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Abstract
Much of the theory for classical sparse recovery
is based on conditions on the dictionary that are
both necessary and sufficient (e.g., nullspace prop-
erty) or only sufficient (e.g., incoherence and re-
stricted isometry). In contrast, much of the theory
for subspace-preserving recovery, the theoretical
underpinnings for sparse subspace classification
and clustering methods, is based on conditions
on the subspaces and the data that are only suffi-
cient (e.g., subspace incoherence and data inner-
radius). This paper derives a necessary and suffi-
cient condition for subspace-preserving recovery
that is inspired by the classical nullspace property.
Based on this novel condition, called here the sub-
space nullspace property, we derive equivalent
characterizations that either admit a clear geomet-
ric interpretation that relates data distribution and
subspace separation to the recovery success, or
can be verified using a finite set of extreme points
of a properly defined set. We further exploit these
characterizations to derive new sufficient condi-
tions, based on inner-radius and outer-radius mea-
sures and dual bounds, that generalize existing
conditions and preserve the geometric interpreta-
tions. These results fill an important gap in the
subspace-preserving recovery literature.

1. Introduction
Many machine learning problems involve the analysis of
high-dimensional data whose intrinsic dimension is much
lower than the ambient dimension. When such data comes
from multiple classes, it can be well approximated by a
union of low-dimensional subspaces, where each subspace
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corresponds to one class. This has motivated the develop-
ment of many supervised and unsupervised methods for
learning a union of subspaces, a.k.a. the subspace classifica-
tion and subspace clustering tasks (Vidal et al., 2016).

Among existing methods for subspace classification and
clustering, sparse representation based methods (Wright
et al., 2009; Elhamifar & Vidal, 2009; Soltanolkotabi &
Candès, 2012; Soltanolkotabi et al., 2014; You & Vidal,
2015; Robinson et al., 2019) have drawn much attention due
to their simplicity, broad theoretical guarantees and superior
empirical performance. Such methods are based on express-
ing each data point as a linear combination of the other
data points while enforcing `1 regularization on the repre-
sentation coefficients. The idea is that the nonzero entries
of the coefficient vector should correspond to data points
that lie in the same subspace as the point being represented.
Coefficient vectors that have that property are referred to
as subspace-preserving (Vidal et al., 2016), a notion that
plays a central role in establishing the correctness of sparse
subspace classification and clustering methods. In particular,
the recovery of subspace-preserving solutions is provably
guaranteed when the subspaces are independent (Elhami-
far & Vidal, 2009), disjoint (Elhamifar & Vidal, 2010) and
non-trivially intersecting (Soltanolkotabi & Candès, 2012;
Soltanolkotabi et al., 2014; You & Vidal, 2015). Recently,
such guarantees have been further extended to a broader
range of applications that deal with dimension-reduced
data (Wang et al., 2015), corrupted data (Soltanolkotabi
& Candès, 2012; Wang & Xu, 2016; You et al., 2017), data
with missing entries (Tsakiris & Vidal, 2018), and affine
subspaces (Li et al., 2018; You et al., 2019).

Most of the existing theoretical conditions for subspace-
preserving recovery characterize the geometry of the union
of subspaces (e.g., via subspace independence (Elhami-
far & Vidal, 2009; Lu et al., 2012) and subspace incoher-
ence (Soltanolkotabi & Candès, 2012; You & Vidal, 2015))
and the distribution of points in the subspaces (e.g., via
inner-radius and circumradius (Soltanolkotabi & Candès,
2012; You & Vidal, 2015)). Such geometric conditions have
clear geometric interpretations and provide an important
understanding of the regimes in which sparse methods are
applicable. However, such conditions are only sufficient and
a tight characterization of subspace-preserving recovery has
been missing in the existing literature.



A Nullspace Property for Subspace-Preserving Recovery

In this paper, we derive necessary and sufficient conditions
for subspace-preserving recovery. Our conditions are in-
spired by the classical Nullspace Property (NSP) (Foucart &
Rauhut, 2013, Defn. 4.1)1, which has been widely used in
classical sparse recovery, not only as a tool to obtain results
of theoretical importance, but also as a powerful tool to ob-
tain stable (Foucart & Rauhut, 2013, Thm. 4.14) and robust
(Foucart & Rauhut, 2013, Thm. 4.19) recovery guarantees.
However, the NSP appears not to have been explored in the
subspace classification and clustering literature.2 Arguably,
one of the reasons is that necessary and sufficient conditions
such as the NSP are often difficult to verify. This paper
not only introduces an NSP that is successfully tailored for
subspace-preserving recovery, but also derives equivalent
characterizations of it based on the set of extreme points that
reduce the verification of the condition to a finite set. Our
primary goal is to present an in-depth theoretical analysis of
subspace-preserving recovery through a nullspace-property-
like condition, and not necessarily to construct computa-
tionally efficient tools. Hence, the conditions we derive can
sometimes be computationally hard to verify, as is often
the case with other conditions in the literature (Elhamifar
& Vidal, 2009; Lu et al., 2012; Soltanolkotabi & Candès,
2012; You & Vidal, 2015).

More specifically, the contributions of this paper can be
summarized as follows:

• We derive a necessary and sufficient condition for
subspace-preserving recovery (Thm. 1) that we call the
subspace nullspace property (SNSP). We show that the
SNSP holds if and only if it holds on a certain subset of
the columns of the data matrix X , which has the potential
of significantly facilitating the verification of the SNSP
for the subspace classification task (Lemma 1).

• We provide a characterization of the SNSP based on a
comparison of the symmetrized convex hull of the data
points on a subspace and the symmetrized convex hull of
the remaining data points, which provides a very clear ge-
ometric interpretation for the SNSP (Thm. 2). We derive
a sufficient condition from this characterization, which is
also geometric in nature and simplifies the decision to a
comparison between the inner-radius and outer-radius of
two compact convex sets (Cor. 2).

• By exploiting convexity of the recovery problem in the

1Since the NSP is a necessary and sufficient condition, suffi-
cient conditions like Restricted Isometry Property implies the NSP
(Foucart & Rauhut, 2013, Sect. 6.2).

2As far as we know, (Robinson et al., 2019) is the only
prior work that discusses a necessary and sufficient condition
for subspace-preserving recovery and establishes a connection be-
tween their condition (based on dual certificate analysis) and the
NSP. However, the exposition in (Robinson et al., 2019) is limited
to a comment and an in-depth analysis is missing in the literature.

primal space, we provide a novel characterization of the
SNSP that reduces its verification to a finite subset of
the extreme points of the intersection of the nullspace
of X and the `1-ball (Thm. 3). This characterization
requires solving an `1-minimization problem for each
extreme point. By replacing the `1-minimization problem
by its dual and exploiting convexity in the dual space,
we formulate a characterization of the SNSP that can be
verified by a decision on a finite set only (Thm. 5).

• We introduce bounds on the dual of the `1-minimization
problem when the columns of X are assumed to have
unit `p-norm (Prop. 1). These bounds allow us to simplify
the aforementioned characterization of the SNSP based
on extreme points to obtain a sufficient condition for
subspace-preserving recovery that is simpler to check
(Thm. 6).

2. Preliminaries and Problem Formulation
2.1. Notation and Preliminaries

The set of integers from 1 up to N is denoted as [N ] :=
{1, . . . , N}. For any c ∈ RN , the support of c is denoted
as Supp(c) := {k ∈ [N ] : ck 6= 0}. The vector c is called
s-sparse if |Supp(c)| ≤ s. For any index set S ⊆ [N ], the
complement of S in [N ] is denoted by Sc. For a nonempty
set S ⊆ [N ], the vector cS ∈ R|S| denotes the part of c
that is supported on S. We use PrS ∈ RN×N to denote the
matrix that projects onto the coordinates in S and sets all
other coordinates to zero. For a matrix X ∈ RD×N and an
index set S ⊆ [N ], the matrix XS ∈ RD×|S| denotes the
submatrix of X consisting of the columns of X indexed by
S. Therefore, for all c ∈ RN , we have X PrS c = XScS .
If S = {j} for some j, we write xj instead of XS to
refer to the jth-column of X . We prioritize the subscript
over superscript so that X>S ≡ (XS)>, and not (X>)S .
Finally, Null(X) denotes the nullspace of the matrix X ,
and X−1(·) denotes the inverse image under X .

The `p-norm of a vector x ∈ RD is defined as ‖x‖p :=

(
∑D
k=1 |xk|p)

1
p , where | · | denotes the absolute value. The

unit `p-sphere is denoted by SD−1
p := {x ∈ RD : ‖x‖p =

1} and the unit `p-ball by BDp := {x ∈ RD : ‖x‖p ≤ 1}.

The convex hull is denoted by conv(·). We denote the
convex hull of the union of the columns of X and −X by
K(X). Sometimes we refer to it as the symmetrized convex
hull of the columns of X .

For a nonempty convex set C ⊆ RD, the set of ex-
treme points of C is denoted as Ext(C). These are
precisely the points that cannot be written as a non-
trivial convex combination of two distinct points in C.
The affine hull of C, denoted by aff(C), is the smallest
affine set in RD that contains C. The relative interior



A Nullspace Property for Subspace-Preserving Recovery

(Rockafellar, 1970, p.44) of C is defined as rinte(C) :={
x∈aff(C) : ∃ε > 0, (x + εBD2 ) ∩ aff(C) ⊆ C)

}
. The po-

lar (Rockafellar, 1970, p.125) of C is defined as C◦ :={q ∈
RD : q>x ≤ 1 for all x ∈ C}. Note that C◦ is always a
closed, convex set (Rockafellar, 1970, p.125).

We define the inner-`p-radius of a nonempty compact con-
vex set C ⊆ RD containing the origin as the radius of
the largest `p-ball (confined to the linear span of C) one
can inscribe inside C, and denote it by rp (C). That is,
rp (C) := max{α ∈ R>0 : α(BDp ∩ span(C)) ⊆ C}, where
span(C) denotes the subspace spanned by C and R>0 de-
notes the set of positive real numbers. Likewise, we de-
fine the outer-`p-radius of C as the radius of the smallest
`p-ball that contains C, and denote it by Rp (C). That is,
Rp (C) := min{β ∈ R>0 : βBDp ⊇ C}.

2.2. Sparse Subspace Classification and Clustering

Let X = [x1, · · · ,xN ] ∈ RD×N be a matrix with nonzero
columns drawn from a union of n subspaces

⋃n
i=1 Si ⊂

RD of dimension di = dim(Si). Let P := {Pi}ni=1 be a
partitioning of [N ] defined according to the memberships of
the columns of X to the subspaces, i.e., Pi := {k ∈ [N ] :
xk ∈ Si}. 3 Assuming P is known, the goal of subspace
classification is to assign a new nonzero point y ∈ Si for
some i ∈ [n] to the subspace Si that it belongs.

We assume that the columns of XPi span Si, hence any
point y ∈ Si can be expressed as a linear combination of
the columns of XPi , i.e., there exists a c ∈ RN with support
in Pi such that y = Xc. Given y ∈ Si, a solution c to the
system y = Xc is called subspace-preserving if and only
if Supp(c) ⊆ Pi. Note that such a vector c need not be
unique, since in general the number of columns of XPi will
be larger than the dimension of Si. Nonetheless, assuming
that the largest subspace dimension d̄ = maxi di is small
relative to N , it follows that all subspace-preserving vectors
c must be d̄-sparse. This motivated (Wright et al., 2009) to
tackle the subspace classification problem by solving the
basis pursuit problem

min
c∈RN

‖c‖1 s.t. y = Xc, (1)

where the `1 norm is used as a proxy for the sparsity of c.
To understand the correctness of this approach, we consider
the following theoretical question concerning subspace-
preserving recovery:

(Q) What are the necessary and sufficient conditions on the
union of subspaces

⋃n
i=1 Si and the data X such that

for all i ∈ [n] and all y ∈ Si, all solutions to (1) are
subspace-preserving?

3We implicitly assume that no column of X lies at the intersec-
tion of two distinct subspaces from the union, which is not a major
assumption for data coming from real applications.

The answer to (Q) provides necessary and sufficient con-
ditions under which any test data point y ∈

⋃n
i=1 Si is

correctly classified by assigning it to the subspace deter-
mined by Supp(c). 4

Closely related to subspace classification is the problem of
subspace clustering, where we assume that the subspaces
and the membership of the columns of X to their respective
subspaces {Si} are unknown and the goal is to segment the
columns of X into their respective subspaces, i.e., to find
P . The work of (Elhamifar & Vidal, 2013) addressed the
subspace clustering problem by solving a modified basis
pursuit problem where each data point is expressed as a
combination of “other” data points. More precisely, for
each j ∈ [N ], the authors propose to solve

min
c∈RN−1

‖c‖1 s.t. xj = X−jc,

where X−j denotes the submatrix of X consisting of all but
the jth column. For each j, the solution of this optimization
problem provides a sparse representation of the data point
xj in terms of the other data points, which is then used
to cluster the data. The conditions under which such a
representation is subspace-preserving can help guarantee
the correct segmentation of the data points. Hence, finding
an answer to (Q) has important implications in subspace
clustering setting. In this paper, we focus on answering
(Q) for the subspace classification problem, and refer the
reader to (You & Vidal, 2015; Robinson et al., 2019) for a
detailed discussion of the implications of such answers in
the subspace clustering setting.

We end this section by a comparison of the subspace classifi-
cation problem and the recovery of the block sparse signals.
Over the years researchers studied the different aspects of
this problem in detail. For instance, there is work on ex-
act recovery of block sparse signals (Jenatton et al., 2011;
Bajwa et al., 2015) and the recovery of the support of the
unknown block sparse signal (Obozinski et al., 2011; Kolar
et al., 2011). A nullspace characterization of the recovery of
block sparse signals is also available (Stojnic et al., 2009).
However, the existing work on block sparse signals differs
from the problem we study here in one major way: We are
neither interested in the correct recovery of the support nor
the correct recovery of the signal itself. Even if the mini-
mizer of (1) has a support different than the original signal,
the recovery attempt can be deemed successful in the setting
we study. To the best of our knowledge, the problem (Q)
was never studied in the literature addressing the recovery
of block sparse signals.

4Note that if y ≡ 0, then the solution to (1) is c̄ ≡ 0. Therefore,
the support of c̄ is the empty set, and we have ∅ = Supp(c̄) ⊆ Pi

for all i ∈ [n]. That is, when y ≡ 0, the solution to (1) is
always subspace-preserving. In particular, y ≡ 0 is assigned to all
subspaces, which is in accordance with the fact that all subspaces
contain the origin.
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3. A Nullspace Property for
Subspace-preserving Recovery

This section provides an initial answer to (Q) based on a
necessary and sufficient condition that is inspired by the
classical NSP for sparse recovery. We call this condition the
Subspace Nullspace Property (SNSP) in homage to its ties
with subspace classification and clustering, and the NSP.

Definition 1 (SNSP). We denote the set of vectors in the
nullspace of X whose support is not contained in any single
element of the partition P by Null(X,P). That is,

Null(X,P) :={η ∈ Null(X) : Supp(η) 6⊆ P, ∀P ∈P} .
(2)

We say that X satisfies the SNSP if and only if for all η ∈
Null(X,P) and P ∈ P , we have

min
z:XP z=XP ηP

‖z‖1 < ‖ηP c‖1. (3)

We find it informative to briefly discuss how we interpret
the SNSP. It tells us that the vectors that are relevant in
characterizing the subspace-preserving recovery are those
vectors in Null(X) whose supports are not contained within
a single element of the partition P . This is the first level
of attention SNSP introduces. Then, (3) further rules out
certain vectors in Null(X,P): For any η̄ ∈ Null(X,P), if
there is η̂ ∈ Null(X,P) with η̄P c = η̂P c and ‖XP η̂P ‖1 <
‖XP η̄P ‖1, then it is enough to check (3) for η̂ only. Hence,
the variation in η ∈ Null(X,P) introduced by the nullspace
of XP is irrelevant, unless it is reducing the `1-norm of ηP .

When XP has full column rank, the only solution to
XPz = XP ηP is z = ηP , and the condition in (3)
becomes ‖ηP ‖1 < ‖ηP c‖1. Such a condition is closely
related to the classical NSP of order s, which requires
‖ηP ‖1 < ‖ηP c‖1 to hold for all s-sparse patterns, i.e. for
all P with |P | ≤ s. Therefore, the SNSP differs from the
NSP in two directions. First, it does not require the columns
of XP to be linearly independent, thus allowing for non-
unique sparse solutions. This makes sense for subspace
classification and clustering, where the goal is to determine
the correct subspace rather than a unique sparse representa-
tion, hence the specific support of the solution is irrelevant
as long as it gives the correct subspace. Second, the SNSP
is verified over the partitioning P of the data according to
the membership to the subspaces, while the NSP is verified
with respect to all s-sparse patterns.

The next result shows that SNSP gives an answer to (Q).5

Theorem 1. The solution to (1) is subspace-preserving for
all i ∈ [n] and y ∈ Si if and only if X satisfies the SNSP.
That is, for all i ∈ [n] and for all c̄ ∈ RN supported in Pi,

5All missing proofs can be found in the supplementary material.

the support of any minimizer of

min
c:Xc=Xc̄

‖c‖1 (4)

is contained in Pi if and only if X satisfies the SNSP.

Proof. ⇒: Let η ∈ Null(X,P) and P ∈ P . Since 0 =
Xη = X (PrP (η) + PrP c(η)), we have

X PrP (η) = X PrP c(−η). (5)

Note that Supp(PrP (η)) ⊆ P ∈ P . Then, by the hypothe-
sis, the support of any minimizer of

min
z:X PrP (η)=Xz

‖z‖1 (6)

is a subset of P . Therefore,

min
c:XP (ηP )=XP (c)

‖c‖1 = min
z:X PrP (η)=Xz

‖z‖1. (7)

By (5), PrP c(−η) is feasible for (6). Moreover,
Supp(PrP c(−η)) 6= ∅, because η ∈ Null(X,P). Hence,
Supp(PrP c(−η)) 6⊆ P . Therefore, PrP c(−η) cannot be a
minimizer of (6). So,

min
z:X PrP (η)=Xz

‖z‖1 < ‖PrP c(−η)‖1 = ‖ηP c‖1.

Combining with (7), we get minc:XP (ηP )=XP (c) ‖c‖1 <
‖ηP c‖1. Hence, X satisfies the SNSP.

⇐: Suppose that X satisfies the SNSP. Let c̄ ∈ RN with
Supp(c̄) ⊆ P for some P ∈ P . Suppose on the contrary
that (4) has a minimizer ĉ with Supp(ĉ) \ P 6= ∅. Let
η := c̄−ĉ and note that η ∈ Null(X) and Supp(η)\P 6= ∅.
If there exists Q ∈ P with Supp(η) ⊆ Q, then necessarily
c̄P = ĉP , and so ‖c̄‖1 = ‖c̄P ‖1 = ‖ĉP ‖1 < ‖ĉ‖1. This
contradicts ĉ being a minimizer of (4). Hence, we can
assume that η ∈ Null(X,P), so that

min
z:Xc̄=Xz

‖z‖1 = min
z:X PrP (c̄)=Xz

‖z‖1,

since P ⊇ Supp(c̄). Setting y := z − PrP (ĉ), we obtain

min
z:Xc̄=Xz

‖z‖1 = min
y:X PrP (c̄−ĉ)=Xy

‖y + PrP (ĉ)‖1.

Then, by the triangle inequality,

min
z:Xc̄=Xz

‖z‖1 ≤ min
y:XP (ηP )=Xy

‖y‖1 + ‖ĉP ‖1.

Shrinking the constraint set gives us

min
z:Xc̄=Xz

‖z‖1 ≤ min
c:XP (ηP )=XP (c)

‖c‖1 + ‖ĉP ‖1.

The SNSP implies

min
z:Xc̄=Xz

‖z‖1 < ‖ηP c‖1 + ‖ĉP ‖1.

Since P ⊇ Supp(c̄), we finally get

min
z:Xc̄=Xz

‖z‖1 < ‖ − ĉP c‖1 + ‖ĉP ‖1 = ‖ĉ‖1

which is again a contradiction, since ĉ is a minimizer of (4).
So, we must have Supp(ĉ) ⊆ P .
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3.1. Verification of the SNSP on a Submatrix

One can work with a submatrix of X and still verify the
SNSP for X . Specifically, one can discard the data points
from subspace Si that do not correspond to extreme points
of the symmetrized convex hull of the points in Si, and
verify the SNSP for the matrix defined by the remaining
points. Formally, recall that for each Pi ∈ P , the con-
vex set K(XPi) is the convex hull of the union of the
columns of XPi and −XPi . Let P̃i := {l ∈ Pi : xl ∈
Ext(K(XPi))} be the collection of indices associated with
columns of X that are extreme points of K(XPi), which
must be nonempty. Let P̃ := {P̃i} and X̃ := XP̃ so that
X̃ consists of all columns of X whose indices are in P̃ .
The SNSP can now be verified on X̃ .

Lemma 1. The data matrix X satisfies the SNSP if and
only if X̃ (see the previous paragraph) satisfies the SNSP.

Although Lemma 1 shows that one can safely replace the
data matrix X with its submatrix X̃ for the purpose of
verifying the SNSP, in this paper we do not assume that
this substitution takes place. The reason for this is two
fold: 1) There is no major difference for our theoretical
development. 2) If the data is normalized with the `p-norm
where p /∈ {1,∞}, then no reduction takes place since
every column of the data matrix X is an extreme point in
this case. However, sparse subspace classification might
benefit immensely from this reduction when the data set is
large and either not normalized or normalized with the `1
or `∞-norm. In this case, rather than verifying the SNSP
for the data matrix X , we can verify it on the much smaller
submatrix of extreme points. Such a reduction in matrix
size can speed up `1-recovery significantly.

Since the SNSP characterizes when subspace-preserving
recovery is possible, we devote the remainder of the pa-
per to the derivation of alternative characterizations of the
SNSP. These characterizations are either geometrically in-
terpretable (thus providing insight to the nature of subspace-
preserving recovery) or verifiable by considering certain
finite sets of points (thus opening the door to developing
practical approaches for certifying when the SNSP holds).

4. A Geometrically Interpretable
Characterization of SNSP

In this section we introduce a characterization of the SNSP
that allows for a clear geometric interpretation. Our main
result in this section reads as follows.

Theorem 2. The matrix X satisfies the SNSP if and only if
for all i ∈ [n], we have

Si ∩ K(XPci ) ⊆ rinte (K(XPi)) . (8)

Proof. For any η ∈ Null(X) it holds that XP (ηP ) =

−XP c(ηP c). Combining this with Defn. 1, we have that
X satisfies the SNSP if and only if for all η ∈ Null(X,P)
and for all P ∈ P , we have

min
z :XPc

(
− ηPc
‖ηPc‖1

)
=XP (z)

‖z‖1 < 1. (9)

Since the optimization problem in (9) is feasible, we can
replace it with its dual to obtain

max
w∈(X>P )−1B|P |∞

− 1

‖ηP c‖1
η>P cX

>
P cw < 1. (10)

That is, X satisfies the SNSP if and only if for all η ∈
Null(X,P) and for all P ∈ P , we have

XP c

(
ηP c

‖ηP c‖1

)
∈ rinte

[(
(X>P )−1B|P |∞

)◦]
= rinte

(
XPB|P |1

)
.

where the inclusion follows from the definition of the polar
operator, and the equality follows from (Rockafellar, 1970,
Cor. 16.3.2). After defining the set

ΛP := {XP c(ηP c) : η ∈ Null(X,P) and ‖ηP c‖1 = 1} ,

we conclude that X satisfies the SNSP if and only if for all
P ∈ P , we have ΛP ⊆ rinte

(
XPB|P |1

)
.

Next, we claim that for all P ∈ P , the following holds

ΛP ⊆ im(XP ) ∩XP cS|P
c|−1

1 ⊆ ΛP ∪ {0}. (11)

The first inclusion is straightforward. In order to show why
the second inclusion also holds, we let z ∈ im(XP ) ∩
XP cS|P

c|−1
1 . Hence, there exists η ∈ Null(X) such that

z = XP (−ηP ) = XP cηP c , with ‖ηP c‖1 = 1. If η ∈
Null(X,P), then z ∈ ΛP , and we are done. If not, there
exists Q ∈ P , with Q 6= P , such that Supp(η) ⊆ Q. But
if this is the case, we necessarily have z = XP (−ηP ) = 0.
Hence, the second inclusion holds.

Since we always have 0 ∈ rinte
(
XPB|P |1

)
, by (11)

we conclude that X satisfies the SNSP if and only if
for all P ∈ P , we have im(XP ) ∩ XP cS|P

c|−1
1 ⊆

rinte
(
XPB|P |1

)
. The set rinte

(
XPB|P |1

)
is convex.

The convex hull of {0} ∪
(

im(XP ) ∩XP cS|P
c|−1

1

)
is

im(XP ) ∩ XP cB|P
c|

1 . Hence, we conclude that X sat-
isfies the SNSP, if and only if, for all P ∈ P , we have
im(XP ) ∩XP cB|P

c|
1 ⊆ rinte

(
XPB|P |1

)
. Since, for all

i ∈ [n], we have im(XPi) = Si, XPci B
|Pci |
1 = K(XPci )

and XPiB
|Pi|
1 = K(XPi), we obtain the result.
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Thm. 2 has a straightforward geometric interpretation. It
tells us that subspace-preserving recovery always succeeds,
if and only if, for any i ∈ [n], the intersection of the sym-
metrized convex hull of the columns of XPci and the sub-
space Si, is contained in the relative interior of the sym-
metrized convex hull of the columns of XPi . Although, to
the best of our knowledge, this theorem did not appear in the
literature before, it is possible to find work that makes simi-
lar arguments (Elhamifar & Vidal, 2013, p.8). We refer the
reader to Fig. 1 for an illustration of Thm. 2 and comparison
with similar arguments existing in the literature.

Note that Thm. 2 does not assume that the columns of X
are normalized. Therefore, Thm. 2 suggests that an `p-
normalization of the columns of X may affect subspace-
preserving recovery. Intuitively, one would like the right-
hand-side of (8) to be as large as possible, which suggests
that an `∞-normalization of the columns of X may be a
good option. However, this normalization also enlarges
the left-hand-side of (8), and predicting the total effect
of this normalization can be non-trivial. In fact, an `∞-
normalization can sometimes be counter-productive (see
Example 1 in the next section). On the other hand, an `2-
normalization has an advantage. Suppose that we are given
two data matrices X and X̂ , and moreover that X̂ = ΦX
for some orthogonal matrix Φ ∈ RD×D. (In special cases,
Φ can be realized as a rotation matrix.) If we normalize X
and X̂ using the `p-norm for p 6= 2, then Thm. 2 tells us
that it is possible that the normalized X satisfies the SNSP,
while the normalized X̂ does not. This is an undesirable
effect since the two (unscaled) data sets differ only by a
rotation. However, if we normalize with the `2-norm, this
problem does not occur, meaning that the decision on the
normalized X and normalized X̃ are the same.

Corollary 1. Let Φ ∈ RD×D be an orthogonal matrix.
Let X`2 and (ΦX)`2 denote the matrices obtained after
normalizing the columns of X and ΦX with the `2-norm,
respectively. Then, X`2 satisfies the SNSP, if and only if,
(ΦX)`2 satisfies the SNSP.

Proof. The result follows from Thm. 2 and the fact that the
matrix Φ preserves the `2-norm.

To the best of our knowledge Thm. 2 provides one of the
most geometrically interpretable necessary and sufficient
conditions for subspace-preserving recovery in the literature.
However, in general, it can be difficult to determine whether
a convex set is contained in another, so that the verification
of (8) can be difficult. Therefore, sufficient conditions that
reduce the computational burden can be valuable. With this
motivation in mind, we introduce the next corollary, which
reduces the verification of the SNSP to a comparison of two
numbers: An inner-radius and an outer-radius.

Corollary 2. Suppose that the columns of X have unit
`p-norm. The data matrix X satisfies the SNSP if, for all
i ∈ [n], we have

Rp

(
Si ∩ K(XPci )

)
< rp (K(XPi)) , (12)

i.e. if, for all i ∈ [n], the outer-`p-radius of Si ∩ K(XPci )
is strictly smaller than the inner-`p-radius of K(XPi).

Proof. Since inequality (12) implies (8), the result immedi-
ately follows from Thm. 2.

We end this section by connecting Cor. 2 to existing geomet-
ric results for subspace-preserving recovery in the literature.

Relation with results for independent subspaces. It
is shown in (Elhamifar & Vidal, 2009) that subspace-
preserving recovery is guaranteed if the collection of sub-
spaces is linearly independent. Here, we demonstrate that
this result is implied by Cor. 2. Recall that a collection
of subspaces {Sk}nk=1 is called independent if the dimen-
sion of the span of {Sk}nk=1 is equal to the sum of the
dimensions of the individual subspaces Sk, i.e. if we have
dim (

⊕n
k=1 Sk) =

∑n
k=1 dim(Sk). If {Sk}nk=1 is a union

of independent subspaces, then the left-hand-side of (12) is
0 for every i ∈ [n], and so (12) is satisfied trivially.

Relation with results characterized by incoherence mea-
sures. Many of the existing geometric conditions for
subspace-preserving recovery are characterized by inradius
and certain incoherence metrics (Soltanolkotabi & Candès,
2012; You & Vidal, 2015; You et al., 2016). In particular,
You & Vidal (2015) shows that under the assumption that
the columns of X have unit `2-norm, subspace-preserving
recovery is guaranteed if the following principal recovery
condition is satisfied:

µ(Si,XPci ) < r2 (K(XPi)) , ∀i ∈ [n], (13)

where µ(Si,XPci ) is the incoherence between the sub-
space Si and the points XPci defined as µ(Si,XPci ) =

maxx∈Si−{0} ‖X
>
Pci x‖∞/‖x‖2. Note that the right hand

side of (13) is the same as that of (12). On the other hand,
the incoherence on the left hand side of (13) is related to the
outer-radius on the left hand side of (12) as follows:

µ(Si,XPci ) = R2

(
PrSi(XPci )

)
= R2

(
PrSi(K(XPci ))

)
≥ R2

(
Si ∩ K(XPci )

)
, (14)

where PrSi(·) denotes projection onto subspace Si. There-
fore, the condition in (13) implies (i.e., is more restrictive
than) the condition in (12), showing that Cor. 2 provides a
stronger result than the result in You & Vidal (2015).
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Figure 1. Elhamifar & Vidal (2013) provide an interpretation of their results on subspace-preserving recovery in terms of these drawings,
when the collection of the subspaces is disjoint. For a point x ∈ S1 ∩ (S2 ⊕ S3) they argue that subspace-preserving recovery in S1
succeeds in the case shown on the left because min{α : x ∈ αK(XP1)} < min{α : x ∈ αK(XPc1 )}. They argue that recovery fails in
the two other cases (shown in the middle and the right) because this inequality is reversed. According to their interpretation, the failure is
due to smaller angles between the subspaces (middle) and degenerate data distribution (right). Our interpretation of these cases based on
Thm. 2 is as follows: We make no specific reference to points in S1 ∩ (S2 ⊕ S3). We argue that subspace-preserving recovery in S1
succeeds in the case shown on the left because S1 ∩ K(XPc1 ) ⊂ rinte(K(XP1)), whereas it fails in the next two cases because this
strict inclusion fails to hold. (Drawings are borrowed from (Elhamifar & Vidal, 2013) for comparison.)

5. Reduction of the Verification of SNSP to a
Decision on Finite Sets

In the previous section we developed a characterization of
the SNSP that admits a clear geometric interpretation. We
also noted that condition (8) in Thm. 2 can be difficult to ver-
ify. In this section we introduce equivalent characterizations
of SNSP that reduces the verification of SNSP to decisions
on finite sets. These finite sets correspond to extreme points
of certain compact convex sets. For instance, the next theo-
rem shows that the SNSP admits a characterization in terms
of the extreme points of Null(X) ∩ BN1 . Before stating the
theorem, we introduce the following new notation:

Ext(Null(X) ∩ BN1 ,P)

:=
{
η ∈ Ext(Null(X) ∩ BN1 ) : Supp(η) 6⊆P,∀P ∈ P

}
.

That is, Ext(Null(X) ∩ BN1 ,P) is the collection of all ex-
treme points of Null(X) ∩ BN1 whose support is not con-
tained in any P ∈ P . The next result reduces the verification
of the SNSP from Null(X,P) to Ext(Null(X) ∩ BN1 ,P).
Theorem 3. The matrix X satisfies the SNSP if and only
if, for all η ∈ Ext(Null(X) ∩ BN1 ,P) and all P ∈ P , we
have

‖ηP ‖1 + min
XP (ηP )=XP (z)

‖z‖1 < 1. (15)

While Thm. 3 shows that the verification of SNSP can be
reduced to a decision on a finite set, there is still an `1-
minimization problem that persists. We address this issue
in the next couple of results.
Theorem 4. The matrix X satisfies the SNSP if and only
if, for all P ∈ P and all η ∈ Ext(Null(X) ∩ BN1 ,P), we
have

‖ηP ‖1 + max
w∈im(X>P )∩B|P |∞

η>Pw < 1. (16)

Proof. Since there is zero duality gap for the `1-
minimization problem in (15), we can replace it by its dual,
namely max

w∈im(X>P )∩B|P |∞
(ηP )>w, which gives the de-

sired result.

Now that we have converted the minimization problem to
a maximization problem by using its dual, we can reduce
the problem further to a decision on a finite set, as shown
by the next result.

Theorem 5. The matrix X satisfies the SNSP if and only
if, for all η ∈ Ext(Null(X) ∩ BN1 ,P) and all P ∈ P , we
have

‖ηP ‖1 + max
w∈Ext

(
im(X>P )∩B|P |∞

) η>Pw < 1. (17)

Proof. Since the optimization problem in (16) is the maxi-
mization of a linear objective function over a compact con-
vex feasible set im(X>P ) ∩ B|P |∞ , the optimal value must
occur at an extreme point of im(X>P ) ∩ B|P |∞ . This gives
the desired result.

Thm. 5 is our final characterization of the SNSP. We stress
that it does not require the solution of a continuous opti-
mization problem or verification on an infinite set. With
Thm. 5, the SNSP can be verified in a finite number of steps
by checking (17) at all (η, w) ∈ Ext(Null(X)∩BN1 ,P)×
Ext(im(X>P ) ∩ B|P |∞ ) and each P ∈ P . We illustrate this
approach with a simple example.

Example 1. In this example, we consider the union of three
subspaces {Si}3i=1 in R3. We assume that S1 and S2 are
lines through the origin spanned by x1 :=

[
0 1 1

]>
and

x2 :=
[
0 1 1/2

]>
, respectively, and S3 is the xy-plane.
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Furthermore, we assume that we have four points from this
union {xi}4i=1 that are given by x1 and x2, as defined
above, x3 :=

[
1 1 0

]>
and x4 :=

[
−1 1 0

]>
. Note

that the columns of the data matrix

X =
[
x1 x2 x3 x4

]
=

0 0 1 −1
1 1 1 1
1 1/2 0 0


have unit `∞-norm, and we have the partitioning {Pk}3k=1

given by P1 = {1}, P2 = {2} and P3 = {3, 4}.
The nullspace of X is 1-dimensional, and spanned by
η =

[
1/4 −1/2 1/8 1/8

]>
. Then, we trivially

have Ext(Null(X) ∩ B3
1) = {±η}. Moreover, since

the support of η is not contained in any Pk, we also
have Ext(Null(X) ∩ B3

1,P) = {±η}. A simple ob-
servation reveals that Ext(im(X>P1

) ∩ B2
∞) = {±1},

Ext(im(X>P2
) ∩ B1

∞) = {±1}, and Ext(im(X>P3
) ∩

B1
∞) = {±

[
1 1

]>
,±
[
1 −1

]>}. We see that (17) is
violated for P2. Hence, X does not satisfy the SNSP.

Interestingly, if we normalize the columns of X by the `2-
norm to obtain a new matrix X`2 , then the nullspace of
X`2 is spanned by η̃ :=

[
2 −

√
10 1 1

]>
and X`2

satisfies the SNSP. Therefore, the effect of normalization
can be counter-intuitive as we already pointed out in the
previous section.

So far, in this section, we have derived necessary and suffi-
cient conditions for the SNSP to hold that reduce its verifica-
tion to a decision on a finite set. Still, these characterizations
can be computationally involved, which makes it desirable
to obtain sufficient conditions that are simpler to verify. To
derive such a condition, we need an upper bound on the dual
of the `1-minimization problem, which we provide next.

Proposition 1. Let Ψ ∈ Rr×s be a matrix with columns of
unit `p-norm and ȳ ∈ Rs. Then,

max
w∈im(Ψ>)∩Bs∞

ȳ>w ≤ ‖Ψȳ‖p
rp (ΨBs1)

. (18)

If p ∈ {1,∞} and rp (ΨBs1) = 1, then equality holds.

Our characterizations in terms of extreme points require that
we either solve an `1-minimization problem or check the
extreme points of im(X>P ) ∩ BD∞ to verify the SNSP. The
bound in Prop. 1 allows us to simplify these characteriza-
tions and get rid of this requirement, as shown next.

Theorem 6. Suppose that the columns of X have unit `p-
norm. The matrix X satisfies the SNSP if, for all η ∈
Ext(Null(X) ∩ BN1 ,P) and all P ∈ P , we have

‖ηP ‖1 +
‖XP (ηP )‖p
rp (K(XP ))

< 1. (19)

Proof. The result is an immediate consequence of Thm. 4
and Prop. 1 since K(XP ) = XPBD1 .

Before we end this section we would like to note that if
the dimension of the nullspace of X or the dimension of
the individual subspaces {Si} are large, then the number of
extreme points can be large. However, numerical evidence
suggests that making decisions based on a random sampling
of extreme points can lead to satisfactory results (Kaba et al.,
2021). The investigation of such an approach for subspace-
preserving recovery is beyond the scope of this paper, so we
leave it as future work.

6. Conclusion
In this paper we have provided several necessary and suf-
ficient conditions for subspace-preserving recovery, which
is at the heart of the analysis of subspace classification
and clustering algorithms in machine learning. Our char-
acterizations are based on a condition that is similar to the
classical Nullspace Property (NSP), which we called Sub-
space Nullspace Property (SNSP). To the best of our knowl-
edge, the SNSP is the first NSP-like condition for subspace-
preserving recovery that has been extensively studied. We
showed that some formulations of the SNSP give rise to a
clear geometric interpretation or allow us to reduce the veri-
fication of the SNSP to decisions on finite sets. These finite
sets correspond to certain extreme points, and hence, they
also admit a clear geometric description. We also showed
that all of our equivalent conditions can further be simpli-
fied to obtain sufficient conditions that are geometrically
intuitive and computationally simpler.

The classical NSP plays an important role in sparse re-
covery literature. It is arguably the most popular neces-
sary and sufficient condition that guarantees the success of
`1-minimization in the recovery of sparse signals. How-
ever, NSP-like conditions were mostly overlooked in the
subspace-preserving recovery literature; the results in this
paper fill that gap.
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