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Abstract

We consider training models on private data that
are distributed across user devices. To ensure
privacy, we add on-device noise and use secure
aggregation so that only the noisy sum is revealed
to the server. We present a comprehensive end-to-
end system, which appropriately discretizes the
data and adds discrete Gaussian noise before per-
forming secure aggregation. We provide a novel
privacy analysis for sums of discrete Gaussians
and carefully analyze the effects of data quantiza-
tion and modular summation arithmetic. Our the-
oretical guarantees highlight the complex tension
between communication, privacy, and accuracy.
Our extensive experimental results demonstrate
that our solution is essentially able to match the
accuracy to central differential privacy with less
than 16 bits of precision per value.

1. Introduction

Software and service providers rely on increasingly com-
plex data analytics and machine learning models to improve
their services. However, training these machine learning
models hinges on the availability of large datasets, which
are often distributed across user devices and contain sen-
sitive information. The collection of these datasets comes
with several privacy risks — can the service provider ad-
dress issues around consent, transparency, control, breaches,
persistence, processing, and release of data? There is thus
a strong desire for technologies which systematically ad-
dress privacy concerns while preserving, to the best extent
possible, the utility of the offered services.

To address this need, several privacy-enhancing technolo-
gies have been studied and built over the past few years.
Prominent examples of such technologies include federated
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learning (FL) to ensure that raw data never leaves users’
devices (McMahan et al., 2017; Kairouz et al., 2019), cryp-
tographic secure aggregation (SecAgg) to prevent a server
from inspecting individual user updates (Bonawitz et al.,
2017; Bell et al., 2020), and differentially private stochastic
gradient descent (DP-SGD) to train models with provably
limited information leakage (Abadi et al., 2016; Tramer
& Boneh, 2020). While these technologies have been ex-
tremely well studied in a separate fashion, little work has
focused on understanding precisely how they can be com-
bined in a rigorous and principled fashion. Towards this end,
we present a comprehensive end-to-end system where each
client appropriately discretizes their model update and adds
discrete Gaussian noise to it before sending it for modular
secure summation using SecAgg. This provides the first
concrete step towards building a communication-efficient
FL system with distributed DP' and SecAgg guarantees.

Organization The remainder of the paper is organized
as follows. We present some preliminaries in Section 2,
summarize our main results in Section 3, and review related
works in Section 4. In Section 5, we introduce the dis-
tributed discrete Gaussian mechanism, analyze its privacy
guarantees, and show how to apply it in federated learning.
We present experiments in Section 6 and conclude with a
few interesting extensions in Section 7. All formal defini-
tions, proofs, algorithmic details, extensions, and additional
experiments are deferred to the supplementary material.

2. Preliminaries

We begin by defining the Rényi divergence of order o €
(1, 00) of distribution P with respect to distribution Q as

(20)]

We now state the definitions of concentrated DP (Bun
& Steinke, 2016) and Rényi DP (Mironov, 2017) and
relate these to the standard definition of differential pri-
vacy (Dwork et al., 2006b;a).

Da (P[Q)

T a—1 °xepP

Definition 1 (Concentrated Differential Privacy). A ran-

!See “Distributed DP” paragraph in Section 4 for a definition
of this notion of DP and a literature review.
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domized algorithm M : X — Y satisfies %Ez-concentmted
differential privacy iff, for all x,x' € X differing by the
addition or removal of a single user’s records, we have
SUPac (1,00) w Do (M(2)[[ M (")) < 52

Definition 2 (Rényi Differential Privacy). A randomized
algorithm M : X — ) satisfies («,¢)-Rényi differen-
tial privacy iff, for all x,x’ € X differing by the ad-
dition or removal of a single user’s records, we have

Do (M(z)[[M(2")) <e.

Definition 3 (Differential Privacy). A randomized algo-
rithm M : X — Y satisfies (g, 0)-differential privacy iff,
forall x,x' € X differing by the addition or removal of a
single user’s records, we have

PM(z)e E]<e®-P[M(2') € E]+6 ¢))
for all events E C Y. We refer to (e, 0)-differential privacy
as pure differential privacy or pointwise differential privacy

and we refer to (g,0)-differential privacy with 6 > 0 as
approximate differential privacy.

We remark that (¢, 0)-DP is equivalent to (oo, €)-DP. Sim-
ilarly, %52—concentrated DP is equivalent to satisfying

(e, 3e%a)-Rényi DP simultaneously for all o € (1, 00).

In addition we have the following conversion lemma (Bun &
Steinke, 2016; Canonne et al., 2020; Asoodeh et al., 2020)
from concentrated DP to approximate DP.

Lemma 4. [f M satisfies (¢, 0)-differential privacy, then
it satisfies %52-concentmted differential privacy. If M sat-
isfies %52-concentrated differential privacy, then, for any
d > 0, M satisfies (e,pp(0), 0)-differential privacy, where

P P log(1/ad)
€app(6) = ér;fl 5° “a—1 T log(1 —1/a)

< (VIR +2/2)

We adopt user-level privacy in this work —i.e., each entry in
the input corresponds to all the records associated with a sin-
gle user (McMahan et al., 2018), and thus the privacy guar-
antee holds with respect to all data belonging to that user.
This is stronger than the commonly-used notion of item-
level privacy where, if a user contributes multiple records,
only the addition or removal of one record is protected. We
define DP with respect to addition or removing the records
of an individual, rather than replacement. Since replacement
can be achieved by a combination of an addition and a re-
moval, group privacy (a.k.a. the triangle inequality) implies
a differential privacy guarantee for replacement; however,
the privacy parameter will be doubled.

a+

3. Main Results

We start by considering a single round of federated learning
in which we are simply summing model update vectors.
That is, we have n clients and assume that each client holds

a vector ; € R and our goal is to privately approximate
z = Y. x;. Client i computes z; = Acjient (i) € z4
here, Actient (+) can be thought of as a compression and
privatization scheme. Using secure aggregation as a black
box,? the server observes

z:=> z modm =Y Adgient(z;) modm, (2)

and uses Z to estimate Aserver (2) = T =Y ; ;.

The protocol consists of three parts — the client side Acjient,
secure aggregation, and the server side Agcpver. There is
already ample work on implementing secure aggregation
(Bell et al., 2020; Bonawitz et al., 2016); thus we treat
SecAgg as a black box which is guaranteed to faithfully
compute the modular sum of the inputs, while revealing no
further information to a potential privacy adversary. Further
discussion of SecAgg and the required trust assumptions is
beyond the scope of this work. This allows us to focus on
the requirements for A¢jjent and Agerver:

e Privacy: The sum z = Y. Acjient(z;) mod m
must be a differentially private function of the in-
puts x1, - - -, x,. Specifically, adding or removing one
client should only change the distribution of the sum
slightly. Note that our requirement is weaker than lo-
cal DP, since we only reveal the sum, rather than the
individual responses z; = Aclient (Z; ).

Privacy is achieved by each client independently
adding discrete Gaussian noise (Canonne et al., 2020)
to its (appropriately discretized) vector. The sum of
independent discrete Gaussians is not a discrete Gaus-
sian, but we show that it is extremely close for the
parameter regime of interest. This is the basis of our
differential privacy guarantee, and we believe this re-
sult to be of independent interest.

e Accuracy: Our goal is to approximate the sum
Aserver (Z2) = T = Z? x;. For simplicity, we focus
on the mean squared error, although our experiments
also evaluate the accuracy by aggregating client model
updates for federated learning.

There are three sources of error to consider: (i) the
discretization of the x; vectors from R< to Z¢; (ii) the
noise added for privacy (which also depends on the
norm ||z;|| and how discretization affects this); and
(iii) the potential modular wrap-around introduced by
SecAgg modular sum. We provide a detailed analysis
of all three effects and how they affect one another.

e Communication and Computation: It is crucial that

2We will assume the secure aggregation protocol accepts z;’s
on Z&, (i.e., length-d integer vectors modulo m) and computes the
sum modulo m. Our methods do not depend on the specifics of
the implementation of SecAgg.
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Algorithm 1 Client Procedure Acjient

Algorithm 2 Server Procedure Agerver

Input: Private vector z; € R%. {Assume dimension d is
a power of 2.}

Parameters: Dimension d € N; clipping threshold ¢ >
0; granularity v > 0; modulus m € N; noise scale o > 0;
bias 5 € [0, 1).

Shared/public randomness: Uniformly random sign
vector £ € {—1,+1}4.

Clip and scale vector: z) = % min {1, #} x; € R4

llill2
Flatten vector: 2/ = HgDex, € R? where H €
{—=1/Vd, +1/+/d}?**¢ is a Walsh-Hadamard matrix sat-
isfying H'H = I and D¢ € {—1,0,+1}%*? is a diago-
nal matrix with £ on the diagonal.
repeat
Let #; € Z% be a randomized rounding of =/ € R%.
Le., Z; is a product distribution with E [z;] = « and
1@ — /o < 1.

(¢/v + Vd)?,

until ||Z;|2 <min{
H 1H2— %—F%—F 2log (%)(%4_@)

Let y; € Z consist of d independent samples from the
discrete Gaussian N7(0, 02 /4?).

Let z; = (Z; + y;) mod m.

Output: z; € Z2, for the secure aggregation protocol.

our algorithms are efficient, especially the client side,
which may be running on a mobile device. Compu-
tationally, our algorithms run in time that is nearly
linear in the dimension. The communication cost is
O(dlogm). While we cannot control the dimension
d, we can minimize the number of bits per coordi-
nate, which is log m. However, this introduces a trade-
off between communication and accuracy — larger m
means more communication, but we can reduce the
probability of a modular wrap around and pick a finer
discretization to reduce the rounding error.

We focus our discussion on the simple task of summing vec-
tors. In a realistic federated learning system, there will be
many summing rounds as we iteratively update our model.
Each round will be one invocation of our protocol. The
privacy loss parameters of the larger system can be con-
trolled using the composition and subsampling properties of
differential privacy. That is, we can use standard privacy ac-
counting techniques (Bun & Steinke, 2016; Mironov, 2017;
Wang et al., 2019) to analyse the more complex system, as
long as we have differential privacy guarantees for the basic
protocol that is used as a subroutine.

We now present our algorithm in two parts — the client
part Acjient in Algorithm 1 and the server part Agepye, in
Algorithm 2. The two parts are connected by a secure
aggregation protocol. We also note that our algorithms

Input: Vector z = (37" 2; mod m) € Z<, via secure
aggregation.

Parameters: Dimension d € N; number of clients n €
N; clipping threshold ¢ > 0; granularity v > 0; modulus
m € N; noise scale o > 0; bias 8 € [0,1).
Shared/public randomness: Uniformly random sign
vector £ € {—1,+1}4.

Map Z, to {1-m/2,2—m/2,--- ,—1,0,1--- ,m/2—
1,m/2} so that Z is mapped to ' € [-m/2,m/2]¢ N Z4
(and we have ZZ mod m = %).

Output: y=vD:HIz € R%. {Goal: y ~ 7 =)} ;}

7

may be a subroutine of a larger FL system.

We briefly remark about the parameters of the algorithm:
d is the dimension of the inputs x; and outputs, which we
assume is a power of 2 for convenience. The input vectors
must have their norm clipped for privacy; c controls this
tradeoff — larger ¢ will require more noise for privacy (larger
o) and smaller ¢ will distort the vectors more. If 5 = 0, then
the discretization via randomized rounding is unbiased, but
the norm of Z; could be larger; each iteration of the random-
ized rounding loop succeeds with probability at least 1 — S3.
The modulus m will determine the communication com-
plexity — z; requires d log, m bits to represent. The noise
scale o determines the privacy, specifically € = c¢/+/no. Fi-
nally, the granularity v gives a tradeoff: smaller v means the
randomized rounding introduces less error, but also makes
it more likely that the modulo m operation introduces error.

We also remark about some of the techniques used in our
system: The first step in Algorithm 1 scales and clips the
input vector so that ||z}||2 < ¢/v. The next step performs a
unitary rotation/reflection operation ! = HyD¢x/, (Suresh
et al., 2017). This operation “flattens” the vector — i.e.,
|27 |0 = % |} |l2. Flattening ensures that the modular
arithmetic does not introduce large distortions due to modu-
lar wrap around (i.e., large coordinates of x// will be subject
to modular reduction). This flattening operation and the
scaling by ~ are undone in the last step of Algorithm 2. The
x{ is randomly rounded to the integer grid in an unbiased
manner. That is, each coordinate is independently rounded
to one of the two nearest integers. E.g., 42.3 has a 30%
probability of being rounded up to 43 and a 70% probabil-
ity of being rounded down to 42. This may increase the
norm — || ;|2 < ||«¥]|2 + v/d. To mitigate this, we perform
conditional randomized rounding: repeatedly perform in-
dependent randomized rounding on 2 until ||Z;||2 is not
too big. This introduces a small amount of bias, but, since
the noise we add to attain differential privacy must scale
with the norm of the discretized vector, reducing the norm
reduces the noise variance.

Privacy We now state the privacy of our algorithm.
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Theorem 5 (Privacy of Our Algorithm). Let c,d,, 3,0
be the parameters of Algorithm I and n the number of
trustworthy clients. Define

) _ c+'y4 ,/2log c—i—'yxf
A3 :=min

c+7\f

3)
n—1 202
Ti=10-Y e T 7T )
k=1
. { A% + Lrd }
€ := min 4 277 5. &)
TLU' + T\/>

Then Algorithm 1 satisfies 552-c0ncentmted differential
privacy,® assuming that secure aggregation only reveals the
sum z = (3 z; mod m) € ZZ, to the privacy adversary.

We remark on the parameters of the theorem: To first ap-

clipped to have norm ¢ and then each client adds (discrete)
Gaussian noise with variance ~ 2. The noise added to the
sum thus has variance ~ no2. However, there are two addi-
tional effects to account for: First, randomized rounding can
increase the norm from ¢ to A and this becomes the sen-
sitivity bound that we use for the privacy analysis. Second,
the sum of n discrete Gaussians is not a discrete Gaussian,
but it is close; 7 bounds the max divergence between the
sum of n discrete Gaussians each with scale parameter o /-y
and one discrete Gaussian with scale parameter \/no /7.

Accuracy Next we turn to the accuracy of the algorithm.
We provide both an empirical evaluation and theoretical
analysis. We give the following asymptotic guarantee; a
more precise guarantee with exact constants can be found
in the accompanying supplementary material.

Theorem 6 (Accuracy of Our Algorithm). Let n,m,d € N
and c,e > 0 satisfy

- 2,3
m>0<n+ En—l—\/g).
d €

Let A(l‘) = Aserver (Z? Aclient (371) mod m) denote the
output of the system given by Algorithms 1 and 2 instan-

tiated with parameters v = © ( an_ 4 Eﬁ), B<O (%),

7”\/&
c d Y
(a\/ﬁ \/: s)

Then A satisfies *6 -
concentrated differential privacy and attains the following
accuracy. Let x1,--+ 2, € R* with ||x;||2 < c for all

and ¢ = ©

3See the supplementary material or Bun & Steinke (2016) for
a formal definition. Note that this is with respect to the addition or
removal of an individual, not replacement (which would double the
€ parameter). To keep n fixed, we could define addition/removal
to simply zero-out the relevant vectors.

i € [n]. Then

E |||A(z) —

2
<0 <C€2d> . (6)

To interpret Theorem 6, note that mean squared error
o (<t
expect to attain for differential privacy in the central model.
Our analysis attains reasonably sharp constants (at the ex-
pense of many lower order terms that we suppress here in
the introduction). However, to truly gauge the practicality
of our method, we perform an empirical evaluation.

) is, up to constants, exactly the error we would

Experiments To investigate the interplay between com-
munication, accuracy, and privacy under our proposed pro-
tocol in practice, we empirically evaluate our protocol and
compare it to the commonly used centralized continuous
Gaussian mechanism on two canonical tasks: distributed
mean estimation (DME) and federated learning (FL). For
DME, each client holds a vector and the server’s goal is to
obtain a differentially private mean estimate of the vectors.
We show that 16 bits per coordinate are sufficient to nearly
match the utility of the Gaussian baseline for regimes of
interest. For FL, we show on Federated EMNIST (Caldas
et al., 2018) and Stack Overflow (Authors, 2019) that our ap-
proach gives good performance under tight privacy budgets,
despite using generic RDP amplification via sampling (Zhu
& Wang, 2019) for our methods and the precise RDP analy-
sis for the subsampled Gaussian mechanism (Mironov et al.,
2019). We provide an open-source implementation of our
methods in TensorFlow Privacy (Andrew et al., 2019) and
TensorFlow Federated (Ingerman & Ostrowski, 2019).4

4. Related Work

Federated Learning Under FL, a set of clients (e.g., mo-
bile devices or institutions) collaboratively train a model
under the orchestration of a central server, while keeping
training data decentralized (McMahan et al., 2017; Bonawitz
et al., 2019a). It embodies the principles of focused data
collection and minimization, and can mitigate many of the
systemic privacy risks and costs resulting from traditional,
centralized machine learning and data science approaches.
FL performs many rounds of interaction between the server
and subsets of online clients; for example, each round may
consist of computing and aggregating the gradients of the
loss for a given set of model weights, which are then up-
dated using the aggregated gradients for the next round.
This allows us to focus on the simple task of computing the
sum of vectors (model updates) held by the clients. We refer
the reader to Kairouz et al. (2019) for a survey of recent

4Code: https://github.com/google-research/
federated/tree/master/distributed_dp.
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advances and open problems in FL.

While the above features can offer significant practical pri-
vacy improvements over centralizing training data, FL offers
no formal guarantee of privacy and has to be composed with
other privacy technologies to offer strong (worst-case) pri-
vacy guarantees. The primary goal of this paper is to show
how two such technologies, namely secure aggregation and
differential privacy, can be carefully combined with FL to
offer strong and quantifiable privacy guarantees.

Secure Aggregation SecAgg is a lightweight instance of
cryptographic secure multi-party computation (MPC) that
enables clients to submit vector inputs, such that the server
learns just an aggregate function of the clients’ vectors, typi-
cally the sum. In most contexts of FL, single-server SecAgg
is achieved via additive masking over a finite group (Bell
et al., 2020; Bonawitz et al., 2016). To be precise, clients
add randomly sampled zero-sum mask vectors by working
in the space of integers modulo m and sampling the co-
ordinates of the mask uniformly from Z,,. This process
guarantees that each client’s masked update is indistinguish-
able from random values. However, when all the masked
updates are summed modulo m by the server, the masks can-
cel out and the server obtains the exact sum. Observe that in
practice, the model updates computed by the clients are real
valued vectors whereas SecAgg requires the input vectors
to be from Z,,, (i.e., integers modulo m). This discrepancy
is typically bridged by clipping the values to a fixed range,
say [—r, ], which is then translated and scaled to [07 %] ,
and then uniformly quantizing the values in this range to
integers in {0,1,---, [™=L1]}, where n is the number of
clients. This ensures that, up to clipping and quantization,
the server computes the exact sum without overflowing (i.e.,
the sum is in [0, m — 1], which is unaffected by the modular
arithmetic) (Bonawitz et al., 2019b). In our work, we pro-
vide a novel strategy for transforming R-valued vectors into
Z.,-valued ones.

Distributed DP While SecAgg prevents the server from
inspecting individual client updates, the server is still able
to learn the sum of the updates, which itself may leak poten-
tially sensitive information (Melis et al., 2019; Carlini et al.,
2019; Song & Shmatikov, 2019a; Dwork et al., 2015; Song
& Shmatikov, 2019b; Nasr et al., 2021; Shokri et al., 2017).
To address this issue, differential privacy (DP) (Dwork et al.,
2006b), and in particular, DP-SGD can be employed (Song
et al., 2013; Bassily et al., 2014; Abadi et al., 2016; Tramer
& Boneh, 2020). DP is a rigorous measure of informa-
tion disclosure about individuals participating in computa-
tions over centralized or distributed datasets. Over the last
decade, an extensive set of techniques has been developed
for differentially private data analysis, particularly under
the assumption of a centralized setting, where the raw data
is collected by a trusted service provider prior to applying

perturbations necessary to achieve privacy. This setting is
commonly referred to as the central DP setting. More re-
cently, there has been a great interest in the local model of
DP (Kasiviswanathan et al., 2011; Evfimievski et al., 2004;
Warner, 1965) where the data is perturbed on the client side
before it is collected by a service provider.

Local DP avoids the need for a fully trusted aggregator.
However, it is now well-established that local DP usually
leads to a steep hit in accuracy (Kasiviswanathan et al.,
2011; Duchi et al., 2013; Kairouz et al., 2016). In order to
recover some of the utility of central DP, without having
to rely on a fully trusted central server, an emerging set of
models of DP, often referred to as distributed DP, can be
used. Under distributed DP, clients employ a cryptographic
protocol (e.g., SecAgg) to simulate some of the benefits
of a trusted central party. Clients first compute minimal
application-specific reports, perturb these slightly, and then
execute the aggregation protocol. The untrusted server then
only has access to the aggregated reports, with the aggre-
gated perturbations. The noise added by individual clients is
typically insufficient for a meaningful local DP guarantee on
its own. However, after aggregation, the aggregated noise is
sufficient for a meaningful DP guarantee, under the security
assumptions necessary for the cryptographic protocol.

FL with SecAgg and Distributed DP  Despite the recent
surge of interest in distributed DP, much of the work in this
space focuses on the shuffled model of DP where a trusted
third party (or a trusted execution environment) shuffles the
noisy client updates before forwarding them to the server
(Erlingsson et al., 2019; Bittau et al., 2017; Cheu et al.,
2019). For more information on the shuffled model of DP,
we refer the reader to Ghazi et al. (2020b; 2021; 2020c;a);
Ishai et al. (2006); Balle et al. (2019; 2020); Balcer & Cheu
(2020); Balcer et al. (2021); Girgis et al. (2020).

The combination of SecAgg and distributed DP in the con-
text of communication-efficient FL is far less studied. For
instance, the majority of existing works ignore the finite pre-
cision and modular summation arithmetic associated with
secure aggregation (Goryczka et al., 2013; Truex et al., 2019;
Valovich & Alda, 2017). This is especially problematic at
low SecAgg bit-widths (e.g., in practical FL settings where
communication efficiency is critical).

The closest work to ours is cpSGD (Agarwal et al., 2018),
which also serves as an inspiration for much of our work.
cpSGD uses a distributed version of the binomial mecha-
nism (Dwork et al., 2006a) to achieve distributed DP. When
properly scaled, the binomial mechanism can (asymptoti-
cally) match the continuous Gaussian mechanism. How-
ever, there are several important differences between our
work and cpSGD. First, the binomial mechanism does not
achieve Rényi or concentrated DP (Mironov, 2017; Bun &
Steinke, 2016) and hence we cannot combine it with state-
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of-the-art composition and subsampling results, which is a
significant barrier if we wish to build a larger FL system.
The binomial mechanism is analyzed via approximate DP;
in other words, the privacy loss for the binomial mecha-
nism can be infinite with a non-zero probability. We avoid
this issue by basing our privacy guarantee on the discrete
Gaussian mechanism (Canonne et al., 2020), which also
matches the performance of the continuous Gaussian and
yields clean concentrated DP guarantees that are suitable for
sharp composition and subsampling analysis. cpSGD also
does not consider the impact of modular arithmetic, which
makes it harder to combine with secure aggregation.

Previous attempts at achieving DP using a distributed ver-
sion of the discrete Gaussian mechanism have either in-
accurately glossed over the fact that the sum of discrete
Gaussians is not a discrete Gaussian, or assumed that all
clients secretly share a seed that is used to generate the same
discrete Gaussian instance, which is problematic because a
single honest-but-curious client can fully break the privacy
guarantees (Wang et al., 2021). We provide a careful pri-
vacy analysis for sums of discrete Gaussians. Our privacy
guarantees degrade gracefully as a function of the fraction
of malicious (or dropped out) clients.

5. Distributed Discrete Gaussian

We will use the discrete Gaussian (Canonne et al., 2020) as
the basis of our privacy guarantee.

Definition 7 (Discrete Gaussian). The discrete Gaussian
with scale parameter o > 0 and location parameter u € Z
is a probability distribution supported on the integers 7.
denoted by Nz (11, 0?) and defined by

exp( (926 u)2>

yGZ exp (

Ve € Z P [X=uz
X<Nz(p,02)

)

The discrete Gaussian has many of the desirable properties
of the continuous Gaussian (Canonne et al., 2020), including
the fact that it can be used to provide differential privacy.

Theorem 8 (Privacy of the Discrete Gaussian). Let o > 0
and p, i’ € Z. Then, for all « > 1,
(n—p')?

Do (Nz(u, o) Na(p',0%)) < - 252
where D,, (P||Q) is the Rényi divergence of order c.

(7

Unlike the continuous Gaussian, the sum/convolution of two
independent discrete Gaussians is not a discrete Gaussian.
However, we show that, for reasonable parameter settings,
it is very close to one. The following result is a simpler
version of Theorem 4.6 of Genise et al. (2020).

Theorem 9 (Convolution of two Discrete Gaussians). Let
0,7 > 3. Let X < Nz(0,0%) and Y < Nz(0,7%) be

independent. Let Z = X +Y. Let W + Nz(0,0% + 72).

Then
P[Z = 7]
D Z||\W) = 1 —_
e (ZIW) = sup o (=)
< 5.2/,

The bound of the theorem is surprisingly strong; if o2 =

2 = 3, then the bound is < 10~'2, which should suffice
for most applications. Furthermore, closeness in max diver-
gence is the strongest measure of closeness that we could
hope for (rather than, say, total variation distance).

Theorem 9 can easily be extended to sums of more than
two discrete Gaussians by the triangle inequality and to
the multivariate setting by composition. Combining with
Theorem 8§ yields our privacy result:
Proposition 10 (Privacy for Sums of Multidimensional Dis-
crete Gaussians). Let o > % Let X j < Nz(0, 02) inde-
pendently for each i and j. Let X; = (X, 1, -+ ,Xi4) €
7% Let Z, NrX, € 74 Let v = 10 -
2711 e 2T Ap algorithm M that adds Z,, to a
query with £y, sensitivity /A, sansﬁes Le2 concentrated dif-

ferential privacy for
2
\/ n%‘z + 1rd,

£ = min \/n02 + 2 o ST+ 7—2d7 . (8)

Finally, we state a utility bound for the discrete Gaussian.

Lemma 11 (Utility of the Discrete Gaussian). Let X <+
Nz(0,02). Then E[X] = 0 and Var [X] = E [X?] < 02
Forallt e R E [etX] < et’e?/?,

5.1. Applying Distributed Discrete Gaussian

Proposition 10 provides the basis of our distributed pri-
vacy guarantee — each user device adds a small amount of
discrete Gaussian noise to their data so that the sum is pro-
tected. However, in order to apply this result, we must first
discretize the data and, in order to use secure aggregation,
we must ensure that the modular arithmetic does not intro-
duce too much error. We now briefly describe how these
steps and the analysis work. For details, formal statements,
and proofs, see the supplementary material.

(Conditional) Randomized Rounding Algorithm 1
rounds 2/ € R? to #; € Z?. Each coordinate is ran-
domly and independently rounded up or down so that
E [Z;] = «!/. This has many desirable properties; in particu-
lar, it is unbiased. However, the norm can increase: We hav2e
(712 + V)

The amount of noise we add to ensure differential privacy

must scale with the sensitivity of the sum, which is deter-
mined by the norm, so we want a sharp bound.

|7 — 2}l < 1 and, hence, |3 <
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On average, the norm increases less than this: E [||Z; /3] <
|[27(|3 + 4. Furthermore, we can show subgaussian high
probability bounds using standard concentration of measure
techniques. In order to exploit this, Algorithm 1 performs
conditional randomized rounding. That is, if the norm of
T; is too large, it simply re-runs the randomized rounding
procedure. This introduces a small amount of bias, but
allows us to keep the privacy noise to a minimum.

In contrast, cpSGD (Agarwal et al., 2018) performs un-
conditional randomized rounding and the sensitivity (i.e.,
the norm of the discretized vector) is only bounded with
high probability. In their analysis, this failure probability is
added to the ¢ of approximate (¢, 0)-differential privacy.

To control the norm, we also preprocess: The first step in
Algorithm 1, 2} = %min {1, m} - x4, clips the norm

of the input vector z; € R? if its norm exceeds c and then
scales it by 1/; thus ||z}||2 < ¢/7. (The final step of Algo-
rithm 2 undoes this scaling.) Scaling the input up by 1/~
is equivalent to rounding to a finer grid vZ¢, which corre-
spondingly reduces the error introduced by the conditional
randomized rounding. However, smaller - also increases
the error introduced by the modular arithmetic, which we
consider next. Thus we must carefully choose the parameter
~ to minimize the sum of these two sources of error.

Modular Clipping The server receives z = Zzl Z
mod m, where z; is the sum of the discretized data vec-
tor Z; and the discrete Gaussian noise y;. The modular
arithmetic here is an undesirable side effect of secure ag-
gregation with limited precision. Note that the modular
arithmetic does not compromise privacy, as it can simply be
treated as a postprocessing. If one of the coordinates of the
data plus noise falls outside [—m /2, m /2], then there will
be modular “wrap around” to bring it back inside this range.
This can introduce substantial error and, hence, we wish to
prevent this case from arising. That is, we wish to ensure
that |37 #; + ys]| , < m/2 with high probability.

The bad case for modular clipping is when #; ~ 7/ is con-
centrated on one coordinate. As in previous work (Suresh
etal., 2017), Algorithm 1 avoids this with the pre-processing
x = HqDg¢x); (which Algorithm 2 inverts at the end). Here
D¢ is a random diagonal sign matrix and H, represents
the Walsh-Hadamard transform.> The salient properties of
H, are that (i) it is unitary — i.e., HdTHd = I, (ii) it has
small entries —i.e., Hy € [—1/v/d,1/+/d]**¢, and (iii) the
matrix-vector multiplication Hy D, x} can be computed with
O(dlog d) operations.

SWe assume d is a power of 2, as the Walsh-Hadamard trans-
form is otherwise not defined. We can always pad the input vectors
with zeros to ensure this. We discuss ways to reduce the need for
padding in the supplementary material.

To understand why this unitary operation controls the in-
finity norm, consider the case where 1’; is concentrated on
one coordinate. Then, up to a sign and scaling, «/ is just a
column of H;, which has small entries, as required. In this
case, we don’t even need the random diagonal sign matrix
D¢ . In the more general case, the random signs ensure that
each entry of 2/ is subgaussian. Namely,

VicRYjeld E [et(x;’)]} < PlIeilI3/2d < 17 /29d
The distortion from the conditional randomized rounding
is also subgaussian — E [et'(ii*x;')j <(1=p)L.et’/8-
by Hoeffding’s lemma; the 1 — 5 comes from the fact that
conditional randomized rounding conditions on an event
with probability > 1 — 5. The discrete Gaussian noise is

also subgaussian (Lemma 11) and, since these subgaussian
bounds are independent, for all j € [d] and all ¢ € R,

E |:et.(a~:i+yi)j:| < (1 7 B)71 . 6t2c2/272d+t2/8+t202/2'\/2'

Summing over the n independent clients and using a union
bound gives, for all ¢ € R,

E [t =

2

x} <2d-(1 _/3)*71.6"‘52(272(1*%*%),

By Markov’s inequality, for an appropriate ¢ > 0, we have

" B ot 2
P Zi?i + i
K3
2d —m?2~2

. i . 10
S(176)” eXp(n‘(gfj+2'yQ+802)> (10)

Thus, if m > O (}Y\/n (% +72+02) - (6n+logd)>,

then the modular clipping is unlikely to cause any error. This
is, roughly, the analysis underlying Theorem 6’s guarantee.

>

<
- etm/2

Oo] (€))

m
2

o0

6. Experiments

We empirically evaluate the distributed discrete Gaussian
mechanism (DDGauss) on two tasks: distributed mean es-
timation (DME) and federated learning (FL). Our goal is
to demonstrate that the utility of DDGauss matches that of
the continuous Gaussian mechanism under the same privacy
guarantees when given sufficient communication budget.
For both tasks, the top-level parameters include the number
of participating clients n, the £5 norm bound for the client
vectors ¢, the dimension d, the privacy budget €, and the bit-
width B which determines the modulo field size m = 25.
For FL, we also consider the number of rounds 7" and the
total number of clients N from which we randomly sample
n clients in each round. We fix the conditional rounding
bias to 8 = e~ /2 unless otherwise stated.

To select the granularity parameter 7, we carefully bal-
ance the errors from randomized rounding and modular
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n=75  d=250, k=2 n=1000, d=250, k=2 n=20000, d=2000, k=4
100 —— DDGauss (B=8) | —— DDGauss (B=12) —— DDGauss (B =14)
DDGauss (B=10) —— DDGauss (B=14) —— DDGauss (B=16)
—— DDGauss (B=12) —— DDGauss (B=16) ——— DDGauss (B=18)
m —— DDGauss (B=16) m 10-3 —— DDGauss (B=18) | m DDGauss (B =20)
0 . Gaussian n —— Gaussian 0 19-6L Gaussian
= 107 = =
L0-2 (General) 107* F (General) (Optimistic)
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Privacy € (6 =107) Privacy € (6=1075) Privacy € (6 =107°)

Figure 1. Distributed mean estimation with the distributed discrete Gaussian. n: number of clients. d: vector dimension. k: number of

stddevs of 37" #; + y; to bound. B: per-coordinate bit-width. General/Optimistic: assumes ||>_7 || , < cnor < cy/n for choosing .

clipping. From the earlier sections, we know that each en- Overflow Next Word Prediction (SO-NWP, Authors (2019)).
try of Y. &; + y; is subgaussian with known constants. ~ We defer additional results and full details on datasets, mod-
Thus, for a fixed B, we can choose ~ to ensure that the els, and setup to the supplementary material.

modular clipping range includes k standard deviations
of > Z; + y;. Specifically, the heuristic is to select 7
such that 2k6 is bounded within the field size 27 where
6% = ®n?/d + (v*/4+ 0?) - n. Here, k captures the
trade-off between the errors from quantization and modular
clipping: a small k leads to a small  and thus less error
from rounding but more error from modular clipping; a large
k means modular clipping happens rarely but at a cost of
more rounding error. See the supplementary material for
additional results and full details on experimental setup.

Datasets EMNIST is an image dataset with hand-written
digits/letters over 62 classes grouped into /N = 3400 clients
by their writer. Stack Overflow is a text dataset based
on questions/answers from stackoverflow.com with sen-
tences grouped by the N = 342477 users. These datasets
differ from those commonly used in related work (e.g.
MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky
et al., 2009)) in that they are substantially larger and involve
user-level (instead of example-level) DP with natural client
heterogeneity and label/size imbalance. Obtaining a small €
on EMNIST is also harder due to the relatively large sam-
pling rate ¢ = n/N needed for stable convergence under
In this experiment, n clients each hold a d-dimensional ~ noising. See also Reddi et al. (2020) for more details.

vector z; uniformly randomly sampled from the ¢5 sphere Models

6.1. Distributed Mean Estimation

’ 4 For EMNIST, we train a small convolutional net
with radius 61: 110' We compute the.grounq truth mean similar to the model defined in Reddi et al. (2020) but
vector T = ZAi x; as well as the differentially private \ih model size d slightly under 220 parameters to reduce
mean estimates = across different mechanisms and com- padding from the Walsh-Hadamard transform. For SO-

munication/privacy budgets. We use the analytic Gaus- NWP, we use the architecture from Reddi et al. (2020).
sian mechanism (Balle & Wang, 2018) as the strong base-

line. Figure 1 shows the mean MSE ||z — f”% /d with Setup For both tasks, we train with federated averaging
95% confidence interval over 10 random dataset initializa- ~ With server momentum of 0.9 (McMabhan et al., 2017; Hsu
tions. The first two plots assume a general norm bound et al., 2019). In each round, we uniformly sample n = 100
HZ? g[;l||2 < ¢n when choosing ~ (generally applicable clients without replacement following Andrew et al. (2019)
to FL applications), while the third plot assumes an opti- and train 1 epoch over clients’ local datasets. Each client’s
mistic bound ||Z? z; H2 < cy/n as x;’s are sampled uni- model updates are weighted uniformly (instead of by their

formly randomly on the ¢ sphere. Results indicate that nqmber of samples) to maintain privacy. Clients are sampled
DDGauss achieves a good communication-utility trade-off ~ With replacement across rounds. For EMNIST and SO-NWP

and matches the Gaussian with sufficient bit-widths. respectively, we set the number of rounds 7' to 1500 and
1600, c to 0.03 and 0.3, client learning rate 7. to 0.032 and
6.2. Federated Learning 0.5, and client batch size to 20 and 16. Server LR 7 is set

o to 1 for EMNIST and selected from a small grid {0.3, 1} for
We evaluate on two realistic FL tasks: Federated EM-  §O-NWP. Tuning is limited to ¢ (to tradeoff between the bias
NIST (Cohen et al., 2017, Caldas et al., 2018) and Stack from Chpplng and the noise from privacy) and Ns (to match

SThe kinks on the low bit-width curves are due to the Ten- the selected c). The privacy guarantees € we report rely on

sorFlow implementation of the discrete Gaussian sampler taking privacy ampliﬁcation via sampling (Kasiviswanathan .et a'l.,
integer noise scales; to preserve privacy, noise scales are rounded ~ 2011; Bassily et al., 2014; Abadi et al., 2016), which is

up as [o/7] in all experiments. necessary to obtain reasonable privacy-accuracy tradeoffs
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n=100, d=2%°, k=3

n=100, d=2%, k=3

n=100, d=2%, k=4
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EMNIST, User-level Privacy ¢

SO-NWP, User-level Privacy ¢

SO-NWP, User-level Privacy ¢

Figure 2. Test accuracies on EMNIST (averaged over last 100 rounds) and SO-NWP. § = 1/N for EMNIST and 10~ for SO-NWP.

in differentially private deep learning. This assumes that the
identities of the users sampled in every round are hidden
from the adversary. This does not hold for the entity initiat-
ing connection with the clients (typically the server running
the FL protocol) but is applicable to participating clients
and the analysts that have requested the model. We adopt
the tight amplification bound from Mironov et al. (2019) for
Gaussian and the generic upper bound from Zhu & Wang
(2019) for DDGauss (we do not explore a precise analysis
in this work), which could lead to more noise being added
for DDGauss to achieve the same privacy as Gaussian.

Results Figure 2 shows the test accuracies on EMNIST
and SO-NWP respectively. Overall, with more communica-
tion and privacy budget, DDGauss achieves a better utility
both relative to Gaussian and in absolute performance, and
it can match Gaussian as long as B is sufficient. Note also
the error trade-off between modular clipping and quantiza-
tion: on SO-NWP, k£ = 3 allows B = 12 to match higher
bit-widths when noise is small, but it introduces a slight
accuracy gap to Gaussian; setting & = 4 allows DDGauss to
close the gap, but it leads to worse performance at B = 12.

Figure 3 scales up to n = 1000 clients on SO-NWP (similar
to production settings described in Hard et al. (2018); Ra-
maswamy et al. (2019)) and shows the validation accuracies
during training across different noise multipliers.” We set
c=1landns; = 1forz =~ 0.3 and z = 0.5 and n; = 3 other-
wise. z = 0.07 gives a target test accuracy of around 25.2%
while other noise levels give € of 10 and 234 respectively.
Results indicate that DDGauss can match the continuous
Gaussian in large-scale, production-like settings.

7. Concluding Remarks

We have presented an complete end-to-end protocol for fed-
erated learning with distributed DP and secure aggregation.
Our solution relies on efficiently flattening and discretizing
the client model updates before adding discrete Gaussian

72 = & /c where G is the equivalent central noise stddev (/no
for DDGauss). The values of z are aligned on privacy budgets and
thus z is in fact slightly larger for DDGauss than Gaussian due to

the effects of rounding, generic amplification, etc.

0.24} _
> ]
(&)
£o0.221 M.—l-.""
=]

Q |

&) 4

5 0201 7 =%~ Gaussian (2~0.07) -

._g /_4 =~ Gaussian (z=0.3)

= 0.18¢ f Gaussian (z=0.5) -

2 /‘ —-@— DDGauss (2= 0.07)
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Figure 3. Validation accuracies on SO-NWP (averaged every 100
rounds) with n = 1000 and B = 18. z is the noise multiplier.

noise and applying secure aggregation. A significant advan-
tage of this approach is that it allows an untrusted server
to perform complex learning tasks on decentralized and
privacy-sensitive data while achieving the accuracy of a
trusted server. Our theoretical guarantees highlight the com-
plex tension between communication, privacy, and accuracy.
Our experimental results demonstrate that our solution is
essentially able to match the accuracy of central differential
privacy with 16 or fewer bits of precision per value.

Several questions remain to be addressed, including (a) tight-
ening the generic RDP amplification via sampling results or
conducting a precise analysis of the subsampled distributed
discrete Gaussian mechanism, (b) exploring the use of a
discrete Fourier transform or other methods instead of the
Walsh-Hadamard transform to avoid having to pad by (up
to) d — 1 zeros, (c) developing private self-tuning algorithms
that learn how to optimally set the parameters of the al-
gorithm on the fly, and (d) proving a lower bound on m
that either confirms that the distributed discrete Gaussian’s

m>0 (n + \/¥ + \f) is order optimal or suggests

the existence of a better mechanism.

8. Acknowledgments

We thank Naman Agarwal and Kallista Bonawitz for helpful
discussions and comments on drafts of this paper.



The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation

References

Abadi, M., Chu, A., Goodfellow, 1., McMahan, H. B.,
Mironov, 1., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pp. 308-318, 2016.

Agarwal, N., Suresh, A. T,, Yu, F. X. X, Kumar, S., and
McMahan, B. cpSGD: Communication-efficient and
differentially-private distributed sgd. In Advances in
Neural Information Processing Systems, pp. 7564-7575,
2018.

Andrew, G., Thakkar, O., McMahan, H. B., and Ra-
maswamy, S. Differentially private learning with adaptive
clipping. arXiv preprint arXiv:1905.03871, 2019.

Asoodeh, S., Liao, J., Calmon, F. P., Kosut, O., and Sankar,
L. A better bound gives a hundred rounds: Enhanced
privacy guarantees via f-divergences. In 2020 IEEE In-
ternational Symposium on Information Theory (ISIT), pp.
920-925, 2020. doi: 10.1109/1S1T44484.2020.9174015.

Authors, T. T. F. Tensorflow federated stack overflow dataset.
2019. URL https://www.tensorflow.org/
federated/api_docs/python/tff/
simulation/datasets/stackoverflow/
load_data.

Balcer, V. and Cheu, A. Separating local & shuffled dif-
ferential privacy via histograms. In ITC, pp. 1:1-1:14,
2020.

Balcer, V., Cheu, A., Joseph, M., and Mao, J. Connecting
robust shuffle privacy and pan-privacy. In Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 2384-2403. SIAM, 2021.

Balle, B. and Wang, Y.-X. Improving the gaussian mecha-
nism for differential privacy: Analytical calibration and
optimal denoising. In International Conference on Ma-
chine Learning, pp. 394-403. PMLR, 2018.

Balle, B., Bell, J., Gascoén, A., and Nissim, K. The privacy
blanket of the shuffle model. In CRYPTO, pp. 638-667,
2019.

Balle, B., Bell, J., Gascon, A., and Nissim, K. Private sum-
mation in the multi-message shuffle model. pp. 657-676,
2020. doi: 10.1145/3372297.3417242. URL https:
//doi.org/10.1145/3372297.3417242.

Bassily, R., Smith, A., and Thakurta, A. Private empirical
risk minimization: Efficient algorithms and tight error
bounds. In 2014 IEEE 55th Annual Symposium on Foun-
dations of Computer Science, pp. 464—473. IEEE, 2014.

Bell, J., Bonawitz, K. A., Gascén, A., Lepoint, T,
and Raykova, M. Secure single-server aggrega-
tion with (poly)logarithmic overhead. Cryptology
ePrint Archive, Report 2020/704, 2020. https://
eprint.iacr.org/2020/704.

Bittau, A., Erlingsson, fj., Maniatis, P., Mironov, 1., Raghu-
nathan, A., Lie, D., Rudominer, M., Kode, U., Tinnes, J.,
and Seefeld, B. Prochlo: Strong privacy for analytics in
the crowd. In Proceedings of the Symposium on Operat-
ing Systems Principles (SOSP), pp. 441-459, 2017. URL
https://arxiv.org/abs/1710.00901.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMabhan, H. B., Patel, S., Ramage, D., Segal, A., and
Seth, K. Practical secure aggregation for federated learn-
ing on user-held data. arXiv preprint arXiv:1611.04482,
2016.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Inger-
man, A., Ivanov, V., Kiddon, C. M., Kone¢ny, J., Maz-
zocchi, S., McMahan, B., Overveldt, T. V., Petrou, D.,
Ramage, D., and Roselander, J. Towards federated learn-
ing at scale: System design. In SysML 2019, 2019a. URL
https://arxiv.org/abs/1902.01046.

Bonawitz, K., Salehi, F., Kone¢ny, J., McMahan, B.,
and Gruteser, M. Federated learning with autotuned
communication-efficient secure aggregation. In 2019

53rd Asilomar Conference on Signals, Systems, and Com-
puters, pp. 1222—-1226. IEEE, 2019b.

Bonawitz, K. A., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 1175-1191, 2017.

Bun, M. and Steinke, T. Concentrated differential pri-
vacy: Simplifications, extensions, and lower bounds.
In Theory of Cryptography Conference, pp. 635-658.
Springer, 2016. URL https://arxiv.org/abs/
1605.02065.

Caldas, S., Duddu, S. M. K., Wu, P, Li, T., Kone¢ny, J.,
McMahan, H. B., Smith, V., and Talwalkar, A. Leaf:
A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Canonne, C., Kamath, G., and Steinke, T. The discrete
gaussian for differential privacy. In NeurIPS, 2020. URL
https://arxiv.org/abs/2004.00010.

Carlini, N., Liu, C., Erlingsson, U., Kos, J., and Song, D.
The secret sharer: Evaluating and testing unintended
memorization in neural networks. In 28th {USENIX}


https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://doi.org/10.1145/3372297.3417242
https://doi.org/10.1145/3372297.3417242
https://eprint.iacr.org/2020/704
https://eprint.iacr.org/2020/704
https://arxiv.org/abs/1710.00901
https://arxiv.org/abs/1902.01046
https://arxiv.org/abs/1605.02065
https://arxiv.org/abs/1605.02065
https://arxiv.org/abs/2004.00010

The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation

Security Symposium ({USENIX} Security 19), pp. 267—
284, 2019.

Cheu, A., Smith, A., Ullman, J., Zeber, D., and Zhilyaeyv,
M. Distributed differential privacy via shuffling. In An-
nual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pp. 375-403.
Springer, 2019.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. Em-
nist: Extending mnist to handwritten letters. In 2017 Inter-
national Joint Conference on Neural Networks (IJCNN),
pp- 2921-2926. IEEE, 2017.

Duchi, J. C., Jordan, M. 1., and Wainwright, M. J. Local
privacy and statistical minimax rates. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science,
pp. 429-438. IEEE, 2013.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, 1., and
Naor, M. Our data, ourselves: Privacy via distributed
noise generation. In Annual International Conference
on the Theory and Applications of Cryptographic Tech-
niques, pp. 486-503. Springer, 2006a.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cali-
brating noise to sensitivity in private data analysis. In The-
ory of cryptography conference, pp. 265-284. Springer,
2006b.

Dwork, C., Smith, A., Steinke, T., Ullman, J., and Vadhan,
S. Robust traceability from trace amounts. In 2015 IEEE
56th Annual Symposium on Foundations of Computer
Science, pp. 650-669. IEEE, 2015.

Erlingsson, U., Feldman, V., Mironov, 1., Raghunathan, A.,
Talwar, K., and Thakurta, A. Amplification by shuffling:
From local to central differential privacy via anonymity.
In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 2468-2479. SIAM,
2019.

Evfimievski, A., Srikant, R., Agrawal, R., and Gehrke, J.
Privacy preserving mining of association rules. Informa-
tion Systems, 29(4):343-364, 2004.

Genise, N., Micciancio, D., Peikert, C., and Walter, M. Im-
proved discrete gaussian and subgaussian analysis for lat-
tice cryptography. In IACR International Conference on
Public-Key Cryptography, pp. 623-651. Springer, 2020.

Ghazi, B., Golowich, N., Kumar, R., Manurangsi, P., Pagh,
R., and Velingker, A. Pure differentially private summa-
tion from anonymous messages. In /st Conference on
Information-Theoretic Cryptography (ITC 2020). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 2020a.

Ghazi, B., Kumar, R., Manurangsi, P., and Pagh, R. Private
counting from anonymous messages: Near-optimal accu-
racy with vanishing communication overhead. In ICML,
pp- 3505-3514, 2020b.

Ghazi, B., Manurangsi, P., Pagh, R., and Velingker, A. Pri-
vate aggregation from fewer anonymous messages. In
Eurocrypt, 2020c.

Ghazi, B., Golowich, N., Kumar, R., Pagh, R., and Vel-
ingker, A. On the power of multiple anonymous messages.
In Eurocrypt, 2021. To appear.

Girgis, A. M., Data, D., Diggavi, S., Kairouz, P., and Suresh,
A. T. Shuffled model of federated learning: Privacy,
communication and accuracy trade-offs. arXiv preprint
arXiv:2008.07180, 2020.

Goryczka, S., Xiong, L., and Sunderam, V. Secure multi-
party aggregation with differential privacy: A compara-
tive study. In Proceedings of the Joint EDBT/ICDT 2013
Workshops, pp. 155-163, 2013.

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays,
F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage,
D. Federated learning for mobile keyboard prediction.
arXiv:1811.03604, 2018.

Hsu, T.-M. H., Qi, H., and Brown, M. Measuring the effects
of non-identical data distribution for federated visual clas-
sification. arXiv preprint arXiv:1909.06335, 2019.

Ingerman, A. and Ostrowski, K. Introducing
tensorflow federated. 2019. URL https:
//medium.com/tensorflow/introducing-
tensorflow-federated-a4147aa20041.

Ishai, Y., Kushilevitz, E., Ostrovsky, R., and Sahai, A. Cryp-
tography from anonymity. In FOCS, pp. 239-248, 2006.

Kairouz, P., Bonawitz, K., and Ramage, D. Discrete distribu-
tion estimation under local privacy. In International Con-
ference on Machine Learning, pp. 2436-2444. PMLR,
2016.

Kairouz, P., McMabhan, et al. Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977,
2019.

Kasiviswanathan, S. P.,, Lee, H. K., Nissim, K., Raskhod-
nikova, S., and Smith, A. What can we learn privately?
SIAM J. Comput., 40(3):793-826, June 2011. ISSN
0097-5397. doi: 10.1137/090756090. URL http:
//dx.doi.org/10.1137/090756090.

Krizhevsky, A. et al. Learning multiple layers of features
from tiny images. 2009.


https://medium.com/tensorflow/introducing-tensorflow-federated-a4147aa20041
https://medium.com/tensorflow/introducing-tensorflow-federated-a4147aa20041
https://medium.com/tensorflow/introducing-tensorflow-federated-a4147aa20041
http://dx.doi.org/10.1137/090756090
http://dx.doi.org/10.1137/090756090

The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation

LeCun, Y., Cortes, C., and Burges, C. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273-1282, 2017.

McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L.
Learning differentially private recurrent language models.
In ICLR, 2018.

Melis, L., Song, C., De Cristofaro, E., and Shmatikov, V.
Exploiting unintended feature leakage in collaborative
learning. In 2019 IEEE Symposium on Security and Pri-
vacy (SP), pp. 691-706. IEEE, 2019.

Mironov, I. R’enyi differential privacy. In 2017 IEEE 30th
Computer Security Foundations Symposium (CSF), pp.
263-275. 1IEEE, 2017.

Mironov, 1., Talwar, K., and Zhang, L. R\’enyi differen-
tial privacy of the sampled gaussian mechanism. arXiv
preprint arXiv:1908.10530, 2019.

Nasr, M., Song, S., Thakurta, A., Papernot, N., and Car-
lini, N. Adversary instantiation: Lower bounds for
differentially private machine learning. arXiv preprint
arXiv:2101.04535, 2021.

Ramaswamy, S., Mathews, R., Rao, K., and Beaufays, F.
Federated learning for emoji prediction in a mobile key-
board. arXiv:1906.04329, 2019.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konecny, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. arXiv preprint arXiv:2003.00295,
2020.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE Symposium on Security and Privacy
(SP), pp. 3—18. IEEE, 2017.

Song, C. and Shmatikov, V. Auditing data provenance
in text-generation models. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 196-206, 2019a.

Song, C. and Shmatikov, V. Overlearning reveals sensitive
attributes. arXiv preprint arXiv:1905.11742, 2019b.

Song, S., Chaudhuri, K., and Sarwate, A. D. Stochastic
gradient descent with differentially private updates. In
2013 IEEE Global Conference on Signal and Information
Processing, pp. 245-248. IEEE, 2013.

Suresh, A. T., Felix, X. Y., Kumar, S., and McMahan, H. B.
Distributed mean estimation with limited communication.
In International Conference on Machine Learning, pp.
3329-3337. PMLR, 2017.

Tramer, F. and Boneh, D. Differentially private learning
needs better features (or much more data). arXiv preprint
arXiv:2011.11660, 2020.

Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig,
H., Zhang, R., and Zhou, Y. A hybrid approach to privacy-
preserving federated learning. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security, pp.
1-11, 2019.

Valovich, F. and Alda, F. Computational differential privacy
from lattice-based cryptography. In International Con-
ference on Number-Theoretic Methods in Cryptology, pp.
121-141. Springer, 2017.

Wang, L., Jia, R., and Song, D. D2p-fed: Differentially
private federated learning with efficient communication.
arXiv preprint arXiv:2006.13039, 2021.

Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P. Sub-
sampled renyi differential privacy and analytical mo-
ments accountant. In Chaudhuri, K. and Sugiyama,
M. (eds.), Proceedings of Machine Learning Research,
volume 89 of Proceedings of Machine Learning Re-
search, pp. 1226-1235. PMLR, 2019. URL http://
proceedings.mlr.press/v89/wangl9b.html.

Warner, S. L. Randomized response: A survey technique for
eliminating evasive answer bias. Journal of the American
Statistical Association, 60(309):63—-69, 1965.

Zhu, Y. and Wang, Y.-X. Poission subsampled rényi differ-
ential privacy. In International Conference on Machine
Learning, pp. 7634-7642. PMLR, 2019.


http://proceedings.mlr.press/v89/wang19b.html
http://proceedings.mlr.press/v89/wang19b.html

