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Abstract
We consider the problem of detecting signals in
the rank-one signal-plus-noise data matrix mod-
els that generalize the spiked Wishart matrices.
We show that the principal component analysis
can be improved by pre-transforming the matrix
entries if the noise is non-Gaussian. As an inter-
mediate step, we prove a sharp phase transition of
the largest eigenvalues of spiked rectangular ma-
trices, which extends the Baik–Ben Arous–Péché
(BBP) transition. We also propose a hypothesis
test to detect the presence of signal with low com-
putational complexity, based on the linear spectral
statistics, which minimizes the sum of the Type-I
and Type-II errors when the noise is Gaussian.

1. Introduction
Detecting a low-rank structure or signal in a high-
dimensional noisy data is one of the most fundamental
problems in statistics and data science (Johnstone, 2001;
Onatski et al., 2013; 2014; Abbe, 2017). In the case where
the data is a matrix and the signal is a vector, it is natural to
consider spiked random matrices, which includes the spiked
Wigner matrix and the spiked Wishart matrix. In these mod-
els, the signal is in the form of rank-1 mean matrix (spiked
Wigner matrix) or rank-1 perturbation of the identity in the
covariance matrix (spiked Wishart matrix). In this paper, we
consider the following rectangular random matrix models
that generalize the spiked Wishart matrix:

• Rectangular matrix with spiked mean (additive model):
the data matrix is of the form

√
λuvT +X,

where X is an M × N random i.i.d. matrix whose
entries are centered with variance N−1, u ∈ RM ,

1Department of Mathematical Sciences, KAIST, Daejeon,
Korea 2School of Electrical Engineering, KAIST, Daejeon, Ko-
rea 3School of Mathematics, KIAS, Seoul, Korea. Correspon-
dence to: Hye Won Chung <hwchung@kaist.ac.kr>, Ji Oon Lee
<jioon.lee@kaist.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

v ∈ RN with ‖u‖ = ‖v‖ = 1. The parameter λ
corresponds to the signal-to-noise ratio (SNR).

• Rectangular matrix with spiked covariance (multiplica-
tive model): the data matrix is of the form

(I + λuuT )1/2X,

where X is an M × N random i.i.d. matrix whose
entries are centered with variance N−1, u ∈ RM with
‖u‖ = 1. The parameter λ corresponds to the SNR.

Note that in the rectangular matrix with spiked covariance,
and also in the rectangular matrix with spiked mean under
an additional assumption that the entries of u and v are
centered, the population covariance is

Σ = I + λuuT .

In the special case where the entries of v are i.i.d. Gaussians,
the two models coincide.

If SNR λ is sufficiently large, we can easily detect (and
recover) the signal by methods such as principal component
analysis (PCA). Even under the high-dimensional assump-
tion M,N → ∞ with M/N → d0 ∈ (0,∞), the signal
can be reliably detected by PCA if λ >

√
d0. (For the use of

PCA in the high-dimensional setting, we refer to (Johnstone,
2007).) On the other hand, if λ ∈ (0,

√
d0), the distribu-

tion of the largest eigenvalue coincides with that of the null
model λ = 0. This sharp transition in the behavior of the
largest eigenvalue is known as the BBP transition after the
seminal work by Baik, Ben Arous, and Péché (Baik et al.,
2005). (See Section 2.2.)

On the other hand, in the subcritical case λ <
√
d0, if the

noise X is Gaussian and the signal u (and also v for a
rectangular matrix with spiked mean) is drawn uniformly
from the unit sphere, known as the spherical prior, then no
test can reliably detect the signal. (See Section 2.3.) Thus,
it is natural to ask the following questions:

• Is the threshold for reliable detection (i.e., with proba-
bility 1− o(1) as M,N →∞) lower than

√
d0 if the

noise is non-Gaussian?

• Can we design an efficient algorithm to weakly detect
the signal (i.e., better than a random guess) for the
subcritical case?
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We aim to answer these questions in this paper.

1.1. Main contributions

Our main contributions are as follows:

• We prove that the PCA can be improved by an entry-
wise transformation if the noise is non-Gaussian, under
a mild assumption on the distribution (prior) of the
spike.

• We propose a universal test to detect the presence of
signal with low computational complexity, based on the
linear spectral statistics (LSS). The test does not require
any prior information on the signal, and if the noise is
Gaussian the error of the proposed test is optimal.

Heuristically, the SNR can be increased through an entry-
wise transformation and it can be easily seen for a rectangu-
lar matrix (additive model) of the form Y =

√
λuvT +X .

If |uivj | � Xij , then by applying a function q entrywise to√
NY , we obtain a transformed matrix whose entries are

q(
√
NYij) = q(

√
NXij +

√
λNuivj)

≈ q(
√
NXij) +

√
λNq′(

√
NXij)uivj ,

where the approximation is due to the Taylor expansion. It
can be shown that the coefficient q′(

√
NXij) in the second

term in the right side can be replaced by its expectation
with negligible error. (See Section B.2 of Supplementary
Material for the proof.) Thus,

q(
√
NYij) = q(

√
NXij +

√
λNuivj)

≈
√
N

(
q(
√
NXij)√
N

+
√
λE[q′(

√
NXij)]uivj

)
,

and the transformed matrix is of the form
√
λ′uvT + Q

after normalization, which yields another spiked rectangular
matrix with different SNR. By optimizing the SNR of the
transformed matrix, we find that the SNR is effectively
increased (or equivalently, the threshold

√
d0 is lowered)

in the PCA for the transformed matrix. The change of the
SNR can be rigorously proved; see Theorem 5 for a precise
statement. We remark a similar idea was also discussed in
(Montanari et al., 2018) without rigorous proof.

The corresponding result is not known, to our best knowl-
edge, for the multiplicative model of the form Y = (I +
λuuT )1/2X =: (I + γuuT )X . (Here, λ = 2γ + γ2.) The
analysis is significantly more involved in this case due to
the following reason: When applying a function q entrywise

to
√
NY , we find that

q(
√
NYij) = q

(√
NXij + γ

√
N
∑
k

uiukXkj

)
≈ q(
√
NXij) + γ

√
Nq′(

√
NXij)

∑
k

uiukXkj

≈
√
N

(
q(
√
NXij)√
N

+ γE[q′(
√
NXij)]

∑
k

uiukXkj

)
,

and the transformed matrix is of the form γ′uuTX + Q,
which is not a spiked rectangular matrix anymore. (Note
that Q depends on X and thus it cannot be considered as an
additive model, either.)

In Theorem 6 in Section 3.1, we prove the effective change
of the SNR for the multiplicative model. The proof of
Theorem 6 is based on a generalized version of the BBP
transition that works with the matrix of the form γuuTX +
Q. Applying various results and techniques from random
matrix theory, we introduce a general strategy to prove a
BBP-type transition and apply it to the transformed matrix.

It is notable that the optimal entrywise transform is differ-
ent from the one for the additive model. For the additive
model, the optimal transform is given by −g′/g, where g
is the density function of the noise entry. However, for the
multiplicative model, the optimal transform is a linear com-
bination of the function −g′/g and the identity mapping.
Heuristically, it is due to that the effective SNR depends not
only on γ′ but also on the correlation between X and Q; the
former is maximized when the transform is −g′/g while
the latter is maximized when the transform is the identity
mapping. We also remark that the effective SNR after the
optimal entrywise transform is larger in the additive model,
which suggests that the detection problem is fundamentally
harder for the multiplicative model.

When it is impossible to reliably detect the signal, the next
goal is the weak detection, which is basically the hypothesis
testing problem between the null model and the alternative
model that the spike exists in the data. As predicted by the
Neyman–Pearson lemma, the likelihood ratio (LR) test is
optimal in the sense that it minimizes the sum of the Type-I
error and the Type-II error. The limit of the log-LR was
proved to be Gaussian for both the additive model and the
multiplicative model with Gaussian noise (Onatski et al.,
2013; El Alaoui & Jordan, 2018) from which the limiting
optimal error can be readily deduced.

However, LR tests require substantial information on the
prior, which is not available in many applications. Following
the idea in (Chung & Lee, 2019), we propose a test based on
the LSS, which does not require any knowledge on the spike
or the noise. We prove in Corollary 9 (see also Remark 10)
that the error of the proposed test is optimal if the noise is
Gaussian.
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The proposed test is applicable even when the noise is non-
Gaussian. It is expected that the weak detection based on
the proposed test will perform better after the entrywise
transform, which was proved for spiked Wigner models
(Chung & Lee, 2019). This will be discussed in a future
paper. We also conjecture that with the entrywise transform
our test will be optimal when the noise is non-Gaussian,
but it is beyond our scope as the optimal error of the weak
detection for non-Gaussian noise is not known, even for
spiked Wigner models.

1.2. Related works

Spiked rectangular model was introduced by Johnstone
(Johnstone, 2001). The transition of the largest eigenvalue
was proved by Baik, Ben Arous, and Péché (Baik et al.,
2005) for spiked complex Wishart matrices and generalized
by Benaych-Georges and Nadakuditi (Benaych-Georges &
Nadakuditi, 2011; 2012). For more results from random
matrix theory about the largest eigenvalue and the corre-
sponding eigenvector of a spiked rectangular matrix, we
refer to (Bloemendal et al., 2016) and references therein.

The testing problem for spiked Wishart matrices with the
spherical prior and Gaussian noise was considered by
Onatski, Moreira, and Hallin (Onatski et al., 2013; 2014),
where they proved the optimal error of the hypothesis test.
It is later extended to the case where the entries of the spikes
are i.i.d. with bounded support (i.i.d. prior) by El Alaoui
and Jordan (El Alaoui & Jordan, 2018). LSS-based tests in
the spiked rectangular models with the standardized entries
were considered by Dobriban (Dobriban, 2017).

The improved PCA based on the entrywise transformation
was considered for spiked Wigner models in (Lesieur et al.,
2015; Perry et al., 2018), where the transformation is chosen
to maximize the effective SNR of the transformed matrix.
Detection problems for spiked Wigner models were also
considered, where the analysis is typically easier due to its
symmetry and canonical connection with spin glass models.
For more results on the spiked Wigner models, we refer to
(Montanari et al., 2017; Perry et al., 2018; El Alaoui et al.,
2020; Chung & Lee, 2019) and references therein.

1.3. Organization of the paper

The rest of the paper is organized as follows. In Section
2, we precisely define the model and introduce previous
results. In Section 3, we state our results on the improved
PCA and illustrate the improvement of PCA by numerical
experiments. In Section 4, we state our results on the hy-
pothesis testing and the central limit theorems for the linear
spectral statistics. We conclude the paper in Section 5 with
the summary of our results and future research directions.
Details of the numerical simulations and the proofs of the
technical results can be found in Supplementary Material.

2. Preliminaries
2.1. Definition of the model

We begin by precisely defining the model we consider in
this paper. The noise matrix has the following properties.
Definition 1 (Rectangular matrix). We say an M ×N ran-
dom matrix X = (Xij) is a (real) rectangular matrix if Xij

(1 ≤ i ≤ M , 1 ≤ j ≤ N ) are independent real random
variables satisfying the following conditions:

• For all i, j, E[Xij ] = 0, NE[X2
ij ] = 1, N

3
2E[X3

ij ] =

w3, and N2E[X4
ij ] = w4 for some constants w3, w4.

• For any positive integer p, there exists Cp, independent
of N , such that N

p
2E[Xp

ij ] ≤ Cp for all i, j.

The spiked rectangular matrices are defined as follows.
Definition 2 (Spiked rectangular matrix - additive model).
We say an M × N random matrix Y =

√
λuvT + X is

a rectangular matrix with spiked mean u, v and SNR λ if
u = (u1, u2, . . . , uM )T ∈ RM , v = (v1, v2, . . . , vN )T ∈
RN with ‖u‖ = ‖v‖ = 1, and X is a rectangular matrix.
Definition 3 (Spiked rectangular matrix - multiplicative
model). We say an M × N random matrix Y = (I +
λuuT )1/2X is a rectangular matrix with spiked covariance
u and SNR λ if u = (u1, u2, . . . , uM )T ∈ RM with ‖u‖ =
1 and X is a rectangular matrix.

We assume throughout the paper that λ ≥ 0 and M
N → d0 ∈

(0,∞) as M,N →∞.

2.2. Principal component analysis

Let S = Y Y T be the sample covariance matrix (Gram ma-
trix) derived from a spiked rectangular matrix Y . The em-
pirical spectral measure of S converges to the Marchenko–
Pastur law µMP , i.e., if we denote by µ1 ≥ µ2 ≥ . . . µM
the eigenvalues of S, then

1

M

M∑
i=1

δµi(x)dx→ dµMP (x) (1)

weakly in probability as M,N →∞, where for M ≤ N

dµMP (x) =

√
(x− d−)(d+ − x)

2πd0x
1(d−,d+)(x)dx, (2)

with d± = (1 ±
√
d0)2. The largest eigenvalue has the

following (almost sure) limit:

• If λ >
√
d0, then µ1 → (1 + λ)(1 + d0

λ ).

• If λ <
√
d0, then µ1 → d+ = (1 +

√
d0)2.

This in particular shows that the detection can be reliably
done by PCA if λ >

√
d0.
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2.3. Likelihood ratio

Denote by P1 the joint probability of the data Y , a spiked
rectangular matrix, with λ = ω > 0 and P0 with λ = 0.
When the noise is Gaussian, the likelihood ratio L(Y ;λ) of
P1 with respect to P0 is given by∫

det(I + ωuuT )−
N
2

× exp

 Nλ

2(1 + ω‖u‖2)

M∑
i=1

N∑
j=1

(Y Y T )ijuiuj

 dPu

for the multiplicative model (Definition 3) and

∫
exp

N M∑
i=1

N∑
j=1

[√
ωYijuivj −

ω

2
u2
i v

2
j

]dPudPv

for the additive model (Definition 2). Here, Pu and Pv are
the prior distributions of u and v, respectively.

If ω <
√
d0, for both models with the spherical prior where

the spike is drawn uniformly from the unit sphere, the log-
LR has the Gaussian limit; as N →∞, it converges to

N
(

1

4
log

(
1− ω2

d0

)
,−1

2
log

(
1− ω2

d0

))
under the null hypothesis H0 : Y ∼ P0 and

N
(
−1

4
log

(
1− ω2

d0

)
,−1

2
log

(
1− ω2

d0

))
under the alternative hypothesis H1 : Y ∼ P1. The same
result also holds for the additive model with Rademacher
prior. The sum of the Type-I error and the Type-II error of
the likelihood ratio test

err(ω) := P(L(Y ;ω) > 1|H0) + P(L(Y ;ω) ≤ 1|H1)

→ erfc

(
1

4

√
− log

(
1− ω2

d0

))
(3)

asN →∞. We remark that it is the minimal error among all
tests as Neyman–Pearson lemma asserts. This in particular
shows that the reliable detection of signal is impossible with
Gaussian noise when ω <

√
d0.

2.4. Linear spectral statistics

The proof of the Gaussian convergence of the LR in (Baik
& Lee, 2016; 2020) is based on the recent study of linear
spectral statistics, defined as

LY (f) =

M∑
i=1

f(µi) (4)

for a function f , where µ1 ≥ µ2 ≥ . . . µM are the eigenval-
ues of S = Y Y T .As Marchenko–Pastur law in (1) suggests,
it is required to consider the fluctuation of the LSS about

M

∫ d+

d−

f(x) dµMP (x).

The CLT for the LSS is the statement(
LY (f)−M

∫ d+

d−

f(x) dµMP (x)

)
⇒ N (mY (f), VY (f)),

(5)

where the right-hand side is the Gaussian random variable
with the mean mY (f) and the variance VY (f). The CLT
was proved for the null case (λ = 0). We will show that the
CLT also holds under the alternative and the mean mY (f)
depends on λ while the variance VY (f) does not.

3. Main Result I - Improved PCA
In this section, we state our first main results on the improve-
ment of PCA by entrywise transformations and provide the
results from numerical experiments.

3.1. Improved PCA

Let P be the distribution of the normalized entry
√
NXij

whose density function is g. As we discussed in Section 1.1,
applying a function q to the additive model in Definition 3
approximately yields another rectangular matrix

q(
√
NXij)√
N

+
√
λE[q′(

√
NXij)]uivj . (6)

Suppose that q(
√
NXij) =

√
NQij is with mean 0 and

variance 1. Then, the effective SNR of the transformed
matrix is λ(E[q′(

√
NXij)])

2, which is maximized when
q(x) is a multiple of −g′(x)/g(x).

For the multiplicative model in Definition 3, applying a
function q approximately yields a transformed matrix of the
form Q + γ̂uuTX as discussed in Section 1.1, where we
set γ̂ = γE[q′(

√
NXij)]. The sample covariance matrix

generated by it is

(Q+ γ̂uuTX)(Q+ γ̂uuTX)T

= QQT + γ̂QXTuuT + γ̂uuTXQT

+ γ̂2uuTXXTuuT .

Conditioning on u, its expectation is (I + λSNRuu
T ),

where the effective SNR λSNR is

2γ̂E[
√
NXijq(

√
NXij)] + γ̂2

= 2γE[q′(
√
NXij)]E[

√
NXijq(

√
NXij)]

+ γ2(E[q′(
√
NXij)])

2
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We can find that λSNR is maximized when q(x) is a multiple
of −g′(x)/g(x) + αx for some constant α.

In this section, we rigorously prove our heuristic argument
and show the detection threshold of PCA can be lowered by
applying the entrywise transformations above. We introduce
the following assumptions for the spike and the noise.

Assumption 4. For the spike u (and also v in the additive
model), we assume either

1. the spherical prior, i.e., u (and v) are drawn uniformly
from the unit sphere, or

2. the i.i.d. prior, i.e., the entries u1, u2, . . . , uM (respec-
tively, v1, v2, . . . , vN ) are i.i.d. random variables with
mean zero and variance M−1 (respectively N−1) such
that for any integer p > 2

E|ui|p,E|vj |p ≤
Cp

M1+(p−2)φ

for some (N -independent) constants Cp > 0 and φ >
1
4 , uniformly on i and j.

For the noise, let P be the distribution of the normalized
entries

√
NXij . We assume the following:

1. The density function g of P is smooth, positive every-
where, and symmetric (about 0).

2. For any fixed D, the D-th moment of P is finite.

3. The function h = −g′/g and its all derivatives are
polynomially bounded in the sense that |h(`)(w)| ≤
C`|w|C` for some constant C` depending only on `.

Note that the signal is not necessarily delocalized, i.e., some
entries of the signal can be much larger than N−1/2.

We remark that some conditions in Assumption 4, especially
the i.i.d. prior and the finiteness of all moments of P , are
technical constraints and our results hold under weaker as-
sumptions. We also remark that if

√
Mui (and

√
Nvj) are

i.i.d. random variables, independent of M (and N ), whose
all moments are finite, Assumption 4 is satisfied with φ = 1

2 .

Given the data matrix Y , we consider a family of the entry-
wise transformations of the form hα(x) = −g′(x)/g(x) +

αx and transformed matrices Ỹ (α) whose entries are

Ỹ
(α)
ij =

1√
(α2 + 2α+ Fg)N

hα(
√
NYij), (7)

where the Fisher information Fg of g is given by

Fg =

∫ ∞
−∞

(g′(x))2

g(x)
dx.

Note that Fg ≥ 1 where the equality holds only if g is the
standard Gaussian.

For the additive model, we show that the effective SNR of
the transformed matrix for PCA is λFg .
Theorem 5. Let Y be a spiked rectangular matrix in Def-
inition 2 that satisfy Assumption 4. Let Ỹ ≡ Ỹ (0) be the
transformed matrix obtained as in (7) with α = 0 and µ̃1

the largest eigenvalue of Ỹ Ỹ T . Then, almost surely,

• If λ >
√
d0
Fg

, then µ̃1 → (1 + λFg)(1 + d0
λFg

).

• If λ <
√
d0
Fg

, then µ̃1 → d+ = (1 +
√
d0)2.

From Theorem 5, if λ >
√
d0
Fg

, we immediately see that
the signal in the additive model can be reliably detected by
the transformed PCA. Thus, the detection threshold in the
PCA is lowered when the noise is non-Gaussian. We also
remark that h0 is the optimal entrywise transformation (up
to constant factor) as in the Wigner case; see Section B.4 of
Supplementary Material for more detail.

For the proof, we first adapt the strategy in (Perry et al.,
2018) to justify that the transformed matrix is approximately
equal to (6), which is another rectangular matrix. We then
prove a BBP-type transition for the additive model, follow-
ing the method of (Benaych-Georges & Nadakuditi, 2012).
Since our assumptions on the spike and the noise are weaker,
we provide the detail of the proof of Theorem 5 in Section
B.2 of Supplementary Material.

For the multiplicative model, we have the following.
Theorem 6. Let Y be a spiked rectangular matrix in Def-
inition 3 that satisfy Assumption 4. Let Ỹ ≡ Ỹ (αg) be the
transformed matrix obtained as in (7) with

αg :=
−γFg +

√
4Fg + 4γFg + γ2F 2

g

2(1 + γ)

and µ̃1 the largest eigenvalue of Ỹ Ỹ T . Then, almost surely,

• If λg >
√
d0, then µ̃1 → (1 + λg)(1 + d0

λg
).

• If λg <
√
d0, then µ̃1 → d+ = (1 +

√
d0)2.

where

λg := γ +
γ2Fg

2
+
γ
√

4Fg + 4γFg + γ2F 2
g

2
.

Note that

λg ≥ γ +
γ2Fg

2
+
γ
√

4 + 4γFg + γ2F 2
g

2
= 2γ + γ2Fg

≥ 2γ + γ2 = λ,
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and the inequality is strict if Fg > 1, i.e., g is not Gaussian.
From Theorem 6, if λg >

√
d0, we immediately see that

the signal can be reliably detected by the transformed PCA.
Thus, the detection threshold in the PCA is lowered when
the noise is non-Gaussian. We also remark that hαg

is the
optimal entrywise transformation (up to constant factor);
see Section B.4 of Supplementary Material for more detail.

We outline the proof of Theorem 6. We begin by justi-
fying that the transformed matrix Ỹ is approximately of
the form (Q + γ̂uuTX). Then, the largest eigenvalue of
Ỹ Ỹ T can be approximated by the largest eigenvalue of
(Q+ γ̂uuTX)T (Q+ γ̂uuTX) for which we consider an
identity

(Q+ γ̂uuTX)T (Q+ γ̂uuTX)− zI
= (QTQ− zI)(I + L(z)),

where

L(z) = G(z)(γ̂XTuuTQ+ γ̂QTuuTX + γ̂2XTuuTX),

G(z) = (QTQ− zI)−1.

If z is an eigenvalue of (Q+ γ̂uuTX)T (Q+ γ̂uuTX) but
not of QTQ, the determinant of (I + L(z)) must be 0 and
hence −1 is an eigenvalue of L(z). Since the rank of L(z)
is at most 2, we can find that the eigenvector of L(z) is a
linear combination of two vectors G(z)QTu and G(z)XTu,
i.e., for some a, b,

L(z)(aG(z)QTu + bG(z)XTu)

= −(aG(z)QTu + bG(z)XTu).
(8)

From the definition of L(z),

L(z) · G(z)XTu = γ̂〈u, QG(z)XTu〉 · G(z)XTu

+ γ̂〈u, XG(z)XTu〉 · G(z)QTu

+ γ̂2〈u, XG(z)XTu〉 · G(z)XTu,

and a similar equation holds forL(z)·G(z)QTu. It suggests
that if 〈u, QG(z)XTu〉 and 〈u, XG(z)XTu〉 are concen-
trated around deterministic functions of z, then the left side
of (8) can be well-approximated by a (deterministic) linear
combination of G(z)QTu and G(z)XTu. We can then find
the location of the largest eigenvalue in terms of a determin-
istic function of z and conclude the proof by optimizing the
function q.

The concentration of random quantities 〈u, QG(z)XTu〉
and 〈u, XG(z)XTu〉 is the biggest technical challenge in
the proof, mainly due to the dependence between the ma-
trices Q and X . We prove it by applying the technique of
linearization in conjunction with resolvent identities and
also several recent results from random matrix theory, most
notably the local Marchenko–Pastur law.

Figure 1. We compare the reconstruction performance of the pro-
posed PCA (top lines) and the standard PCA (bottom lines) for
two FashionMNIST images, with the number of measurements
N = [3136, 1568, 784, 588, 392] where M = 784. The left most
column displays the original images for comparison.

The detailed proof of Theorem 6 can be found in Section
B.3 of Supplementary Material.

Remark 7. Unlike the additive model, we cannot determine
αg without prior knowledge on the SNR. Nevertheless, we
can apply the transformation h√

Fg
, which effectively in-

creases the SNR; see Section B.4 of Supplementary Material
for more detail.

3.2. Applying the improved PCA to real data

To illustrate the improvement of PCA in Section 3.1, we
perform the following numerical experiment: We choose a
vector z ∈ R784 from the standard Fashion-MNIST dataset.
We then let the spike u be a normalized vector of z. The
j-th column of the data matrix Y is a noisy sample of the
spike given by

Yj = vju +Xj ,

where vj follows Rademacher distribution and each entry
of Xj is independently drawn from a centered bimodal
distribution with unit variance, which is a convolution of
Gaussian and Rademacher random variables, and normal-
ized by 1/

√
N . Our goal is to reconstruct the spike u from

Y with N columns. In Fig. 1, we compare the reconstruc-
tion by the improved PCA with standard PCA over Y . With
the optimal entrywise transformation, the proposed PCA
outperforms the standard PCA.

While we have analyzed the improved PCA with prior infor-
mation on the noise, it is possible to estimate the noise even
when the noise distribution is not known. As an attempt,
we tried kernel density estimation (KDE) with the Gaussian
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Figure 2. The spectrum of the sample covariance matrices, before
(left) and after (right) the entrywise transformation ĥ. An outlier
eigenvalue can be seen only after the entrywise transformation

kernel, which approximates the density of the noise g(x) by

ĝ(x) :=
1

MNδ

∑
i,j

φ((x−
√
NYij)/δ),

where φ is the density function of the standard normal ran-
dom variable and δ is the bandwidth, which we chose to be
(MN)−1/5.

For a numerical experiment, we consider the data ma-
trix Y =

√
λuvT + X , where

√
Mui and

√
Mvj fol-

low Rademacher distribution for i = 1, 2, . . . ,M and
j = 1, 2, . . . , N . The noise is independently drawn from
the same centered bimodal distribution as in the experiment
above but with the variance N−1. The size of the data ma-
trix is set to be M = 1024, N = 2048, and hence the ratio
d0 = M/N = 1/2. We set the SNR λ ≈ 0.4945. With
the approximation ĝ, we use the entrywise transformation
ĥ := −ĝ′/ĝ.

In Fig. 2, we compare the spectrum of the sample covariance
matrices, Y Y T (left) and Ỹ Ỹ T (right), where for the latter
we rescale the eigenvalues so that the bulk of its spectrum
matches that of the former. An isolated eigenvalue can be
seen only in the spectrum in the bottom, which is the case
after the entrywise transformation.

For more simulation results about the improved PCA, see
Section A of Supplementary Material.

4. Main Result II - Weak Detection
In this section, we state our second main results on the
hypothesis test and provide the results from numerical ex-
periments.

4.1. Hypothesis testing and central limit theorem

Suppose that the SNR ω for the alternative hypothesis H1

is known and our goal is to detect the presence of the signal.
We propose a test based on the LSS of the data matrix in
(4). The key observation is that the variances of the limit-
ing Gaussian distributions of the LSS are equal while the
means are not. If we denote by VY (f) the common variance,

and mY (f)|H0
and mY (f)|H1

the means, respectively, our
goal is to find a function that maximizes the relative differ-
ence between the limiting distributions of the LSS under
H0 and under H1, i.e.,∣∣∣∣∣mY (f)|H1 −mY (f)|H0√

VY (f)

∣∣∣∣∣ .
As we will see in Theorem 11, the optimal function f is of
the form C1φω +C2 for some constants C1 and C2, where

φω(x) =
ω

d0

(
2

w4 − 1
− 1

)
x

− log

((
1 +

d0

ω

)
(1 + ω)− x

)
.

(9)

The test statistic we use is thus defined as

Lω =

M∑
i=1

φω(µi)−M
∫ d+

d−

φω(x) dµMP (x)

= − log det

((
1 +

d0

ω

)
(1 + ω)I − Y Y T

)
+
ω

d0

(
2

w4 − 1
− 1

)
(TrY Y T −M)

+M

[
ω

d0
− log

(
ω

d0

)
− 1− d0

d0
log(1 + ω)

]
.

(10)

Our main result in this section is the following CLT for Lω .

Theorem 8. Let Y be a spiked rectangular matrix in Defi-
nition 3 or 2 with w ∈ (0,

√
d0) and w4 > 1. Then, for any

spikes with ‖u‖ = 1 and ‖v‖ = 1,

Lω ⇒ N (m(λ), V0). (11)

The mean of the limiting Gaussian distribution is given by

m(λ) = −1

2
log

(
1− ω2

d0

)
− ω2

2d0
(w4 − 3)

− log

(
1− λ2

d0

)
+
λ2

d0

(
2

w4 − 1
− 1

) (12)

and the variance

V0 = −2 log

(
1− ω2

d0

)
+

2ω2

d0

(
2

w4 − 1
− 1

)
(13)

Theorem 8 directly follows from the general CLT result
in Theorem 11. See also Section C.3 of Supplementary
Material for more detail on the mean and the variance.

We propose a test in Algorithm 1 based on Theorem 8. In
this test, we compute the test statistic Lω and compare it
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Algorithm 1 Hypothesis test
Input: data Yij , parameters w4, ω
Lω ← test statistic in (10)
mω ← critical value in (14)
if Lω ≤ mω then

Accept H0

else
Reject H0

end if

with the average of m(0) and m(ω), i.e.,

mω :=
m(0) +m(ω)

2

= − log

(
1− ω2

d0

)
+
ω2

2d0

(
2

w4 − 1
− w4 + 2

)
.

(14)

As a simple corollary to Theorem 8, we have the following
formula for the limiting error of the proposed test.

Corollary 9. The error of the test in algorithm 1,

err(ω) = P(Lω > mω|H0) + P(Lω ≤ mω|H1)

→ erfc

(√
V0

4
√

2

)
,

(15)

where V0 is the variance in (13) and erfc(·) is the comple-
mentary error function.

For the proof of Corollary 9, see Corollary 5 of (El Alaoui
et al., 2020) or Theorem 2 of (Chung & Lee, 2019).
Remark 10. If the noise X is Gaussian, w4 = 3 and the
limiting error in Corollary 9 is

erfc

(√
V0

4
√

2

)
= erfc

(
1

4

√
− log

(
1− ω2

d0

))
,

and it coincides with the error of the LR test in (3). It shows
that our test is optimal with the Gaussian noise.

Even if the exact parameter w4 is not known a priori, it can
be easily estimated from the data matrix Y by computing

1
MN

∑
Y 4
ij . The accuracy of such an estimate can be easily

checked from the Chernoff bound.

Lastly, we state a general CLT for the LSS and the optimality
of the function φω as the test statistic.

Theorem 11. Assume the conditions in Theorem 8. Denote
by µ1 ≥ µ2 ≥ · · · ≥ µM the eigenvalues of Y Y T . For any
function f analytic on an open set containing an interval

[d−, d+],(
M∑
i=1

f(µi)−M
∫ d+

d−

√
(x− d−)(d+ − x)

2πd0x
f(x) dx

)
⇒ N (mY (f), VY (f)).

(16)

The mean and the variance of the limiting Gaussian distri-
bution are given by

mY (f) =
f̃(2) + f̃(−2)

4
− τ0(f̃)

2
− (w4 − 3)τ2(f̃)

+

∞∑
`=1

(
ω√
d0

)`
τ`(f̃)

and

VY (f) = 2

∞∑
`=1

`τ`(f̃)2 + (w4 − 3)τ1(f̃)2,

where we let f̃(x) = f(
√
d0x+ 1 + d0),

τ`(f) =
1

π

∫ 2

−2

T`

(x
2

) f(x)√
4− x2

dx ,

and T` is the `-th Chebyshev polynomial of the first kind.

Furthermore, for m(ω), m(0), and V0 defined in Theorem
8, ∣∣∣∣∣mY (f)−mX(f)√

VY (f)

∣∣∣∣∣ ≤
∣∣∣∣m(ω)−m(0)√

V0

∣∣∣∣
The equality holds if and only if f(x) = C1φω(x) + C2 for
some constants C1 and C2 with the function φω defined in
(9).

We remark that the analyticity of the function f in Theorem
11 is assumed only because it is sufficient in our purpose and
this assumption can be weakened by the density argument,
which is typically used in the proof of CLT results in random
matrix theory.

We briefly sketch the proof of Theorem 11 based on the
interpolation technique, developed in (Chung & Lee, 2019;
Jung et al., 2020). In this method, the right side of (16)
is written as the following contour integral of the trace of
the resolvent: For a function f analytic on an open set
containing an interval [d−, d+],

M∑
i=1

f(µi) =

M∑
i=1

1

2πi

∮
Γ

f(z)

z − µi
dz

= − 1

2πi

∮
Γ

f(z) Tr(Y Y T − zI)−1dz

(17)
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Figure 3. The error from the simulation (solid) and the theoretical
limiting error in (15) (dashed), respectively, for the Gaussian noise.

for any contour Γ containing µ1, µ2, . . . , µN . For the null
model, i.e., if λ = 0, the CLT was proved in (Bai & Silver-
stein, 2004; Lytova & Pastur, 2009) with precise formulas
for the mean and the variance.

To prove the CLT for a non-null model, i.e., a spiked
rectangular matrix with λ 6= 0, we introduce an inter-
polation between the null model and the non-null model,
and track the change of the LSS by finding the change of
Tr(Y Y T−zI)−1. The change is decomposed into the deter-
ministic part and the random part, where the latter converges
to 0 with overwhelming probability for both the additive
model and the multiplicative model. We can then conclude
that the CLT for the LSS holds also for the non-null model,
with the variance unchanged. The change of the mean can
be computed by considering the deterministic change of the
resolvent.

The detail of the proof of Theorem 11 can be found in
Section C of Supplementary Material.

4.2. Numerical experiments for the LSS test

We consider the case where the noise matrix X is Gaus-
sian and the signal u = (u1, u2, . . . , uM )T and v =
(v1, v2, . . . , vN )T , where

√
Mui’s and

√
Nvj’s are i.i.d.

Rademacher random variables for i = 1, 2, . . . ,M and
j = 1, 2, . . . , N . Let the data matrix Y =

√
λuvT + X .

The parameters are w2 = 2 and w4 = 3.

In Figure 3, we plot empirical average (after 10,000 Monte
Carlo simulations) of the error of the proposed test in Algo-
rithm 1 and the theoretical (limiting) error in (15), varying
the SNR ω from 0 to 0.5, with M = 256 and N = 512. It
can be checked that the error of the proposed test closely
matches the theoretical error.

5. Conclusion and Future Works
In this paper, we considered the detection problem of spiked
rectangular model. For both the multiplicative model and
the additive model, we showed that PCA can be improved
for non-Gaussian noise by transforming the data entrywise.
We proved the effective SNR and the optimal entrywise
transforms for both models. We also proposed a universal
test that does not require any prior information on the spike.
The test and its error do not depend on the noise except its
(normalized) fourth moment. The error of the proposed test
is optimal when the noise is Gaussian.

A natural future research direction is to apply the entrywise
transformation for the weak detection. As in the spiked
Wigner model, we believe that the error of the proposed test
can be lowered with the entrywise transformation and it can
be proved by establishing the central limit theorems for the
transformed matrices.
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