
FPTT: Training RNNs with Forward Propagation

6. Appendix
6.1. Dataset Description & Experiment Details.

Below we describe in details all the datasets used in this study. In addition, we will add the details of the various experiments
along with hyper-parameter tuning. We use a mixture of language modelling tasks (corresponds to sequence modelling
regime) and terminal prediction tasks (corresponds to long range dependency tasks). Language modelling tasks include
variants of the popular Penn Tree Bank (McAuley & Leskovec, 2013) dataset. Terminal prediction tasks include the synthetic
Add-Task along with Sequential vision tasks. These together corresponds to the long range dependency datasets.

Add-Task. (Hochreiter & Schmidhuber, 1997) has been used to evaluate long range dependencies in RNN architectures.
An example data point consists of two sequences (x1, x2) of length T and a target label y. x1 contains real-valued entries
drawn uniformly from [0, 1], x2 is a binary sequence with exactly two 1s, and the label y is the sum of the two entries in
sequence x1 where x2 has 1s. Note that a naive strategy is to predict 1 as the output for every input sequence. This naive
strategy has a mean squared error of 0.167, the variance of the sum of two independent uniform distributions. We follow
(Arjovsky et al., 2016; Kag et al., 2020) to setup experiments on this task. For both the algorithms (BPTT and FPTT), we
use episodic training where a train batch size of 128 is presented to the RNN to update its parameters and evaluated using an
independently drawn test set.

Our main text uses four different sequence lengths : (a) T = 200 used in the ablative experiment (see Figure 2), (b) T = 500
used in the Toy example (see Figure 1), (c) the difficult sequence lengths T = 750 and T = 1000 shown in Figure 3. As
used in earlier works (Kag et al., 2020), our experiments set hidden state size as 128. Our architecture is one-layer LSTM
followed by one classifier layer. We use 1e− 3 as the learning rate for this experiment. We have used Adam optimizer for
this task. For smaller sequence lengths T = 200, 500, we run the experiment for 5000 training iterations while for the larger
sequence lengths T = 750, 1000 we run the experiments for 10000 training iterations. We use K = 10 in this task for the
proposed algorithm and the default α = 0.01 was used in this experiment.

Permute-Pixel MNIST and Pixel-CIFAR-10. are sequential variants of the popular image classification datasets: MNIST
(Lecun et al., 1998) and CIFAR-10 (Krizhevsky & Hinton, 2009). MNIST consists of images of 10 digits with shape
28× 28× 1, while CIFAR-10 consists of images with shape 32× 32× 3. The input images are flattened into a sequence
(row-wise). At each time step, 1 and 3 pixels are presented as the input for MNIST and CIFAR datsets respectively.
This construction results in Pixel MNIST and CIFAR datasets with 784 and 1024 length sequences respectively. While
Permute-MNIST is obtained by applying a fixed permutation on the Pixel MNIST sequence. This creates a harder problem
than the Pixel setting since there are no obvious patterns to explore.

MNIST dataset has 60, 000 training and 10, 000 test images while CIFAR-10 dataset has 50, 000 training and 10, 000 test
images. Neural network used for this task is one-layer LSTM followed by a classifier layer. Our LSTMs use the hidden
state size as 128 and are trained for 200 epochs. We set aside 10% training data for hyper-parameter tuning and once the
hyper-parameters are fixed, we use the full data for training and report the performance on the test set. We use the the grid
with learning rate choices : {0.01, 0.005, 0.001, 0.0001, 0.0005}, batch sizes {B = 64, 128, 256} and for FPTT we have α
choices {0.1, 0.5, 0.05, 0.01, 0.001}. For the proposed algorithm we use K = 20 for this experiment. Note that we use the
learning rate schedule defined in (Bai et al., 2019), i.e. we decay the learning rate by a factor of 1

2 at fixed intervals, i.e.
{60, 90, 120} epochs. Our ablative experiment which use the CIFAR-10 dataset keep the same experimental setup described
here. The corresponding hyper-parameter tuning details are same as the main experiment.

PTB-300. is a word level language modelling task with the difficult sequence length of 300 and has been studied in many
previous works to study long range dependencies in language modeling (Zhang et al., 2018; Kusupati et al., 2018). This
dataset consists of 929K training words, 73K validation words, and 82K test words with 10K vocabulary. An example in
this dataset consists of a sentence, where the RNN receives an input at timestep t and has to predict the next word (which will
be available on the next timestep). Perplexity is used as the evaluation metric on this dataset, where lower values corresponds
to better performance. Validation set is used for tuning the hyper-parameters and once the right set of parameters have been
found, evaluation is performed on the test set.

We used the known small configuration to setup this task for PTB word level task except that sequence length has been
changed to 300 to model long range dependencies. We only use 1−layer LSTM with hidden state size of 256. The
embedding dimension has been set to the hidden state in accordance to earlier works (Kusupati et al., 2018; Zhang et al.,
2018). We train both BPTT and FPTT to 100 epochs and learning rate is decayed by half at every epoch where validation
perplexity plateaus. We use SGD optimizer as per the configuration and use initial learning rate of 20. We use K = 10 for

FPTT: Training RNNs with Forward Propagation

FPTT. Note that α values are tuned using the grid search with values {0.5, 0.1, 0.05, 0.01, 0.005, 0.001}.
PTB-w. is the traditional word level language modelling variant of the PTB dataset. It uses 70 as sequence length and we
follow (Yang et al., 2018) to setup this experiment. This dataset consists of 929K training words, 73K validation words,
and 82K test words with 10K vocabulary. Although this is a small scale dataset for studying language modelling, it has
been extensively used by previous works (Merity et al., 2018; Yang et al., 2018; Bai et al., 2019). We follow (Merity
et al., 2018) to setup our experiments for BPTT and FPTT. We use three layer LSTM model for this task with embedding
dimensions 280. As recommended our hidden states for three layers are 1150. All the other hyper-parameter settings
(learning rate, batch size, dropout, other regularizers, dynamic evaluation parameters, etc.) have been borrowed from (Yang
et al., 2018) and they are ideal for the BPTT LSTM experiment since this has been tuned by previous works. We report
the results with dynamic evaluation(Krause et al., 2018) on the trained model. We use the same architecture and training
setup to train LSTMs with both BPTT and FPTT . We use K = 10 in our experiments and tune the α values in the grid
{0.5, 0.1, 0.05, 0.01, 0.005, 0.001} using the validation dataset.

PTB-c is the character level modelling task that uses 150 sequence length. It contains 5M characters for training, 396K for
validation, and 446K for testing, with an alphabet size of 50. The evaluation metric used for this dataset is bits per character
(bpc). Similar to perplexity, the lower value of bpc corresponds to better performance. We utilize (Merity et al., 2018)
to setup the character level task. We use 3-layer LSTM models as recommended with hidden size 1000 and embedding
dimension 200. Remaining hyper-parameters have been kept as it is and they are well tuned for BPTT training as per
previous work. We train this model with both BPTT and FPTT with the same setting. We perform similar parameter tuning
as in the PTB-w experiment to find α values and set K = 10 for this dataset.

6.2. Training Time Comparison.

In this section, we demonstrate that training recurrent neural networks with the proposed method is not computationally
expensive than back-propagation through time. Table 7 shows the training time in minutes as measured by the time utility
in the python language. Note that this refers to the wall-clock time and we ensure that the system is running only one
experiment during this process in order to perform fair comparison. As evident from the table, the proposed method fares
well in training time when compared to BPTT.

Table 7. Training time comparison (reported in hours).
Dataset BPTT FPTT
PTB-300 1.01 1.12

Pixel-MNIST 3.29 2.68
Permute-MNIST 3.41 2.97
Pixel-CIFAR-10 3.57 3.25

Add-Task 0.31 0.18

6.3. Impact of α hyper-parameter.

We explore the sensitivity to the α hyper-parameter in the Algorithm 2. We use the PTB-300 language modelling dataset.
In this experiment we train FPTT on the following α values: {1.0, 0.8, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}. Table 8 lists the
validation accuracy for these α values. It shows that FPTT is insensitive to α ≤ 0.5. Note that very small value of α, i.e.
α→ 0 would lead FPTT to ignore the regularizer and would only optimize the instantaneous loss at every step resulting
in diverging iterates. While very high value of α would lead FPTT to only optimize the regularizer and hence very poor
generalization performance.

6.4. Comparison with Online Gradient Descent.

Our parameter update equations perform gradient descent with dynamic regularizer in order to constraint the iterates to be
nearby. In this experiment we show that such an additional regularizer is required to achieve better generalization error. We
train LSTMs on the PTB-300 dataset with following training algorithms : (a) BPTT : the standard back-propagation through
time method, (b) FPTT (OGD) : the proposed algorithm without incorporating the dynamic regularizer, (c) FPTT : the
proposed algorithm with dynamic regularizer. Table 9 shows results for these three settings along with the known baselines
for this dataset. It can be inferred that incorporating the dynamic regularizer improves the performance of the proposed

FPTT: Training RNNs with Forward Propagation

Table 8. PTB-300 language modelling (validation perplexity) : various α values.

α
Validation
Perplexity

1.0 265
0.8 115
0.5 110
0.1 112

0.05 116
0.01 112
0.005 113
0.001 114

algorithm.

Table 9. Ablative results for PTB word level language modelling : Sequence length (300), 1-Layer LSTM. Comparing the FPTT scheme
with and without the dynamic regularizer.

Dataset PTB-w
Perplexity #Params

FastGRNN (Kusupati et al., 2018) 116.11 53K
IncrementalRNN (Kag et al., 2020) 115.71 30K
SpectralRNN (Zhang et al., 2018) 130.20 31K

LSTM (Zhang et al., 2018) 130.21 64K
LSTM (Kusupati et al., 2018) 117.41 210K

LSTM 117.09 210K
FPTT (OGD) LSTM 113.74 210K

FPTT LSTM 106.27 210K

6.5. Convergence Wt − W̄t .

In order to show that the proposed algorithm converges to a single average iterate towards the end of the training phase, we
show the convergence plot for ‖Wt − W̄t‖2 and the gradient norm for the training steps. Figure 4 shows these plots for the
Add-Task with sequence length T = 200. As evident from these plots, the gap between Wt and W̄t closes as the training
progresses. During the initial training steps, one can observe that there’s a significant difference between Wt and W̄t and as
the training progresses this difference goes to 0. Similarly, the gradient norm reaches 0 by the end of the training phase.

(a)
0 250 500 750 1000 1250 1500 1750 2000

Training Steps

0.00

0.02

0.04

0.06

0.08

0.10

‖W
t
−
W̄
t
‖ 2

Add-Task

(b)
0 250 500 750 1000 1250 1500 1750 2000

Training Steps

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

G
ra

d
ie

n
t

N
or

m

Add-Task

Figure 4. Add Task (T = 200): Convergence plot for ‖Wt − W̄t‖2 and the gradient norm plot. As expected the parameter iterates Wt

start to converge to the average iterate W̄t. Similarly the gradient norms start decays to near 0 as the training progresses.

FPTT: Training RNNs with Forward Propagation

6.6. Copy Task Experiments.

In this section, we perform experiments on the Copy-Task dataset (Arjovsky et al., 2016; Hochreiter & Schmidhuber, 1997).
For a fixed length T , an example input sequence consists of values (x, y). Both x and y are sequences of length T + 20.
The entries of the sequence are drawn from the alphabet {ai}9i=0. The first 10 entries of the sequence x are drawn uniformly,
independently and with replacement from {ai}7i=0. These first 10 entries are the sequence which need to be remembered
and referred to as the magic sequence. The next T − 1 entries are set to a8 representing the blank sequence and needs
to be ignored or treated as noise in the sequence. The next entry is a single character a9 which implies a delimiter in the
input sequence and remaining entries are set as a8. The target label y consists of the character a8 till the length T + 10
and followed by the magic 10 character sequence in the remaining 10 locations. The main motivation behind this task is to
remember the magic sequence throughout the length T and as T increases this task becomes harder for the recurrent neural
networks as they have to remember the magic sequence through a very large sequence length. We measure the error in this
task using categorical cross-entropy between the label y and the predicted label ŷ output by the RNN after going through the
input sequence.

Note that there is a memoryless baseline (Arjovsky et al., 2016) for the Copy-Task. It would be to predict a8 for the sequence
length T + 10 and then predict each of the final 10 characters from the set {a + i}7i=0 independently and uniformly at
random. This results in the cross-entropy value of 10 log 8

T+20 .

In our experiment we use 1−layer LSTM with hidden state size 128 and batch size 100. We use Adam as the optimizer
and 2e− 4 as the learning rate. We provide an independent training set at each step and evaluate the performance on an
independent test set of the same batch size. Figures 5 shows the convergence plot for the training LSTMs with BPTT and
FPTT on sequence length T = 30 and T = 200. It can be seen that LSTMs trained with BPTT stay close to the baseline
solution for quite a while and then start to decay. While FPTT-LSTMs reach the memoryless baseline quickly and reach the
convergence much faster than BPTT.

(a)
0 5000 10000 15000 20000 25000 30000 35000 40000

Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
ro

ss
E

n
tr

op
y

Copy Task (Sequence Length=30)

LSTM

FPTT-LSTM

(b)
0 20000 40000 60000 80000 100000

Training Steps

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

C
ro

ss
E

n
tr

op
y

Copy Task (Sequence Length=200)

LSTM

FPTT-LSTM

Figure 5. Convergence plot Copy Task for Sequence Lengths (a) T = 30: naive strategy results in 0.39 as the solution, and (b) T = 200:
naive strategy results in 0.09 as the solution.

6.7. Proofs

Proposition 2. In the Algorithm 2, suppose, the sequence Wt is bounded and converges to a limit point W∞. Further
assume the loss function `t is β−Smooth and γ−Lipschitz. Let the cumulative loss be F = 1

T

∑T
t=1∇`t(W∞) after T

iterations 5. It follows that W∞ is a stationary point of Eq. 3, i.e., limL→∞
∂F
∂W (W∞) = 0.

Rewriting the first equation in Eq. 6 as:

Wt+1 = W̄t +
1

α
(∇`t−1(Wt)−∇`t(Wt+1)) (7)

5For simplicity in exposition, we concatenate all the losses `t into a single online stream and get rid of the index N , that gets repeated
to provide T iterations of the gradient updates

FPTT: Training RNNs with Forward Propagation

We assumed that the sequence Wt is bounded and converges to a limit point W∞. By Cesaro mean6 argument

Wt+1 →W∞ =⇒ 1

T

T∑
t=1

Wt+1
T→∞−→ W∞ (8)

Summing Eq. 7 over t

1

T

T∑
t=1

Wt+1 =
1

T

T∑
t=1

W̄t +
1

T

T∑
t=1

1

α
(∇`t−1(Wt)−∇`t(Wt+1))

=⇒ 1

T

T∑
t=1

Wt+1 =
1

T

T∑
t=1

W̄t −
1

αT
∇`T (WT+1) Telescoping Sum

Since loss functions are γ−Lipschitz, we get that ∇`T (WT+1) term is bounded, i.e. ‖∇`T (WT+1)‖ ≤ γ. Hence,
1
T∇`T (WT+1)

T→∞−→ 0.

=⇒ 1

T

T∑
t=1

W̄t
T→∞−→ W∞ (9)

Summing second equation in Eq. 6 over t, we get

1

T

T∑
t=1

W̄t+1 =
1

2T

T∑
t=1

(W̄t +Wt+1)− 1

2αT

T∑
t=1

∇`t(Wt+1)

=⇒ 1

2αT

T∑
t=1

∇`t(Wt+1) =
1

2T

T∑
t=1

(W̄t +Wt+1)− 1

T

T∑
t=1

W̄t+1

=
1

2T

T∑
t=1

Wt+1 +
1

2T

T∑
t=1

W̄t −
1

T

T∑
t=1

W̄t+1

=
1

2T

T∑
t=1

Wt+1 −
1

2T

T∑
t=1

W̄t +
1

T
(W̄1 − W̄T+1)

=⇒ lim
T→∞

1

2αT

T∑
t=1

∇`t(Wt+1) = lim
T→∞

(1

2T

T∑
t=1

Wt+1 −
1

2T

T∑
t=1

W̄t +
1

T
(W̄1 − W̄T+1)

)

Note that the quantity (W̄1 − W̄T+1) is finite. Hence, limT→∞
1
T ((W̄1 − W̄T+1)) = 0. From the Eq. 8 and Eq. 9, the other

two terms have limits that exists. Plugging in these values in the above expression we get,

=⇒ lim
T→∞

1

2αT

T∑
t=1

∇`t(Wt+1) =
1

2
W∞ −

1

2
W∞ + 0 = 0 (10)

From β−smoothness assumption on the loss function, we have that

=⇒ ‖∇`t(Wt+1)−∇`t(W∞)‖ ≤ β‖Wt+1 −W∞‖

=⇒ ‖ 1

2αT

T∑
t=1

∇`t(Wt+1)− 1

2αT

T∑
t=1

∇`t(W∞)‖ ≤ β

2αT

T∑
t=1

‖Wt+1 −W∞‖

6https://www.ee.columbia.edu/˜vittorio/CesaroMeans.pdf

https://www.ee.columbia.edu/~vittorio/CesaroMeans.pdf

FPTT: Training RNNs with Forward Propagation

Note Wt+1 →W∞ =⇒ ∀δ > 0,∃tδ s.t. ∀t > tδ, ‖Wt+1 −W∞‖ < δ

=⇒ ‖ 1

2αT

T∑
t=1

∇`t(Wt+1)− 1

2αT

T∑
t=1

∇`t(W∞)‖ ≤ β

2αT
(T − tδ)δ +

β

2αT

tδ∑
t=1

‖Wt+1 −W∞‖

As T → ∞, both terms on the right hand becomes arbitrarily close to 0, i.e. we have sequence of vectors
{ 1

2αT

∑T
t=1∇`t(Wt+1)− 1

2αT

∑T
t=1∇`t(W∞)}∞T=1 that converge to the 0 vector.

=⇒ lim
T→∞

‖ 1

2αT

T∑
t=1

∇`t(Wt+1)− 1

2αT

T∑
t=1

∇`t(W∞)‖ = 0

From Eq. 10, we know that 1
2αT

∑T
t=1∇`t(Wt+1)

T→∞−→ 0

=⇒ 1

2αT

T∑
t=1

∇`t(W∞)
T→∞−→ 0

This is the proposed stationarity condition, and our claim follows.

