
Training Recurrent Neural Networks via Forward Propagation Through Time

Anil Kag 1 Venkatesh Saligrama 1

Abstract
Back-propagation through time (BPTT) has been
widely used for training Recurrent Neural Net-
works (RNNs). BPTT updates RNN parame-
ters on an instance by back-propagating the er-
ror in time over the entire sequence length, and
as a result, leads to poor trainability due to the
well-known gradient explosion/decay phenomena.
While a number of prior works have proposed to
mitigate vanishing/explosion effect through care-
ful RNN architecture design, these RNN variants
still train with BPTT. We propose a novel forward-
propagation algorithm, FPTT , where at each time,
for an instance, we update RNN parameters by
optimizing an instantaneous risk function. Our
proposed risk is a regularization penalty at time
t that evolves dynamically based on previously
observed losses, and allows for RNN parame-
ter updates to converge to a stationary solution
of the empirical RNN objective. We consider
both sequence-to-sequence as well as terminal
loss problems. Empirically FPTT outperforms
BPTT on a number of well-known benchmark
tasks, thus enabling architectures like LSTMs to
solve long range dependencies problems.

1. Introduction
Recurrent Neural Networks (RNNs) have been successfully
employed in many sequential learning tasks including lan-
guage modelling, speech recognition, and terminal predic-
tion. An RNN is described by its parameters W ∈ W and
the transition function f :W ×X ×H → H which takes
RNN parameters W , current input xt ∈ X and previous
hidden state ht−1 ∈ H ⊆ RD to output the next state ht:

ht = f(W,xt, ht−1) (1)

Given the training dataset {xi, yi}Ni=1 with N examples
of T−length sequences xi, yi, we optimize the following

1Department of Electrical and Computer Engineering,
Boston University, USA. Correspondence to: Anil Kag
<anilkag@bu.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

empirical risk function:

[W ∗, v∗] = arg min
W,v

L(W, v) =
1

NT

N∑
i=1

T∑
t=1

`(yit, ŷ
i
t)

(2)

∀i, t; ŷit = v>hit; h
i
t = f(W,xit, h

i
t−1); hi0 = 0

where, RNN parameters W and classifier v ∈ RD are op-
timized. This objective is generally optimized by gradient
descent. The gradient expression for each example, i ∈ [N],
is a sum of products of partial gradients, and is commonly re-
ferred to as the error back-propagated through time (BPTT).
This is a direct result of the fact that the hidden state hit, at
each time, is recursively updated by the same parameter W .
As a consequence, via chain rule, we get:

∂L

∂W
=

N∑
i=1

T∑
t=1

∂`(yit, ŷ
t
i)

∂W

=
1

NT

N∑
i=1

T∑
t=1

∂`(yit, ŷ
t
i)

∂ŷti

∂ŷti
∂hit

t∑
j=1

(t∏
s=j

∂his
∂his−1

)∂hij−1

∂W

(3)

We highlight two fundamental aspects of BPTT:

• Trainability: Unless the partial terms ∂hs
∂hs−1

stay close
to identity, the product of these terms could explode or
vanish. As such, if gradients vanish, earlier times, t� T
have little contribution to the overall error. If gradients
explode, we see an opposite effect, namely, later states
may have little contribution.

• Complexity: Gradient computation is expensive for large
T , since it involves a sum-product of T terms, resulting
in Ω(T 2) scaling for each example, and for N examples,
computational cost for processing the dataset once scales
as Ω(NT 2). Note that this calculation assumes naive
computation of the sum-product. In practice, with addi-
tional memory overhead, an efficient gradient propagation
scheme would only result in cost linear in length of the
sequence. BPTT has a Ω(T) memory overhead associated
with storing all the intermediate hidden states in the time
horizon.

In this work, our focus is on simplifying the RNN training
procedure. Once the RNN parameters are learnt, the infer-
ence process remains same as before. Our goal is to reduce

FPTT: Training RNNs with Forward Propagation

computation of BPTT so that each step only involves taking
a derivative for a single time.

Challenges. Minimizing Eq. 2 poses two challenges:
(a) Dynamics. Equation 1 enforces a temporal constraint on
allowable transitions.
(b) Time-Invariance. The transition matrices W are fixed,
and as a result the dynamics of RNNs is time-invariant.

Let us examine a few potential directions in this context.
Method of Multipliers allows for eliminating constraints im-
posed by (a) and (b) by introducing a regularizer based on
an augmented Lagrangian. This approach is often adopted
in distributed optimization (Boyd et al., 2011). Eliminat-
ing (a) could be accomplished with ADMM methods with
squared norm penalty, or other specialized functions (Gu
et al., 2020). For (b), leveraging the key insight in distributed
optimization, we can write the condition (b) as Wt = Wt−1

for all t, and rewrite it as a penalty. Nevertheless, while com-
putationally block-coordinate descent allows for efficiency,
memory expands substantially (O(TD2 +NTD)).

Online Gradient Method (OGD). We can view `t(W) =
`(yt, v

>f(W,xt, ht−1) as the instantaneous loss incurred
in round t by “playing” the parameter W . We can up-
date Wt+1 = Wt − η∇`t(Wt), based on the observed
loss. While this could work, there is no reason why Wt’s
converge, and furthermore, it is unclear how to choose a
constant parameter, W , based on the sequence of updates.
In general, we have observed in experiments that training
performance based on time-varying transition matrices does
not reflect test-time and does not generalize well.

Follow-the-Regularized-Leader Rule. (McMahan et al.,
2013) Rather than optimizing the instantaneous loss as in
OGD, we utilize all of the previously seen losses, namely,
Lt(W) =

∑t
j=1 `j(W) and attempt to find a update direc-

tion. Nevertheless, this approach suffers from the same issue
as BPTT, since for large t ≈ T , finding a descent direction
involves back-propagation through ≈ T steps. Furthermore,
this method adds a multiplicative factor of T in the run-time
in comparison to BPTT.

Our Forward-Propagation Method. We propose a novel
forward-propagation-through-time (FPTT) method based on
instantaneous dynamic regularization. FPTT at each time
takes a gradient step to minimize an instantaneous risk func-
tion. The instantaneous risk is the loss at time t plus a dy-
namically evolving regularizer. This dynamics is controlled
by a state-vector, which summarizes past losses. FPTT has
the in-built property that the point of convergence of Wt

sequence, is also a stationary point of the global empirical
risk Equation 2. The resulting method has a light-weight
footprint and is computationally efficient. For sequence-to-
sequence modelling tasks our learning scheme integrates
easily since the losses are instantaneous, i.e., at timestep

t, we immediately get feedback for the updated Wt. For
terminal prediction problems we present a simple scheme
to construct surrogate losses at any timestep using the label
for the entire sequence.

We then conduct a number of experiments on benchmark
datasets and show that our proposed method is particularly
effective on tasks that exhibit long-range dependencies. In
summary, our proposed method suggests that vanilla LSTMs
are effective tools for inferring long-term dependencies, and
exhibit performance matching state-of-the-art competitors–
even those with higher capacities and well-designed archi-
tectures.

Toy Example. As a sneak preview, we demonstrate ef-
fectiveness of FPTT on the Add Task (see Sec. 4 for de-
tails) against BPTT on training LSTMs under an identi-
cal test/train split. Figure 1 shows that FPTT solves this
problem while BPTT fails to find the correct parameters, it
stays near the same loss value throughout the training phase.
BPTT’s poor behavior on this task has been observed in
previous works (Kag et al., 2020; Zhang et al., 2018).

0 1000 2000 3000 4000 5000

Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
S

q
u

ar
ed

E
rr

or

Add Task (Sequence Length=500)

FPTT-LSTM

LSTM

Figure 1. Add Task (T = 500): Comparison between standard
learning and forward propagation.

Contributions.
• We proposed forward-propagation-through-time (FPTT)

as an alternative to conventional BPTT.
• FPTT takes a gradient step of an instantaneous time-

dependent risk function at each time. The risk function
is the regularized loss, with a dynamic evolving regular-
ization. The dynamic penalty requires minimal memory,
thus allowing for rapid gradient computation.

• We construct surrogate losses for terminal prediction tasks,
to guide FPTT to learn in intermediate time.

• We perform empirical evaluations to demonstrate the util-
ity and superiority of FPTT over BPTT.

• Our FPTT algorithm can be readily deployed in any deep
learning library. We have released our implementation at
https://github.com/anilkagak2/FPTT

https://github.com/anilkagak2/FPTT

FPTT: Training RNNs with Forward Propagation

2. Related Work
There is a vast literature on RNNs that span novel architec-
tural designs and algorithmic/methodological improvements.
Here, we list only the closely related works.

Learning Algorithms. While a number of RNN training
methods have been proposed, BPTT remains the single most
dominant method (Rumelhart et al., 1986; Werbos, 1990).
BPTT unrolls the recurrent logic for the entire time horizon
and computes gradient through this horizon. It has been
observed to be computationally expensive (storing the hid-
den states and computing gradient for entire time horizon)
and unless the RNN architecture is carefully designed, this
leads to vanishing / exploding gradients (Hochreiter, 1991;
Bengio et al., 2013). Truncated BPTT (Williams & Peng,
1990) is the variant of BPTT where gradient flow is trun-
cated after a fixed number of timesteps. This fails to learn
dependencies present beyond the fixed window.

Real time recurrent learning (RTRL) (Williams & Zipser,
1989), a BPTT alternative, proposes to propagate the partials
∂ht
∂ht−1

and ∂ht
∂W from timestep t to t+ 1, by noting that there

is significant overlap in the product term (see Eq. 3) from
time t to t + 1, allowing for recursive computation. Early
attempts suffered large memory overhead limiting its usage,
and while recent attempts (Mujika et al., 2018; Menick et al.,
2021; Tallec & Ollivier, 2018; Ollivier & Charpiat, 2015)
have been more successful, these methods still fall short of
BPTT performance, and so trainability of RNNs is still a
significant issue.

In contrast to these gradient based methods, FPTT is based
on directly updating RNN parameters, and the updates op-
timize an instantaneous loss. Thus, RNN parameters are
allowed to vary after each time-step, and over time our
updates converge to stationary solution. As a result, our
method has low memory footprint, small computational
cost/iteration, and most importantly, exhibits empirical per-
formance, dominating BPTT training on many long-term
dependency datasets.

RNN Architectures. The choice of architecture has a sig-
nificant impact on trainability with BPTT. To this end gated
variants have been introduced: Long Short Term Memory
networks (LSTMs) (Hochreiter & Schmidhuber, 1997) and
Gated Recurrent Units (GRUs) (Cho et al., 2014) have con-
siderably improved performance, but have been shown to
fare poorly on tasks involving long range dependencies due
to vanishing gradients (Zhang et al., 2018; Chang et al.,
2019; Kusupati et al., 2018).

Unitary RNNs (Arjovsky et al., 2016; Jing et al., 2017;
Zhang et al., 2018; Mhammedi et al., 2017; Kerg et al., 2019;
Lezcano-Casado & Martı́nez-Rubio, 2019) focus on design-
ing well-conditioned state transition matrices, attempting to
enforce unitary-property, during training. This helps miti-

gate the gradient issues, but are less popular due to overhead
involved in imposing unitary/orthogonal constraints. There
are other designs, such as those based on ODEs (Chang
et al., 2019; Kag et al., 2020; Kag & Saligrama, 2021; Kusu-
pati et al., 2018; Erichson et al., 2021). These RNNs enforce
the partials between the hidden states to be near identity,
thus mitigating gradient issues faced by architectures like
LSTMs/GRUs.

Our view is that architecture and training methods are com-
plementary. Our ablative results suggest that FPTT improves
upon BPTT method on different architectures.

Miscellaneous. (Miller & Hardt, 2019) analyzes LSTMs
from the stability perspective and show that in an uncon-
strained form LSTMs are unstable. They show that under
some conditions on the non-linearity in transition, stable
recurrent neural networks can be represented by a feed-
forward network. While stability reasons about the explod-
ing gradients, it does not eliminate the vanishing gradients
issue during training. (Linsley et al., 2020) addresses the
large memory cost of BPTT which scales linearly with the
number of time steps. They modify the training process
by replacing the BPTT algorithm with Recurrent BackProp
(RBP) algorithm which optimizes the parameters to achieve
steady state dynamics. We point out that their scheme is
orthogonal to FPTT and we can leverage RBP to provide
similar benefits

3. Method
First, we describe our proposed algorithm and our learning
objective. We describe a general pseudo code that can be
leveraged to train any RNN architecture. Finally, we will
describe a method for dealing with terminal prediction tasks.

Notation. The training set B = {xi, yi}Ni=1 consists of
N examples. Each input xi ∈ X is a T−length sequence
which can be written as {xi1, xi2, · · · , xiT }. For sequence-to-
sequence modelling tasks, the label yi ∈ Y is a T−length
sequence written as {yi1, yi2, · · · , yiT }. While in the terminal
prediction case, the label yi ∈ Y is provided for a single
timestep T as the feedback for the entire input sequence
xi. We will drop the superscript i to denote a data point
wherever it can be inferred from the context. With initial
hidden state h0 = 0 ∈ H, an RNN with parametersW ∈ W
and transition function f : W × X × H → H generates
the hidden state sequence {h1, h2, · · · , hT } for the data
point {x, y}. We use `t(W) = `(yt, v

>f(W,xt, ht−1)) to
denote the loss incurred at time step t, where v ∈ V is a
linear classifier.

To simplify the equations, (a) we will only use one example
and drop the

∑
i and superscript i used in Eq. 2, since the

motivation behind the proposal remains same, and (b) we
will assume v is constant, while in practice to learn v, the

FPTT: Training RNNs with Forward Propagation

Algorithm 1 Training RNN with BackProp
Input: Training data B = {xi, yi}Ni=1, Timesteps T
Input: Learning rate η, #Epochs E
Initialize: W1 randomly in the domainW
for e = 1 to E do

Randomly Shuffle B
for i = 1 to N do

Set: (x, y) = (xi, yi) and h0 = 0
for t = 1 to T do

Update : ht = f(W,xt, ht−1)
end for
Loss: `(W) =

∑T
t=1 `(yt, v

>ht)
Set: : Wi+1 = Wi − η∇W `(W)|W=Wi

end for
Reset: W1 = WN+1

end for
Return : WN+1

operations applied on W , are applied on v as well.

3.1. FPTT : Forward Propagation Through Time

Given one example (x, y) = ({xt}Tt=1, {yt}Tt=1) and initial
parameter estimateW0, BPTT (see Algorithm 1) updates the
parameter once by taking the gradient of the T length loss∑T
t=1 `t(W). In contrast, we update parameters at every

time step t by utilizing (xt, yt) to avoid getting penalized by
T length gradient dependence. Since the parameters update
very frequently, we need to incorporate two mechanisms in
parameter updates: (a) stability in updates so that a single
step does not stray, (b) since our training does not follow
standard RNN transition (i.e. keep a single parameter W
through the input sequence), our updates should ensure that
the iterates converge to a single parameter. This in turn
guarantees that towards the end of the training sequence we
will mimic an RNN.

To build motivation into our method Algorithm 2, we refer to
the sequence of updates on a single instance, i ∈ [N] at time
step t. The first update is a gradient step of the loss `t(W)
for a fixed value of W̄t. As such, we track one additional
copy of the parameter, Wt, namely W̄t ∈ W . At time step
t, we update parameters using the supervision (xt, yt) and
previous iterates Wt, W̄t. Following T updates, on a new
instance, we set the initial weight parameter W0 ←WT+1,
and the iteration follows subsequently.

To understand our scheme, let us consider the situation
where the number of gradient steps of the loss approaches
infinity. In this case, our equations read as:

Wt+1 = arg min
W

`t(W) +
α

2
‖W − W̄t −

1

2α
∇`t−1(Wt)‖2

(4)

W̄t+1 =
1

2
(W̄t +Wt+1)− 1

2α
∇`t(Wt+1) (5)

These update equations are loosely inspired by consensus
in distributed optimization problems over a star-network1

Intuition. The basic concept here is that W̄t represents,
in principle, the running average of all the Wt’s seen so
far, with a small correction term (Eq. 5). Therefore, the
updates impose proximity to the running average in the
update step. However, this alone is not sufficient to converge
to stationary points of Eq. 3. We will show this later. As
such W̄t is a vector that summarize past losses. Eq. 5 is also
the first order condition for `t(Wt+1) + α

2 ‖Wt+1 − W̄t −
1
α∇`t−1(Wt)‖2. Taken together the scheme resembles an
alternative optimization method for a joint risk function over
W, W̄ , namely, we hold W̄t fixed and optimizeW , and after
the update, optimize W̄ with fixed W . However, notice
that unlike conventional setting, here the risk functions are
time-varying. Note that Eq. 5 requires gradient of the loss
`t at the new iterate Wt+1. Computational cost for this step
can be eliminated by keeping a running estimate λt with
update equation λt+1 = λt − α(Wt+1 − W̄t) and initial
value λ0 = 0.

Observe that for large α, we expect Wt+1 to be close to
the previous Wt, and this would result in the hidden state
sequence {ht}Tt=1 to be essentially very close to the one
generated by a single W ≈ Wt+1 ≈ Wt. In effect this
would simulate hidden state trajectories with a static time-
invariant RNN parameter.

Pseudo Code. Algorithms 1 and 2 enumerates the learning
schemes for BPTT and FPTT respectively. These proce-
dures can be utilized to train an RNN architecture in any
popular deep learning framework with minimal efforts. Note
that for simplicity we write the algorithms with batch size 1,
this is relaxed to the conventional choice of larger batch size
in our experiments. In FPTT , starting with small values
of α we gradually increase α to enforce the constraint. We
explore the impact of this hyper-parameter in the ablative
experiments (see Sec. 4.2).

Remarks. (a) Note that even though we have separateWt for
each timestep, we do not suffer additional storage overhead
of the factor T . This follows from the fact that we solve
these sub-problems forward in time and only solve forWt+1

at timestep t. (b) We show that the iterates converge in our
ablative experiments (see supplementary), below we provide
an explanation for the convergence.

Convergence. Let us focus on the arg min step in Eq. 4.

1Distributed agents connected over a star-network seek to solve
a joint optimization problem, which requires seeking consensus
on the decision variables (Boyd et al., 2011). A master agent
coordinates with the agents to communicate and synchronize de-
cision variables in an iterative fashion. Eq. 2 could be viewed in
a number of ways, as a single-agent network, a T node network,
or an N node network etc. Each of these in turn lead to different
coordinating mechanisms.

FPTT: Training RNNs with Forward Propagation

Algorithm 2 Training RNN with FPTT
Input: Training data B = {xi, yi}Ni=1, Timesteps T
Input: Learning rate η, Hyper-parameter α, # Epochs E
Initialize: W1 randomly in the domainW
Initialize: W̄1 = W1

for e = 1 to E do
Randomly Shuffle B
for i = 1 to N do

Set: (x, y) = (xi, yi) and h0 = 0
for t = 1 to T do

Update : ht = f(W,xt, ht−1)
`t(W) = `t(yt, v

>ht)
`(W) = `t(W)+ α

2 ‖W−W̄t− 1
2α∇`t−1(Wt)‖2

Wt+1 = Wt − η∇W `(W)|W=Wt

W̄t+1 = 1
2 (W̄t +Wt+1)− 1

2α∇`t(Wt+1)
end for
Reset: W1 = WT and W̄1 = W̄T

end for
end for
Return : WT

Taking gradient w.r.t. W results in the following dynamics:

∇`t(Wt+1)−∇`t−1(Wt) + α(Wt+1 − W̄t) = 0

W̄t+1 =
1

2
(W̄t +Wt+1)− 1

2α
∇`t(Wt+1) (6)

Let us see why these equations allow for reaching a sta-
tionary point of Eq. 2. For now suppose the sequence Wt

converges to a limit point W∞. One way to ensure this
happens is to view Eq. 6 as a map from [Wt, W̄t]

> →
[Wt+1, W̄t+1]>, and show that this map is contractive, and
as such invoke the Banach fixed point theorem. Neverthe-
less, this is difficult to show and we assume that it is true
for now.

Proposition 1. In the Algorithm 2, suppose, the sequence
Wt is bounded and converges to a limit point W∞. Further
assume the loss function `t is smooth and Lipschitz. Let
the cumulative loss be F = 1

T

∑T
t=1∇`t(W∞) after T

iterations 2. It follows that W∞ is a stationary point of
Eq. 3, i.e., limT→∞

∂F
∂W (W∞) = 0.

We sketch the proof below (see Sec. 6.7 for detailed
proof). Rewriting the first equation in Eq. 6 as: Wt+1 =
W̄t + 1

α (`t−1(Wt) − `t(Wt+1)), we note that if Wt+1 →
W∞, then invoking Cesaro mean3 argument, the corre-
sponding averages do as well: 1

T

∑T
t=1Wt+1

T→∞−→ W∞.
In turn, we note that the second term in the above ex-
pression telescopes, and consequently, it follows that
1
T

∑T
t=1Wt+1 = 1

T

∑T
t=1 W̄t − 1

T∇`T (WT+1). Now

2For simplicity in exposition, we concatenate all the losses `t
into a single online stream and get rid of the index N , that gets
repeated to provide T iterations of the gradient updates.

3https://www.ee.columbia.edu/˜vittorio/
CesaroMeans.pdf

under smoothness and Lipschitz conditions, we can as-
sume that 1

T∇`T (WT+1) → 0 in all of its compo-
nents. As a result, we have 1

T

∑T
t=1 W̄t → W∞ as

well. Plugging these facts into the second equation, we
get 1

2αT

∑T
t=1∇`t(Wt+1) ≈ 0. Now we also know that

Wt+1 ≈ W∞ for sufficiently large T , and using stan-
dard arguments it follows that 1

2αT

∑T
t=1∇`t(W∞) also

approaches zero. This is the proposed stationarity condition,
and our claim follows.

Computational Complexity. BPTT gradient cost scales
as Ω(T) as seen from Eq. 3. Although FPTT for T times
steps leads to Ω(T) gradient computations, but it is worth
noting that the constants involved in taking gradient for
the full length T are higher than computing single step
gradients. However, FPTT has more arithmetic operations
per gradient step, and as such a tradeoff exists. BPTT has
higher memory overhead since it stores intermediate hidden
states for the full-time horizon T . In contrast, since FPTT
only optimizes instantaneous loss functions, it does not
require storing hidden states for the full-time horizon. We
list computational complexities of different algorithms in
Table 1.

FPTT -K. Instead of updating parameters at every timestep,
we could perform updates in Eq. 4 only K times for the se-
quence length T . To do this, for each example, we consider
a window of size ω = b TK c, and define a windowed loss,
¯̀
t,ω(W) = 1

ω

∑t
τ=t−ω `t(W). We then loop this over K

steps instead of T . Setting K = 1 is the same as learning
RNN through BPTT, while K = T results in the FPTT 2.
We provide ablative experiments to study the effect of this
parameter on learning efficiency in Section 4.

Table 1. Per-instance computational cost for gradient, parameter
update & memory storage overhead. Parameter update involves
several arithmetic operations (see Algo. 2), exceeding cost of
gradient update by a constant factor. Note that constant associated
with gradient computation is a monotonically increasing function
c(·) of the sequence length, i.e. c(1) < c(K) < C(T).

.

Algorithm Gradient
Updates

Parameter
Updates

Memory
Storage

BPTT Ω(c(T)T) Ω(1) Ω(T)
FTRL Ω(c(T)T 2) Ω(T) Ω(T)
FPTT Ω(c(1)T) Ω(T) Ω(1)

FPTT -K Ω(c(K)T) Ω(K) Ω(T/K)

Intermediate Losses for Terminal Prediction. In our ex-
position so far, we assumed that we have access to an in-
stantaneous loss `t at timestep t. While this is true for
Seq-to-Seq modelling tasks, for terminal prediction tasks
we only get one label y for the entire input sequence x. Let
P̂ = softmax(v>ht) be our current estimate of label dis-
tribution and Q be our estimate in last training epoch. We
use cross-entropy for the classification loss. We construct

https://www.ee.columbia.edu/~vittorio/CesaroMeans.pdf
https://www.ee.columbia.edu/~vittorio/CesaroMeans.pdf

FPTT: Training RNNs with Forward Propagation

intermediate losses `t for anytime step t as a convex com-
bination of two terms : (a) cross-entropy using the current
label distribution P̂ , and (b) divergence like term to enforce
P̂ and Q to stay close by. This results in the following loss:

`t = β`CEt + (1− β)`Divt

`CEt = −
∑
ȳ∈Y

1ȳ=y log P̂ (ȳ); `Divt = −
∑
ȳ∈Y

Q(ȳ) log P̂ (ȳ)

where β ∈ [0, 1]. Our intuition is that for timesteps near
T , classification loss is weighted more and less to the di-
vergence term. In the beginning, we should have much
less confidence in the classification loss and more on the
divergence term. This leads to a natural choice of β = t

T
achieving the desired effect.

Extensions to Stacked/Hierarchical RNNs. There can be
various extensions of our scheme to multi-layered RNNs.
One simple scheme is to treat the transition in the stacked
RNN as a multi-layered function which transforms hidden
states from one time step to the next. Our language mod-
elling experiments (Sec. 4.3) on PTB-word and character
level uses this extension for the 3-layered stacked LSTM
models. Note that ideally such an extension should work for
hierarchical RNNs as well as state transitions can be seen
at the most frequent update equation. We leave this as a
potential future direction.

4. Experiments
In this section we empirically demonstrate that the pro-
posed algorithm outperforms BPTT. First, we provide ab-
lative experiments to justify our default choice of hyper-
parameters and the chosen architecture. Next, we run
FPTT on sequence-to-sequence modelling tasks. Finally,
we benchmark FPTT on terminal prediction tasks which
provide the true label only for the full input sequence.

4.1. Experimental Setup

We implement FPTT in Pytorch using the pseudo code
given by Algorithm 2. We perform our experiments on
single GTX 1080 Ti GPU. The benchmark datasets used
in this study are publicly available along with a train and
test split. For hyper-parameter tuning, we set aside a vali-
dation set on tasks where a validation set is not available.
Wherever applicable we use grid search for tuning hyper-
parameters (details in supplementary). In our experiment,
we use LSTM(Hochreiter & Schmidhuber, 1997) as the de-
fault RNN architecture for evaluation purpose. They have
been shown to suffer from vanishing/exploding gradients
on many tasks (Zhang et al., 2018; Chang et al., 2019; Kag
et al., 2020). Our reasoning follows from the fact that they
are widely available with most efficient CUDA implemen-
tation on many popular deep learning libraries. This also

reduces our experimentation cost. Although we use LSTMs
to show that FPTT works on many benchmark datasets, we
provide ablative study to show that FPTT works on many
RNN architectures (see Sec. 4.2).

Since many RTRL algorithms do not scale to the large-
scale benchmark tasks, we do not show their performance
in our results. TBPTT has been shown to perform poorly in
comparison to BPTT (Trinh et al., 2018). Hence, we will
only consider BPTT as the baseline and add the prefix FPTT
whenever RNNs are trained with the proposed algorithm,
otherwise the training algorithm is assumed to be BPTT.
Wherever applicable we will include known results from the
literature to compare our BPTT implementation.

0 1000 2000 3000 4000 5000

Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
S

q
u

ar
ed

E
rr

or

Add Task (Sequence Length=200)

LSTM

FPTT-LSTM (K=3)

FPTT-LSTM (K=5)

FPTT-LSTM (K=10)

FPTT-LSTM (K=100)

FPTT-LSTM (K=200)

Figure 2. Ablative Experiment: Add Task (T = 200) solved by
splitting in multiple parts. Note that FPTT with K = 1 corre-
sponds to BPTT for LSTM while K = 200 updates Wt at every
timestep. This figure demonstrates asK increases the performance
of the algorithm improves.

4.2. Ablative experiments

Below ablative experiments highlight key aspects of FPTT .

Effect of the parameterK. As described in the Sec. 3 each
round of RNN parameter update is more expensive than gra-
dient update. We can address this issue by choosing a suit-
able K and run FPTT -K. Larger K decreases number of pa-
rameter updates, but can impact convergence. For the Add-
Task with sequence length T = 200, we learn LSTMs with
different K values (ranging from K = 1, 3, 5, 10, 100, 200).
Note that K = 1 is essentially BPTT as we only update the
RNN parameter after seeing the entire sequence. Figure 2
shows that higher K values result in better convergence. On
the other hand higher values of K are more expensive since,
as described in Table 1, cost of parameter updates exceeds
gradient by a constant factor4. Suppose this factor is C2, the
highest computational efficiency is achieved by FPTT -K
with K = bTC c. On the other hand small values of K could

4This factor is difficult to pin-down since gradients leverage
CUDA-pytorch, while parameter updates are not optimized.

FPTT: Training RNNs with Forward Propagation

lead to poor training as observed in Figure 2. As a rule of
thumb we use K ≈

√
T for all our other experiments. This

results in meaningful performance (trainability), and com-
putational efficiency matching GPU LSTM implementation.

Table 2. CIFAR-10 : Different RNN architectures.
Accuracy #Params

LSTM 60.11% 67K
FPTT LSTM 71.03% 67K

GRU 66.28% 51K
FPTT GRU 71.37% 51K

Antisymmetric 62.41% 37K
FPTT Antisymmetric 72.13% 37K

Choice of architecture. In this experiment we show that
FPTT provides non-trivial gains for many RNN architec-
tures. We train one layer LSTM, and GRU architectures on
the CIFAR-10 dataset with the same setting as the described
in section 4.4. Table 2 shows that RNNs trained with FPTT
provide gains of about 5 − 10 points in accuracy over the
RNNs trained with BPTT. In the remaining experiments, we
reduce experimentation cost by only performing evaluations
on LSTMs as they are readily available in PyTorch with
very efficient CUDA implementation. We also want to show
that replacing BPTT with FPTT allows LSTMs to achieve
performance near state-of-the-art performance achieved by
recent architectural improvements.

Auxiliary Losses in BPTT vs FPTT . In this experiment
we augment BPTT with the auxiliary losses (proposed for
terminal prediction in section 3) similar to (Trinh et al.,
2018) in order to isolate the gains from auxiliary losses in
the BPTT routine. Table 3 shows that our auxiliary losses
helps BPTT to improve the performance but still lack behind
the proposed algorithm.

Table 3. CIFAR-10 : BPTT+Auxiliary Loss vs FPTT .
Accuracy #Params

LSTM 60.11% 67K
Aux-Loss+LSTM 65.65% 67K

FPTT LSTM 71.03% 67K

Sensitivity to α hyper-parameter. Note that very small
value of α, i.e. α → 0 would lead FPTT to ignore the
regularizer and would only optimize the instantaneous loss
at every step resulting in diverging iterates. While very
high value of α would lead FPTT to only optimize the
regularizer and hence very poor generalization performance.
We explore the sensitivity to the α hyper-parameter in the
Algorithm 2. We use the PTB-300 language modelling
dataset. In this experiment we train FPTT on the following
α values: {1.0, 0.8, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}. Best
perplexity is reached at α = 0.5 while α = 1.0 fails to
converge to a good solution. Also, the performance starts
to decrease with α ≤ 0.05. We show the full result in the
appendix (see Table 8 in Sec. 6.3).

4.3. Sequence Modelling

We perform experiments on three variants of the sequence-
to-sequence benchmark Penn Tree Bank (PTB) dataset
(McAuley & Leskovec, 2013). We provide full details of
these experiments in the supplementary.

PTB-300 is a word level language modelling task with the
difficult sequence length of 300 and has been studied in
many previous works to study long range dependencies
in language modeling (Zhang et al., 2018; Kusupati et al.,
2018; Kag et al., 2020). Table 4 shows the test perplexity
for our experimental runs along with results from earlier
works. Note that improved architectures such as FastGRNN
(Kusupati et al., 2018), SpectralRNNs(Zhang et al., 2018),
IncrementalRNNs (Kag et al., 2020) show improvements
over the LSTMs trained using backpropagation algorithm.
By incorporating FPTT as the training algorithm we im-
prove LSTM’s test perplexity by nearly 11 points and thus
outperforming the reported LSTM results.

Table 4. Results for PTB word level language modelling : Se-
quence length (300), 1-Layer LSTM.

Dataset PTB-w
Perplexity #Params

FastGRNN (Kusupati et al., 2018) 116.11 53K
IncrementalRNN (Kag et al., 2020) 115.71 30K
SpectralRNN (Zhang et al., 2018) 130.20 31K

LSTM (Zhang et al., 2018) 130.21 64K
LSTM (Kusupati et al., 2018) 117.41 210K

LSTM 117.09 210K
FPTT LSTM 106.27 210K

PTB-w is the traditional word level language modelling
variant of the PTB dataset. It uses 70 as sequence length
and we follow (Yang et al., 2018) to setup this experiment.
We use three-layer LSTM model for this task with embed-
ding dimensions 280 and hidden size 1150. We report the
results with dynamic evaluation(Krause et al., 2018) on the
trained model. We use the same architecture and training
setup to train LSTMs with both BPTT and FPTT . Table 5
demonstrates that LSTM trained with FPTT result in better
performance than the ones trained with BPTT.

PTB-c is the character level modelling task that uses 150
sequence length. We utilize (Merity et al., 2018) to setup
the character level task. We use 3-layer LSTM models
as recommended with hidden size 1000 and embedding
dimension 200. We train this model with both BPTT and
FPTT with the same setting. As shown in Table 5, LSTM
trained with FPTT results in better bits-per-characters and
has comparable performance with existing state-of-the-art
results present in this table.

FPTT: Training RNNs with Forward Propagation

Table 5. Results for PTB-w and PTB-c datasets. We use AWD-LSTM model in our PTB-c experiments and AWD-LSTM with Mixture-
of-Softmaxes(Yang et al., 2018) in the PTB-w experiments. For PTB-w dataset, wherever applicable, all the baselines report the results
with dynamiceval(Krause et al., 2018). It can be seen that training with FPTT outperforms the model trained with BPTT.

Dataset PTB-c PTB-w
Hidden

Dimension BPC #Params Hidden
Dimension Perplexity #Params

Trellis-Net (Bai et al., 2019) 1000 1.158 13.4M 1000 54.19 34M
AWD-LSTM (Merity et al., 2018; Krause et al., 2018) 1000 1.175 13.8M 1150 51.1 24M

Dense IndRNN (Li et al., 2019) 2000 1.18 45.7M 2000 50.97 52M
LSTM 1000 1.183 13.8M 1150 51.9 22M

FPTT LSTM 1000 1.165 13.8M 1150 50.96 22M

4.4. Terminal Prediction

We benchmark FPTT on popular terminal prediction tasks
to demonstrate that the proposed algorithm provides non-
trivial gains over BPTT in this setting as well. For fair
comparison, following previous works(Zhang et al., 2018;
Kusupati et al., 2018; Kag et al., 2020), we use LSTMs with
128 dimensional hidden state and Adam as the choice of
optimizer with initial learning rate 1e − 3 for both algo-
rithms. We provide other hyper-parameter tuning details in
the supplementary (see Sec. 6.1).

(a)
0 2000 4000 6000 8000 10000

Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
S

q
u

ar
ed

E
rr

or

Add Task (Sequence Length=750)

FPTT-LSTM

LSTM

(b)
0 2000 4000 6000 8000 10000

Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
S

q
u

ar
ed

E
rr

or

Add Task (Sequence Length=1000)

FPTT-LSTM

LSTM

Figure 3. Results for Add Task with large sequence lengths : (a)
T = 750, and (b) T = 1000.

Add-Task (Hochreiter & Schmidhuber, 1997) has been used
to evaluate long range dependencies in RNN architectures.
An example data point consists of two sequences (x1, x2) of
length T and a target label y. x1 contains real-valued entries
drawn uniformly from [0, 1], x2 is a binary sequence with
exactly two 1s, and the label y is the sum of the two entries
in sequence x1 where x2 has 1s. For both the algorithms
(BPTT and FPTT), we use episodic training where a train
batch size of 128 is presented to the RNN to update its
parameters and evaluated using an independently drawn
test set. We use difficult sequence lengths T = 750 and
T = 1000 in this task.

Figure 3 shows the convergence plots for both the algorithms
on these two settings. This demonstrates that FPTT helps
LSTMs solve this task while BPTT stays around the same
loss value throughout the training phase. Note that this
observation is consistent with previous works (Kag et al.,
2020; Zhang et al., 2018).

Pixel & Permute MNIST, CIFAR-10 are sequential vari-
ants of the popular image classification datasets: MNIST
(Lecun et al., 1998) and CIFAR-10 (Krizhevsky & Hin-
ton, 2009). MNIST consists of images of 10 digits with
shape 28 × 28 × 1, while CIFAR-10 consists of images
with shape 32× 32× 3. The input images are flattened into
a sequence (row-wise). At each time step, 1 and 3 pixels
are presented as the input for MNIST and CIFAR datasets
respectively. This construction results in Pixel MNIST and
CIFAR datasets with 784 and 1024 length sequences re-
spectively. While Permute-MNIST is obtained by applying
a fixed permutation on the Pixel MNIST sequence. This
creates a harder problem than the Pixel setting since there
are no obvious patterns to explore.

Table 6 lists the performance of LSTMs trained using BPTT
and FPTT , along with the known results in the literature
on these datasets. This shows that LSTMs trained with
FPTT outperforms the ones trained with BPTT. We point
out that FPTT LSTMs performance is reasonably close to
the best performance reported on this dataset with better
architectures and higher complexity.

Below we list benefits of the proposed algorithm.

FPTT: Training RNNs with Forward Propagation

Table 6. Results for Sequential MNIST, Permute MNIST and Sequential CIFAR-10. Models listed below use 1-Layer except IndRNN
and TrellisNet as they are multi-layered architectures.

Dataset Seq-MNIST Permute-MNIST CIFAR-10
Accuracy #Params Accuracy #Params Accuracy #Params

AntisymmetricRNN (Chang et al., 2019) 98.8% 10K 93.1% 10K 62.20% 37K
IncrementalRNN (Kag et al., 2020) 98.13% 4K 95.62% 8K - -
IndRNN (6 Layers) (Li et al., 2018) 99.0% - 96.0% - - -

TrellisNet (16 Layers) (Bai et al., 2019) 99.20% 8M 98.13% 8M 73.42% 8M
r-LSTM (Trinh et al., 2018) 98.4% 100K 95.2% 100K 72.20% 101K
LSTM (Chang et al., 2019) 97.3% 68K 92.6% 68K 59.70% 69K
LSTM (Trinh et al., 2018) 98.3% 100K 89.4% 100K 58.80% 101K

LSTM (TBPTT-300) (Trinh et al., 2018) 11.3% 100K 88.8% 100K 49.01% 101K
LSTM 97.71% 66K 88.91% 66K 60.11% 67K

FPTT LSTM 98.67% 66K 94.75% 66K 71.03% 67K

(A) Better Generalization. FPTT provides better gen-
eralization on many benchmark tasks compared to BPTT.
Tables 4, 5, and 6 shows that FPTT yields better test perfor-
mance as compared to training with BPTT. Note that table 2
shows similar gains in architectures other than LSTMs.

(B) Learning Long Term Dependency tasks. Training
with FPTT enables LSTMs to solve LTD tasks. Our exper-
iments evaluate FPTT on many LTD datasets (Add-Task,
Permute/Pixel MNIST, CIFAR-10 and PTB-300). Figure 3
shows that FPTT enables LSTMs to solve Add-Task while
BPTT was unable to solve this task. Similarly, tables 4, and
6 shows that FPTT outperforms BPTT on LTD tasks.

(C) Better Model Efficiency. FPTT trained LSTMs com-
pete with higher complexity models. Table 6 shows our
1-layer LSTMs are competitive with multi-layered deep
RNN higher capacity models (TrellisNet(Bai et al., 2019),
IndRNN(Li et al., 2018)). In retrospect it is worth consider-
ing that the higher complexity models have often stemmed
from inability to train LSTMs on long-term dependency
tasks. FPTT points to the fact that the issue is not capacity
but the training method.

(D) Learning Short-term dependency tasks. FPTT
shows competitive performance on sequence modelling
tasks. Our experiments on language modelling tasks with
shorter sequence lengths (PTB-w, PTB-c datasets) demon-
strates the proposed method can learn short term dependen-
cies present in these datasets. Table 5 shows that FPTT
provides better test performance than BPTT.

(E) Computational Efficiency/Convergence. We dis-
cussed the computational trade-off of the proposed method
in table 1. This trade-off allows FPTT to provide training
complexity similar to BPTT while providing better statisti-
cal trainability and generalization. We show training time
comparison in the supplementary (see Sec. 6.2). Addition-
ally, FPTT reduces the memory overhead by only storing

hidden states between two iterate updates, in contrast BPTT
stores all the intermediate states in the time horizon T .

5. Conclusion
We proposed a novel forward-propagation-through-time
(FPTT) method for training RNNs based on sequentially
updating parameters forward through time. As such our
method at each time t, involves taking a gradient step of
an instantaneously constructed regularized risk, where the
regularizer evolves dynamically, and is updated based on
past history. Our method exhibits light-weight footprint
and improves LSTM trainability for benchmark long-term
dependency tasks, bypassing vanishing/exploding gradient
issues encountered while training LSTMs with BPTT. As
a result we show that LSTMs have sufficient capacity, and
often realize results that are competitive with much higher
capacity models.

Acknowledgements
We would like to thank the reviewers for their insightful com-
ments. This research was supported by National Science
Foundation grants CCF-2007350 (VS), CCF-2022446(VS),
CCF-1955981 (VS), the Data Science Faculty and Student
Fellowship from the Rafik B. Hariri Institute, the Office of
Naval Research Grant N0014-18-1-2257 and by a gift from
the ARM corporation.

References
Arjovsky, M., Shah, A., and Bengio, Y. Unitary evo-

lution recurrent neural networks. In Balcan, M. F.
and Weinberger, K. Q. (eds.), Proceedings of The 33rd
International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Research,
pp. 1120–1128, New York, New York, USA, 20–22 Jun
2016. PMLR. URL http://proceedings.mlr.

http://proceedings.mlr.press/v48/arjovsky16.html
http://proceedings.mlr.press/v48/arjovsky16.html
http://proceedings.mlr.press/v48/arjovsky16.html

FPTT: Training RNNs with Forward Propagation

press/v48/arjovsky16.html.

Bai, S., Kolter, J. Z., and Koltun, V. Trellis networks
for sequence modeling. In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=HyeVtoRqtQ.

Bengio, Y., Boulanger-Lewandowski, N., and Pascanu, R.
Advances in optimizing recurrent networks. 2013 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing, pp. 8624–8628, 2013.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein,
J. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Found.
Trends Mach. Learn., 3(1):1–122, January 2011. ISSN
1935-8237. doi: 10.1561/2200000016. URL https:
//doi.org/10.1561/2200000016.

Chang, B., Chen, M., Haber, E., and Chi, E. H. Antisym-
metricRNN: A dynamical system view on recurrent neu-
ral networks. In International Conference on Learning
Representations, 2019. URL https://openreview.
net/forum?id=ryxepo0cFX.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pp. 1724–1734, 2014. doi:
10.3115/v1/D14-1179. URL http://www.aclweb.
org/anthology/D14-1179.

Erichson, N. B., Azencot, O., Queiruga, A., Hodgkinson, L.,
and Mahoney, M. W. Lipschitz recurrent neural networks.
In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=-N7PBXqOUJZ.

Gu, F., Askari, A., and Ghaoui, L. E. Fenchel lifted net-
works: A lagrange relaxation of neural network training.
In Chiappa, S. and Calandra, R. (eds.), Proceedings of
the Twenty Third International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceedings
of Machine Learning Research, pp. 3362–3371. PMLR,
26–28 Aug 2020. URL http://proceedings.mlr.
press/v108/gu20a.html.

Hochreiter, S. Untersuchungen zu dynamischen neuronalen
netzen. Diploma, Technische Universität München, 91
(1), 1991.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., Le-
Cun, Y., Tegmark, M., and Soljačić, M. Tunable efficient
unitary neural networks (EUNN) and their application
to RNNs. In Precup, D. and Teh, Y. W. (eds.), Pro-
ceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 1733–1741. PMLR, 06–11 Aug
2017. URL http://proceedings.mlr.press/
v70/jing17a.html.

Kag, A. and Saligrama, V. Time adaptive recurrent neural
network, 2021. URL https://openreview.net/
forum?id=VDUovuK0gV.

Kag, A., Zhang, Z., and Saligrama, V. Rnns incrementally
evolving on an equilibrium manifold: A panacea for van-
ishing and exploding gradients? In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=HylpqA4FwS.

Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G.,
Vorontsov, E., Bengio, Y., and Lajoie, G. Non-
normal recurrent neural network (nnrnn): learning
long time dependencies while improving expressivity
with transient dynamics. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
9d7099d87947faa8d07a272dd6954b80-Paper.
pdf.

Krause, B., Kahembwe, E., Murray, I., and Renals,
S. Dynamic evaluation of neural sequence mod-
els. In Dy, J. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 2766–2775. PMLR, 10–15 Jul
2018. URL http://proceedings.mlr.press/
v80/krause18a.html.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Master’s thesis, Department
of Computer Science, University of Toronto, 2009.

Kusupati, A., Singh, M., Bhatia, K., Kumar, A., Jain, P.,
and Varma, M. Fastgrnn: A fast, accurate, stable and tiny
kilobyte sized gated recurrent neural network. In Bengio,
S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/
ab013ca67cf2d50796b0c11d1b8bc95d-Paper.
pdf.

http://proceedings.mlr.press/v48/arjovsky16.html
http://proceedings.mlr.press/v48/arjovsky16.html
https://openreview.net/forum?id=HyeVtoRqtQ
https://openreview.net/forum?id=HyeVtoRqtQ
https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2200000016
https://openreview.net/forum?id=ryxepo0cFX
https://openreview.net/forum?id=ryxepo0cFX
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179
https://openreview.net/forum?id=-N7PBXqOUJZ
https://openreview.net/forum?id=-N7PBXqOUJZ
http://proceedings.mlr.press/v108/gu20a.html
http://proceedings.mlr.press/v108/gu20a.html
http://proceedings.mlr.press/v70/jing17a.html
http://proceedings.mlr.press/v70/jing17a.html
https://openreview.net/forum?id=VDUovuK0gV
https://openreview.net/forum?id=VDUovuK0gV
https://openreview.net/forum?id=HylpqA4FwS
https://openreview.net/forum?id=HylpqA4FwS
https://proceedings.neurips.cc/paper/2019/file/9d7099d87947faa8d07a272dd6954b80-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9d7099d87947faa8d07a272dd6954b80-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9d7099d87947faa8d07a272dd6954b80-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9d7099d87947faa8d07a272dd6954b80-Paper.pdf
http://proceedings.mlr.press/v80/krause18a.html
http://proceedings.mlr.press/v80/krause18a.html
https://proceedings.neurips.cc/paper/2018/file/ab013ca67cf2d50796b0c11d1b8bc95d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/ab013ca67cf2d50796b0c11d1b8bc95d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/ab013ca67cf2d50796b0c11d1b8bc95d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/ab013ca67cf2d50796b0c11d1b8bc95d-Paper.pdf

FPTT: Training RNNs with Forward Propagation

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. In Pro-
ceedings of the IEEE, pp. 2278–2324, 1998.

Lezcano-Casado, M. and Martı́nez-Rubio, D. Cheap
orthogonal constraints in neural networks: A simple
parametrization of the orthogonal and unitary group.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 3794–3803. PMLR, 09–15 Jun
2019. URL http://proceedings.mlr.press/
v97/lezcano-casado19a.html.

Li, S., Li, W., Cook, C., Zhu, C., and Gao, Y. Independently
recurrent neural network (indrnn): Building a longer and
deeper rnn. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5457–5466, 2018.
doi: 10.1109/CVPR.2018.00572.

Li, S., Li, W., Cook, C., Gao, Y., and Zhu, C. Deep indepen-
dently recurrent neural network (indrnn), 2019.

Linsley, D., Karkada Ashok, A., Govindarajan, L. N.,
Liu, R., and Serre, T. Stable and expressive re-
current vision models. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M. F., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 10456–10467. Curran Associates,
Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
766d856ef1a6b02f93d894415e6bfa0e-Paper.
pdf.

McAuley, J. and Leskovec, J. Hidden factors and hid-
den topics: Understanding rating dimensions with re-
view text. In Proceedings of the 7th ACM Conference
on Recommender Systems, RecSys ’13, pp. 165–172,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
2409-0. doi: 10.1145/2507157.2507163. URL http:
//doi.acm.org/10.1145/2507157.2507163.

McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner,
D., Grady, J., Nie, L., Phillips, T., Davydov, E., Golovin,
D., Chikkerur, S., Liu, D., Wattenberg, M., Hrafnkelsson,
A. M., Boulos, T., and Kubica, J. Ad click prediction:
a view from the trenches. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2013.

Menick, J., Elsen, E., Evci, U., Osindero, S., Simonyan,
K., and Graves, A. Practical real time recurrent learning
with a sparse approximation. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=q3KSThy2GwB.

Merity, S., Keskar, N. S., and Socher, R. Regulariz-
ing and optimizing LSTM language models. In In-
ternational Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=SyyGPP0TZ.

Mhammedi, Z., Hellicar, A., Rahman, A., and Bailey,
J. Efficient orthogonal parametrisation of recurrent
neural networks using householder reflections. In
Precup, D. and Teh, Y. W. (eds.), Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 2401–2409. PMLR, 06–11 Aug
2017. URL http://proceedings.mlr.press/
v70/mhammedi17a.html.

Miller, J. and Hardt, M. Stable recurrent models. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=Hygxb2CqKm.

Mujika, A., Meier, F., and Steger, A. Approximating
real-time recurrent learning with random kronecker
factors. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R.
(eds.), Advances in Neural Information Processing
Systems, volume 31, pp. 6594–6603. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/
dba132f6ab6a3e3d17a8d59e82105f4c-Paper.
pdf.

Ollivier, Y. and Charpiat, G. Training recurrent networks on-
line without backtracking. CoRR, abs/1507.07680, 2015.
URL http://arxiv.org/abs/1507.07680.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing Internal Representations by Error Propagation, pp.
318–362. MIT Press, Cambridge, MA, USA, 1986. ISBN
026268053X.

Tallec, C. and Ollivier, Y. Unbiased online recurrent op-
timization. In International Conference on Learning
Representations, 2018. URL https://openreview.
net/forum?id=rJQDjk-0b.

Trinh, T., Dai, A., Luong, T., and Le, Q. Learn-
ing longer-term dependencies in RNNs with auxil-
iary losses. In Dy, J. and Krause, A. (eds.), Pro-
ceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4965–4974. PMLR, 10–15 Jul
2018. URL http://proceedings.mlr.press/
v80/trinh18a.html.

Werbos, P. J. Backpropagation through time: what it does
and how to do it. Proceedings of the IEEE, 78(10):1550–
1560, 1990. doi: 10.1109/5.58337.

http://proceedings.mlr.press/v97/lezcano-casado19a.html
http://proceedings.mlr.press/v97/lezcano-casado19a.html
https://proceedings.neurips.cc/paper/2020/file/766d856ef1a6b02f93d894415e6bfa0e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/766d856ef1a6b02f93d894415e6bfa0e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/766d856ef1a6b02f93d894415e6bfa0e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/766d856ef1a6b02f93d894415e6bfa0e-Paper.pdf
http://doi.acm.org/10.1145/2507157.2507163
http://doi.acm.org/10.1145/2507157.2507163
https://openreview.net/forum?id=q3KSThy2GwB
https://openreview.net/forum?id=q3KSThy2GwB
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
http://proceedings.mlr.press/v70/mhammedi17a.html
http://proceedings.mlr.press/v70/mhammedi17a.html
https://openreview.net/forum?id=Hygxb2CqKm
https://openreview.net/forum?id=Hygxb2CqKm
https://proceedings.neurips.cc/paper/2018/file/dba132f6ab6a3e3d17a8d59e82105f4c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dba132f6ab6a3e3d17a8d59e82105f4c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dba132f6ab6a3e3d17a8d59e82105f4c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dba132f6ab6a3e3d17a8d59e82105f4c-Paper.pdf
http://arxiv.org/abs/1507.07680
https://openreview.net/forum?id=rJQDjk-0b
https://openreview.net/forum?id=rJQDjk-0b
http://proceedings.mlr.press/v80/trinh18a.html
http://proceedings.mlr.press/v80/trinh18a.html

FPTT: Training RNNs with Forward Propagation

Williams, R. J. and Peng, J. An efficient gradient-based
algorithm for on-line training of recurrent network tra-
jectories. Neural Comput., 2(4):490–501, December
1990. ISSN 0899-7667. doi: 10.1162/neco.1990.2.4.490.
URL https://doi.org/10.1162/neco.1990.
2.4.490.

Williams, R. J. and Zipser, D. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural
Computation, 1(2):270–280, 1989. doi: 10.1162/neco.
1989.1.2.270.

Yang, Z., Dai, Z., Salakhutdinov, R., and Cohen, W. W.
Breaking the softmax bottleneck: A high-rank RNN lan-
guage model. In International Conference on Learning
Representations, 2018. URL https://openreview.
net/forum?id=HkwZSG-CZ.

Zhang, J., Lei, Q., and Dhillon, I. Stabilizing gradi-
ents for deep neural networks via efficient SVD pa-
rameterization. In Dy, J. and Krause, A. (eds.), Pro-
ceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 5806–5814. PMLR, 10–15 Jul
2018. URL http://proceedings.mlr.press/
v80/zhang18g.html.

https://doi.org/10.1162/neco.1990.2.4.490
https://doi.org/10.1162/neco.1990.2.4.490
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
http://proceedings.mlr.press/v80/zhang18g.html
http://proceedings.mlr.press/v80/zhang18g.html

