t=1

µ(x>t,a∗θ
∗)− µ(x>t,atθ

∗). (7)

While the regret Õ(d
√
T + d2κ−1) is achievable by Faury

et al. (2020)6, one can aim to achieve an accelerated re-
gret bound when K = o(ed). Specifically, Li et al. (2017)
achieve the best-known bound of Õ( 1

κ

√
dT log(K)). How-

ever, the factor 1/κ is exponential w.r.t. ‖θ∗‖, which makes
the regret impractically large. Leveraging our new confi-
dence bound, we propose a new algorithm SupLogistic that
removes 1/κ from the leading term: Õ(

√
dT log(K)).

We assume that ‖xt,a‖ ≤ 1,∀t ∈ [T ], a ∈ [K], and that
‖θ∗‖ ≤ S∗ where S∗ is known to the learner. We follow
Li et al. (2017) and assume that there exists σ2

0 such that
λmin(E[ 1

K

∑
a∈[K] xt,ax

>
t,a]) ≥ σ2

0 , which is used to char-
acterize the length of the burn-in period in our theorem.

We describe SupLogistic in Alg. 3, which follows the
standard mechanism for maintaining independent samples
(Auer, 2002). As the confidence bound is not available un-
til enough samples are accrued, we perform τ time steps
of burn-in sampling and then spread the samples across
the buckets Ψ1, . . . ,ΨS ,Φ equally. Note that our burn-in
sampling is different from Li et al. (2017), we show in
Appendix F that their approach is problematic.

After the burn-in, in each time step t, we loop through the
buckets s ∈ [S]. In each loop, we compute θ(s)

t−1, the MLE
given in Eq (1), using the samples in the bucket Ψs(t− 1).
We compute θΦ in the same way using Φ. Let Xt = xt,at .
For any θ, define

H
(s)
t (θ) :=

∑
u∈Ψs(t)

µ̇(X>u θ)XuX
>
u . (8)

The algorithm computes the mean estimate and the confi-
dence width of each arm a ∈ [K] as follows:

m
(s)
t,a :=〈xt,a, θ(s)

t−1〉, w
(s)
t,a :=α

√
2.2‖xt,a‖H(s)

t−1(θΦ)−1
. (9)

6Õ hides poly-logarithmic factors in T .
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Algorithm 3 SupLogistic
Input: time horizon T , burn-in length τ , and exploration

rate α
1: initialize S = blog2 T c
2: initialize Buckets Ψ1 = · · · = ΨS = ΨS+1 = ∅
3: for t ∈ [τ ] do
4: Choose at ∈ [K] uniformly at random.
5: Add at to the set Ψ((t−1) mod S+1)+1.

6: initialize Ψ0 = ∅, Φ = ΨS+1

7: for t = τ + 1, τ + 2, · · · , T do
8: initialize A1 = [K], s = 1, at = ∅.
9: while at = ∅ do

10: Compute mt,a and wt,a . use Eq (9)
11: if w(s)

t,a > 2−s for some a ∈ As then
12: at = a . (a)
13: Ψs ← Ψs ∪ {t}
14: else if w(s)

t,a ≤ 1/
√
T , ∀ a ∈ As then

15: at = arg maxa∈As m
(s)
t,a . (b)

16: Ψ0 ← Ψ0 ∪ {t}
17: else if w(s)

t,a ≤ 2−s, ∀ a ∈ As then
18: As+1 = {a ∈ As : . (c)
19: m

(s)
t,a ≥ maxj∈Asm

(s)
t,j −2 ·2−s}

20: s← s+ 1

For each s ∈ [S], we check if there is an underexplored arm
(step (a)) and pull it. Otherwise, we pull the arm with the
highest empirical mean. Finally, we filter arms whose em-
pirical means are sufficiently far from the highest empirical
mean and go to the next iteration.

The bucketing is important to maintain the validity of the
concentration inequality in the analysis, which requires that
the data satisfies the fixed design assumption in Theorem 1.
Our comment on Li et al. (2017) in Appendix F elaborates
more on this issue.

The main challenge of the design of SupLogistic over
SupCB-GLM (Li et al., 2017) is how we use our tight confi-
dence bound, which requires the confidence width to depend
on θ∗ (see Theorem 1). Our solution is to use a separate
bucket Φ dedicated for computing the width. If we do not
use Φ and use the empirical version of Theorem 1, we would
break the fixed design assumption as we collect samples as
a function of the rewards from the same bucket.

We present our regret bound in the following theorem whose
proof can be found in Appendix G.

Theorem 4. Let T ≥ d, τ =
√
dT , α =

2.4
√

log( 2(2+τ)·2STK
δ ) with δ = 1/T , and Z =

1
σ4

0

(
1
σ4

0
+ κ−2

)(
d+ 1

d log2(K)
)

. Then,

E[RegT ] ≤ 10α
√
dT log(T/d) log2(T )

+O

(
α2d

κ
log2(T ) + Z log4(Z)

)
.

Our bound improves upon SupCB-GLM (Li et al., 2017)
by removing the factor 1/κ = Θ(exp(S∗)) in the leading
term (i.e.,

√
T term). Such an improvement parallels that

of Faury et al. (2020) with Õ(d
√
T ) upon UCB-GLM (Li

et al., 2017) with Õ( 1
κd
√
T ). We remark that the constant

σ2
0 is at most 1/d, and thus in the best case the lower-order

term of the regret bound scales like d5 + d3κ−2 ignoring
K.

Compared to Logistic-UCB-2 of Faury et al. (2020), our re-
gret bound can be better or worse depending on the problem,
which we summarize in three cases. First, ours has a factor
of
√
d log(K) in the

√
T term, which is a

√
d factor better

than theirs when K = o(ed). Secondly, our bound’s lower
order term scales like 1/κ2, which is worse than 1/κ of
Logistic-UCB-2. Thirdly, while Logistic-UCB-2 manages
to avoid an exponential dependence on S∗ in the leading
term, the regret still has a factor S1.5

∗ and requires the knowl-
edge of S∗.7 In contrast, our bound does not depend on S∗
in the leading term nor requires the knowledge of S∗.

Remark 2. A parallel work by Abeille et al. (2020) achieves
a leading term of d

√
µ̇(x>∗ θ

∗)T in the regret bound where
x∗ is the best arm that is fixed throughout. This is possible
since their setting assumes a fixed arm set. In contrast, our
setting assumes that the arm set is changing, so the best
arm can change in every time step. For this reason, we do
not expect to achieve a factor like

√
µ̇(x>∗ θ

∗) in the leading
term without further assumptions.

6. Future work
Our confidence bound utilizes self-concordance and local
analysis to significantly improve upon the existing state of
the art results for the logistic MLE. We remove a direct
dependence on κ−1 in the confidence width and relax signif-
icantly the requirement on the minimum sample size for the
bound to be valid. To better leverage our knowledge burn-in
condition, we hope to develop online procedures that adapt
to θ∗ instead of paying a worst case dependence in κ to
satisfy the burn-in condition. Furthermore, understanding
the optimal burn-in condition is an important open problem
with practical implications.

Pure exploration for linear logistic models is largely under-
explored, although its applications are abundant. Exploiting
the local nature of the logistic loss and closely working
with non-uniform variances that naturally arise from the
model is crucial in sample-efficient design of experiments.
Our work is an important first step on understanding the
true sample complexity of this problem and determining the
precise dependence of the sample complexity on κ−1

0 is an

7Which may be removed if their algorithm uses a burn-in phase.
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exciting direction.

A major road block to developing practical contextual bandit
algorithms is the fact that SupLogistic (and its ancestors like
in Auer (2002)) have to maintain independent buckets, and
cannot share samples across buckets. It would be interesting
to develop new algorithms that do not waste samples, with-
out increasing the regret bound. Foster & Rakhlin (2020)
have proposed such an algorithm but its dependence on the
number of arms is sub-optimal.
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