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Abstract

We consider training models with differential
privacy (DP) using mini-batch gradients. The
existing state-of-the-art, Differentially Private
Stochastic Gradient Descent (DP-SGD), requires
privacy amplification by sampling or shuffling
to obtain the best privacy/accuracy/computation
trade-offs. Unfortunately, the precise require-
ments on exact sampling and shuffling can be
hard to obtain in important practical scenar-
ios, particularly federated learning (FL). We de-
sign and analyze a DP variant of Follow-The-
Regularized-Leader (DP-FTRL) that compares
favorably (both theoretically and empirically) to
amplified DP-SGD, while allowing for much
more flexible data access patterns. DP-FTRL
does not use any form of privacy amplification.

1. Introduction
Differentially private stochastic gradient descent (DP-
SGD) (Song et al., 2013; Bassily et al., 2014; Abadi et al.,
2016) has become state-of-the-art in training private (deep)
learning models (Abadi et al., 2016; McMahan et al., 2018;
Erlingsson et al., 2020; Papernot et al., 2020b; Facebook,
2020; Tramèr & Boneh, 2021). It operates by running
stochastic gradient descent (Robbins & Monro, 1951) on
noisy mini-batch gradients1, with the noise calibrated such
that it ensures differential privacy. The privacy analy-
sis heavily uses tools like privacy amplification by sam-
pling/shuffling (Kasiviswanathan et al., 2008; Bassily et al.,
2014; Abadi et al., 2016; Wang et al., 2019; Zhu & Wang,
2019; Erlingsson et al., 2019; Feldman et al., 2020b) to ob-
tain the best privacy/utility trade-offs. Such amplification
tools require that each mini-batch is a perfectly (uniformly)
random subset of the training data. This assumption can
make practical deployment prohibitively hard, especially
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1Gradient computed on a subset of the training examples, also
called a mini-batch.

in the context of distributed settings like federated learn-
ing (FL) where one has little control on which subset of
the training data one sees at any time (Kairouz et al., 2019;
Balle et al., 2020).

We propose a new online learning (Hazan, 2019; Shalev-
Shwartz et al., 2011) based DP algorithm, differentially
private follow-the-regularized-leader (DP-FTRL), that has
privacy/utility/computation trade-offs that are competitive
with DP-SGD, and does not rely on privacy amplification.
DP-FTRL significantly outperforms un-amplified DP-SGD
at all privacy levels. In the higher-accuracy / lower-privacy
regime, DP-FTRL outperforms even amplified DP-SGD.
We emphasize that in the context of ML applications, using
a DP mechanism even with a large ε is practically much
better for privacy than using a non-DP mechanism (Song
& Shmatikov, 2019; Jagielski et al., 2020; Thakkar et al.,
2020; Nasr et al., 2021).

Privacy amplification and its perils: At a high-level, DP-
SGD can be thought of as an iterative noisy state update
procedure for T steps operating over mini-batches of the
training data. For a time step t ∈ [T ] and an arbitrary mini-
batch of size k from a data set D of size n, let σt be the
standard deviation of the noise needed in the tth update to
satisfy εt-differential privacy. If the mini-batch is chosen
u.a.r. and i.i.d. from D at each time step2 t, then privacy
amplification by sampling (Kasiviswanathan et al., 2008;
Bassily et al., 2014; Abadi et al., 2016; Wang et al., 2019)
allows one to scale down the noise to σt · (k/n), while
still ensuring εt-differential privacy.3 Such amplification
is crucial for DP-SGD to obtain state-of-the-art models in
practice (Abadi et al., 2016; Papernot et al., 2020b; Tramèr
& Boneh, 2021) when k � n.

There are two major bottlenecks for such deployments: i)
For large data sets, achieving uniform sampling/shuffling
of the mini-batches in every round (or epoch) can be pro-

2One can also create a mini-batch with Poisson sam-
pling (Abadi et al., 2016; McMahan et al., 2017b; Zhu & Wang,
2019), except the batch size is now a random variable. For brevity,
we focus on the fixed batch setting.

3A similar argument holds for amplification by shuffling (Er-
lingsson et al., 2019; Feldman et al., 2020b), when the data are
uniformly shuffled at the beginning of every epoch.We do not con-
sider privacy amplification by iteration (Feldman et al., 2018) in
this paper, as it only applies to smooth convex functions.
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hibitively expensive in terms of computation and/or engi-
neering complexity, ii) In distributed settings like feder-
ated learning (FL) (McMahan et al., 2017a), uniform sam-
pling/shuffling may be infeasible to achieve because of
widely varying available population at each time step. Our
work answers the following question in affirmative: Can
we design an algorithm that does not rely on privacy am-
plification, and hence allows data to be accessed in an ar-
bitrary order, while providing privacy/utility/computation
trade-offs competitive with DP-SGD?

DP-FTRL and amplification-free model training: DP-
FTRL can be viewed as a differentially private variant of
the follow-the-regularized-leader (FTRL) algorithm (Xiao,
2010; McMahan, 2011; Duchi et al., 2011). The main idea
in DP-FTRL is to use the tree aggregation trick (Dwork
et al., 2010; Chan et al., 2011) to add noise to the sum of
mini-batch gradients, in order to ensure privacy. Crucially,
it deviates from DP-SGD by adding correlated noise across
time steps, as opposed to independent noise. This particular
aspect of DP-FTRL allows it to get strong privacy/utility
trade-off without relying on privacy amplification.

Federated Learning (FL) and DP-FTRL: There has been
prior work (Balle et al., 2020; Ramaswamy et al., 2020)
detailing challenges for obtaining strong privacy guaran-
tees that incorporate limited availability of participating
clients in real-world applications of Federated Learning.
Although there exist techniques like the Random Check-Ins
(Balle et al., 2020) that obtain privacy amplification for FL
settings, implementing such techniques may still require
clients to keep track of the number of training rounds being
completed at the server during their period(s) of availability
to be able to uniformly randomize their participation. On
the other hand, since the privacy guarantees of DP-FTRL
(Algorithm 1) do not depend on any type of privacy ampli-
fication, it does not require any local/central randomness
apart from noise addition to the model updates.

Appendices A and Section 2 describe additional related
work and background, respectively.

1.1. Problem Formulation

Suppose we have a stream of data samples D =
[d1, . . . , dn] ∈ Dn, where D is the domain of data sam-
ples, and a loss function ` : C × D → R, where C ∈ Rp
is the space of all models. We consider the following two
problem settings.

Regret Minimization: At every time step t ∈ [n], while
observing samples [d1, . . . , dt−1], the algorithm A outputs
a model θt ∈ C which is used to predict on example dt. The
performance ofA is measured in terms of regret against an

arbitrary post-hoc comparator θ∗ ∈ C:

RD(A; θ∗) =
1

n

n∑
t=1

`(θt; dt)−
1

n

n∑
t=1

`(θ∗; dt). (1)

We consider the algorithm A low-regret if RD(A; θ∗) =
o(1). To ensure a low-regret algorithm, we will assume
‖∇`(θ; d)‖2 ≤ L for any data sample d, and any models
θ ∈ C. We consider both adversarial regret, where the data
sample dt are drawn adversarially based on the past output
{θ1, . . . , θt} (Hazan, 2019), and stochastic regret (Hazan &
Kale, 2014), where the data samples in D are drawn i.i.d.
from some fixed distribution τ .

Excess Risk Minimization: In this setting, we look at the
problem of minimizing the excess population risk. Assum-
ing the data set D is sampled i.i.d. from a distribution τ ,
and the algorithm A outputs θ̂ ∈ C, we want to minimize

PopRisk(A) = Ed∼τ `(θ̂; d)−min
θ∈C

Ed∼τ `(θ; d). (2)

All the algorithms in this paper guarantee differential pri-
vacy (Dwork et al., 2006b;a) and Rényi differential pri-
vacy (Mironov, 2017) (See Section 2 for details). The def-
inition of a single data record can be one training example
(a.k.a., example level privacy), or a group of training exam-
ples from one individual (a.k.a., user level privacy). Except
for the empirical evaluations in the FL setting, we focus on
example level privacy.

Definition 1.1 (Differential privacy (Dwork et al.,
2006b;a)). A randomized algorithm A is (ε, δ)-
differentially private if for any neighboring data sets
D, D′ that differ in one record, and for any event S in the
output range of A, we have

Pr[A(D) ∈ S] ≤ eε ·Pr[A(D′) ∈ S] + δ,

where the probability is over the randomness of A.

1.2. Our Contributions

Our primary contribution in this paper is a private on-
line learning algorithm: differentially private follow-the-
regularized leader (DP-FTRL) (Algorithm 1). We pro-
vide tighter privacy/utility trade-offs based on DP-FTRL
(see Table 1 for a summary), and show how it can be
easily adapted to train (federated) deep learning mod-
els, with comparable, and sometimes even better pri-
vacy/utility/computation trade-offs as DP-SGD. We sum-
marize these contributions below.

DP-FTRL algorithm: We provide DP-FTRL, a differen-
tially private variant of the Follow-the-regularized-leader
(FTRL) algorithm (McMahan & Streeter, 2010; McMahan,
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Table 1. Best known regret guarantees. Here, the high probability means w.p. at least 1 − β over the the randomness of the algorithm.
The expected regret is an expectation over the random choice of the data set and the randomness of the algorithm.

Class Adversarial Regret Stochastic Regret

Expected High probability Expected High probability

Least-squares
(and linear)

O
((

1√
n

+
√
p

εn

)
·

polylog
(
1
δ , n
))

(Agarwal & Singh, 2017)

Same as
general
convex

O
((

1√
n

+
√
p

εn

)
·

polylog
(
1
δ , n
))

(Agarwal & Singh, 2017)

O
((

1√
n

+
√
p

εn

)
·

polylog
(

1
δ , n,

1
β

))
[Theorem 4.3]

General convex Constrained and unconstrained: O
((

1√
n

+ p1/4√
εn

)
· polylog

(
1
δ , n,

1
β

))
[Theorem 4.1]

2011; Shalev-Shwartz et al., 2011; Hazan, 2019) for on-
line convex optimization (OCO). We also provide a variant
called the momentum DP-FTRL that has superior perfor-
mance in practice. (Agarwal & Singh, 2017) provided a
instantiation of DP-FTRL specific to linear losses. (Smith
& Thakurta, 2013) provided an algorithm similar to DP-
FTRL, where instead of just linearizing the loss, a quadratic
approximation to the regularized loss was used.

Regret guarantees: In the adversarial OCO setting (Sec-
tion 4.1), compared to prior work (Jain et al., 2012; Smith
& Thakurta, 2013; Agarwal & Singh, 2017), DP-FTRL has
the following major advantages. First, it improves the best
known regret guarantee in (Smith & Thakurta, 2013) by a

factor of
√
ε (from Õ

(√ √
p

ε2n

)
to Õ

(√√
p

εn

)
, when ε ≤

1). This improvement is significant because it distinguishes
centrally private OCO from locally private (Warner, 1965;
Evfimievski et al., 2003; Kasiviswanathan et al., 2008)
OCO4. Second, unlike (Smith & Thakurta, 2013), DP-
FTRL (and its analysis) extends to the unconstrained set-
ting C = Rp. Also, in the case of composite losses (Duchi
et al., 2010; Xiao, 2010; McMahan, 2011; 2017), i.e.,
where the loss functions are of the form `(θ; dt) + rt(θ)
with r : C → R+ (e.g., ‖ · ‖1) being a convex regularizer,
DP-FTRL has a regret guarantee for the losses `(θ; dt)’s of

form: (regret bound without the rt’s) + 1
n

n∑
t=1

rt(θ
∗).

In the stochastic OCO setting (Section 4.2), we show that
for least-square losses (where `(θ; dt) = (yt − 〈xt, θ〉)2
with dt = (xt, yt)) and linear losses (when `(θ; dt) =
〈dt, θ〉), a variant of DP-FTRL achieves regret of the form
O
((

1√
n

+
√
p

εn

)
· polylog

(
1
δ , n,

1
β

))
with probability 1−

β over the randomness of algorithm. Our guarantees are
strictly high-probability guarantees, i.e., the regret only de-
pends on polylog(1/β).

4Although not stated formally in the literature, a simple ar-
gument shows that locally private SGD (Duchi et al., 2013) can
achieve the same regret as in (Smith & Thakurta, 2013).

Population risk guarantees: In Section 4.3, using the
standard online-to-batch conversion (Cesa-Bianchi et al.,
2002; Shalev-Shwartz et al., 2009), we obtain a population
risk guarantee for DP-FTRL. For general Lipschitz convex
losses, the population risk for DP-FTRL in Theorem C.5
is same as that in (Bassily et al., 2014, Appendix F) (up to
logarithmic factors), but the advantage of DP-FTRL is that
it is a single pass algorithm (over the data set D), as op-
posed to requiring n passes over the data. Thus, we provide
the best known population risk guarantee for a single pass
algorithm that does not rely on convexity for privacy. While
the results in (Bassily et al., 2019a; 2020; Feldman et al.,
2020a) have a tighter (and optimal) excess population risk
of Θ̃(1/

√
n +
√
p/(εn)), they either require convexity to

ensure privacy for a single pass algorithm, or need to make
n-passes over the data. For restricted classes like linear
and least-squared losses, DP-FTRL can achieve the optimal
population risk via the tighter stochastic regret guarantee.
Whether DP-FTRL can achieve the optimal excess popu-
lation risk in the general convex setting is left as an open
problem.

Empirical contributions: In Section 5, we study some
trade-offs between privacy/utility/computation for DP-
FTRL and DP-SGD. We conduct our experiments on four
benchmark data sets: MNIST, CIFAR-10, EMNIST, and
StackOverflow. We start by fixing the computation avail-
able to the techniques, and observing privacy/utility trade-
offs. We find that DP-FTRL achieves better utility com-
pared to DP-SGD for moderate to large ε. In scenarios
where amplification cannot be ensured (e.g., due to prac-
tical/implementation constraints), DP-FTRL provides sub-
stantially better performance as compared to unamplified
DP-SGD. Moreover, we show that with a modest increase
in the computation cost, DP-FTRL, without any need for
amplification, can match the performance of amplified DP-
SGD. Next, we focus on privacy/computation trade-offs for
both the techniques when a utility target is desired. We
show that DP-FTRL can provide better trade-offs compared
to DP-SGD for various accuracy targets, which can result in



Practical and Private (Deep) Learning without Sampling or Shuffling

significant savings in privacy/computation cost as the size
of data sets becomes limited.

To shed light on the empirical efficacy of DP-FTRL (in
comparison) to DP-SGD, in Section 3.2, we show that a
variant of DP-SGD (with correlated noise) can be viewed
as an equivalent formulation of DP-FTRL in the uncon-
strained setting ( C = Rp). In the case of traditional DP-
SGD (Bassily et al., 2014), the scale of the noise added
per-step t ∈ [n] is asymptotically same as that of DP-FTRL
once t = ω(n).

2. Background

Differential Privacy: Throughout the paper, we use the
notion of approximate differential privacy (Dwork et al.,
2006b;a) and Rényi differential privacy (RDP) (Abadi
et al., 2016; Mironov, 2017). For meaningful privacy guar-
antees, ε is assumed to be a small constant, and δ � 1/|D|.
Definition 2.1 (RDP (Abadi et al., 2016; Mironov, 2017)).
A randomized algorithm A is (α, ε)-RDP if for any pair of
neighboring datasets D, D′ that differ in one record, we
have

1

α− 1
log E

o∼A(D)

(
Pr(A(D) = o)

Pr(A(D′) = o)

)α
≤ ε

Abadi et al. (2016) and Mironov (2017) have shown
that an (α, ε)-RDP algorithm guarantees

(
ε+ log(1/δ)

α−1 , δ
)

-
differential privacy. Follow-up works (Asoodeh et al.,
2020; Canonne et al., 2020) provide tighter conversions.
We used the conversion in (Canonne et al., 2020) in our
experiments.

To answer a query f(D) with `2 sensitivity L, i.e.,
maxneighboringD,D′ ‖f(D) − f(D′)‖2 ≤ L, the Gaus-
sian mechanism (Dwork et al., 2006b) returns f(D) +

N (0, L2σ2), which guarantees
(√

1.25 log(2/δ)/σ, δ
)

-
differential privacy (Dwork et al., 2006b; Dwork & Roth,
2014) and (α, α/2σ2)-RDP (Mironov, 2017).

DP-SGD and Privacy Amplification: Differentially-
private stochastic gradient descent (DP-SGD) is a common
algorithm to solve private optimization problems. The ba-
sic idea is to enforce a bounded `2 norm of individual gra-
dient, and add Gaussian noise to the gradients used in SGD
updates. Specifically, consider a dataset D = {d1, . . . , dn}
and an objective function of the form

∑n
i=1 `(θ; di) for

some loss function `. DP-SGD uses an update rule

θt+1 ← θt −
η

|B|

(∑
i∈B

clip (∇θ`(θt; di), L) +N (0, L2σ2)

)
where clip (v, L) projects v to the `2-ball of radius L, and
B ⊆ [n] represents a mini-batch of data.

Using the analysis of the Gaussian mechanism, we know
that such an update step guarantees (α, α/2σ2)-RDP with
respect to the mini-batch B. By parallel composition,
running one epoch with disjoint mini-batches guarantees
(α, α/2σ2)-RDP. On the other hand, previous works (Bass-
ily et al., 2014; Abadi et al., 2016; Wang et al., 2019)
has shown that if B is chosen uniformally at random
from [n], or if we use poisson sampling to collect a
batch of samples B, then one step would guarantee(
α,O

(
α/2σ2 · (|B|/n)2

))
-RDP.

Tree-based Aggregation: Consider the problem of pri-
vately releasing prefix sum of a data stream, i.e., given a
streamD = (d1, d2, . . . , dT ) such that each di ∈ Rp has `2
norm bounded byL, we aim to release st =

∑t
i=1 di for all

t ∈ [1, T ] under differential privacy. Dwork et al. (2010);
Chan et al. (2011) propose a tree-based aggregation algo-
rithm to solve this problem. Consider a complete binary
tree T with leaf nodes as d1 to dT , and internal nodes as
the sum of all leaf nodes in its subtree. To release the exact
prefix sum st, we only need to sum upO (log(t)) nodes. To
guarantee differential privacy for releasing the tree T , since
any di appears in log(T ) nodes in T , using composition,
we can add Gaussian noise of standard deviation of the or-
der L

√
log(T ) log(1/δ)/ε to guarantee (ε, δ)-differential

privacy.

Smith & Thakurta (2013) used this aggregation algorithm
to build a nearly optimal algorithms for private online
learning. One important aspect of Smith & Thakurta (2013)
result is that it showed the privacy guarantee holds even for
adaptively chosen sequences {dt}Tt=1, which is crucial for
model training tasks.

3. Private Follow-The-Regularized-Leader
In this section, we provide the formal description of the
DP-FTRL algorithm (Algorithm 1) and its privacy analy-
sis. We then show that a variant of differentially private
stochastic gradient descent (DP-SGD) (Song et al., 2013;
Bassily et al., 2014) can be viewed of as an instantiation of
DP-FTRL under appropriate choice of learning rate.

Critically, our privacy guarantees for DP-FTRL hold when
the data D are processed in an arbitrary (even adversarily
chosen) order, and do not depend on the convexity of the
loss functions. The utility guarantees, i.e., the regret and
the excess risk guarantees require convex losses (i.e., `(·; ·)
is convex in the first parameter). In the presentation be-
low, we assume differentiable losses for brevity. The argu-
ments extend to non-differentiable convex losses via stan-
dard use of sub-differentials (Shalev-Shwartz et al., 2011;
Hazan, 2019).
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3.1. Algorithm Description

The main idea of DP-FTRL is based on three observations:
i) For online convex optimization, to bound the regret, for
a given loss function `(θ; dt) (i.e., the loss at time step t),
it suffices for the algorithm to operate on a linearization of
the loss at θt (the model output at time step t): ˜̀(θ; dt) =
〈∇θ`(θt; dt), θ − θt〉, ii) Under appropriate choice of λ,

optimizing for θt+1 = arg min
θ∈C

t∑
i=1

˜̀(θ; dt) + λ
2 ‖θ‖

2
2 over

θ ∈ C gives a good model at step t + 1, and iii) For all

t ∈ [n], one can privately keep track of
t∑
i=1

˜̀(θ; dt) us-

ing the now standard tree aggregation protocol (Dwork
et al., 2010; Chan et al., 2011). While a variant of this idea
was used in (Smith & Thakurta, 2013) under the name of
follow-the-approximate-leader, one key difference is that
they used a quadratic approximation of the regularized loss,
i.e., `(θ; dt) + λ

t ‖θ‖
2
2. This formulation results in a more

complicated algorithm, sub-optimal regret analysis, and
failure to maintain structural properties (like sparsity) intro-
duced by composite losses (Duchi et al., 2010; Xiao, 2010;
McMahan, 2011; 2017).

Algorithm 1 AFTRL: Differentially Private Follow-The-
Regularized-Leader (DP-FTRL)

Require: Data set: D = [d1, · · · , dn] arriving in a stream,
in an arbitrary order; constraint set: C, noise scale: σ,
regularization parameter: λ, clipping norm: L.

1: θ1 ← arg min
θ∈C

λ
2 ‖θ‖

2
2. Output θ1.

2: T ← InitializeTree (n, σ2, L).
3: for t ∈ [n] do
4: Let∇t ← clip (∇θ`(θt; dt), L), where clip (v, L) =

v ·min
{

L
‖v‖2

, 1
}

.
5: T ← AddToTree (T , t,∇t).

6: st ← GetSum (T , t), i.e., estimate
t∑
i=1

∇i via tree-

aggregation protocol.
7: θt+1 ← arg min

θ∈C
〈st, θ〉+ λ

2 ‖θ‖
2
2. Output θt+1.

8: end for

Later in the paper, we provide two variants of DP-FTRL
(momentum DP-FTRL, and DP-FTRL for least square
losses) which will have superior privacy/utility trade-offs
for certain problem settings.

DP-FTRL is formally described in Algorithm 1. There
are three functions, InitializeTree , AddToTree ,
GetSum , that correspond to the tree-aggregation algo-
rithm. At a high-level, InitializeTree initializes the
tree data structure T , AddToTree allows adding a new
gradient ∇t to T , and GetSum returns the prefix sum

t∑
i=1

∇t privately. In our experiments (Section 5), we use

the iterative estimator from (Honaker, 2015) to obtain the
optimal estimate of the prefix sums in GetSum . Please re-
fer to Appendix B.1 for the formal algorithm descriptions.

It can be shown that the error introduced in DP-FTRL due

to privacy is dominated by the error in estimating
t∑
i=1

∇t
at each t ∈ [n]. It follows from (Smith & Thakurta,
2013) that for a sequence of (adaptively chosen) vectors
{∇t}nt=1, if we perform AddToTree (T , t,∇t) for each
t ∈ [n], then we can write GetSum (T , t) =

∑t
i=1∇i+bt

where bt is normally distributed with mean zero, and ∀t ∈
[n], ‖bt‖2 ≤ Lσ

√
pdlg(n)e ln(n/β) w.p. at least 1− β.

Momentum Variant: We find that using a momentum
term γ ∈ [0, 1] with Line 7 in Algorithm 1 replaced by

vt ← γ ·vt−1 +st, θt+1 ← arg min
θ∈C
〈vt, θ〉+

λ

2
‖θ− θ0‖22

gives superior empirical privacy/utility trade-off compared
to the original algorithm when training non-convex mod-
els. Throughout the paper, we refer to this variant as mo-
mentum DP-FTRL, or DP-FTRLM. Although we do not
provide formal regret guarantee for this variant, we conjec-
ture that the superior empirical performance is due to the
following reason. The noise added by the tree aggregation
algorithm is always bounded by O(

√
p ln(1/δ) · ln(n)/ε).

However, the noise at time step t and t + 1 can differ by a
factor of O(

√
lnn). This creates sudden jumps in between

the output models comparing to DP-SGD. The momentum
can smooth out these jumps.

Privacy analysis: In Theorem 3.1, we provide the privacy
guarantee for Algorithm 1 and its momentum variant (with
proof in Appendix B.2). In Appendix D, we extend it to
multiple passes over the data set D, and batch sizes > 1.

Theorem 3.1 (Privacy guarantee). If ‖∇θ`(θ; d)‖2 ≤ L
for all d ∈ D and θ ∈ C, then Algorithm 1 (and its mo-
mentum variant) guarantees

(
α, αdlg(n)e2σ2

)
-Rényi differen-

tial privacy, where n is the number of samples inD. Setting

σ =

√
2dlg(n)e ln(1/δ)

ε , one can guarantee (ε, δ)-differential
privacy, for ε ≤ 2 ln(1/δ).

DP-FTRL’s memory footprint as compared to DP-SGD:
At any given iteration, the cost of computing the mini-batch
gradients is exactly the same for both DP-FTRL and DP-
SGD. The only difference between the memory usage of
DP-FTRL as compared to DP-SGD is that DP-FTRL needs
to keep track of worst-case (log2(t) + 2) past gradient in-
formation for iteration t. Note that these are precomputed
objects that can be stored in memory.
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3.2. Comparing Noise in DP-SGD and DP-FTRL

In this section, we use the equivalence of non-private SGD
and FTRL (McMahan, 2017) to establish equivalence be-
tween a variant of noisy-SGD and DP-FTRL, and hence
make DP-SGD and DP-FTRl comparable.

Let D = {d1, . . . , dn} be the data set of size n. Consider a
general noisy-SGD algorithm with update rule θt+1 ← θt−
η · (∇θ` (θt; dt) + at), where η is the learning rate and at
is some random noise. DP-SGD can be viewed as a special
case, where dt is sampled u.a.r. from D, and at is drawn
i.i.d. from N

(
0, Õ

(
L2

nε2

))
. If we expand the recursive

relation, we can see that the total amount of noise added

to the estimation of θt+1 is η
t∑
i=1

at = N
(

0, Õ
(
η2L2t
nε2

))
.

Define b0 = 0, and let bt be the noise added by the tree-
aggregation algorithm at time step t of Algorithm AFTRL.
We can show that DP-FTRL can be written in the same
form as in the above general noisy-SGD formula, where i)
the noise at = bt−bt−1, ii) the data samples dt’s are drawn
in sequence from D, and iii) the learning rate η is set to be
1
λ , where λ is the regularization parameter in Algorithm
AFTRL. In this variant of noisy SGD, the total noise added
to the model is bt = N

(
0, Õ

(
η2·L2

ε2

))
.

Under the same form of the update rule, we can roughly (as
the noise is not independent in the DP-FTRL case) compare
the two algorithms. When t = Ω(n), the noise of DP-SGD
with amplification matches that of DP-FTRL up to factor
of polylog (n). As a result, we expect (and as corrobo-
rated by the population risk guarantees and experiments)
sampled DP-SGD and DP-FTRL to perform similarly. (In
Appendix B.3 we provide a formal equivalence.)

4. Regret and Population Risk Guarantees
In this section we consider the setting when loss function `
is convex in its first parameter, and provide for DP-FTRL:
i) Adversarial regret guarantees for general convex losses,
ii) Tighter stochastic regret guarantees for least-squares
and linear losses, and iii) Population risk guarantees via
online-to-batch conversion. All our guarantees are high-
probability over the randomness of the algorithm, i.e., w.p.
at least 1− β, the error only depends on polylog(1/β).

4.1. Adversarial Regret for (Composite) Losses

The theorem here gives a regret guarantee for Algorithm 1
against a fully adaptive (Shalev-Shwartz et al., 2011) ad-
versary who chooses the loss function `(θ; dt) based on
[θ1, . . . , θt], but without knowing the internal randomness
of the algorithm. See Appendix C.1 for a more general ver-
sion of Theorem 4.1, and its proof.

Theorem 4.1 (Regret guarantee). Let θ be any model in

C, [θ1, . . . , θn] be the outputs of Algorithm AFTRL (Algo-
rithm 1), and let L be a bound on the `2-Lipschitz con-
stant of the loss functions. Setting λ optimally and plug-
ging in the noise scale σ from Theorem 3.1 to ensure (ε, δ)-
differential privacy, we have that for any θ∗ ∈ C, w.p. at
least 1− β over the randomness of AFTRL, the regret

RD(AFTRL; θ
∗) =

O

(
L ‖θ∗‖2 ·

(
1√
n
+

√
p1/2 ln2(1/δ) ln(1/β)

εn

))
.

Extension to composite losses: Composite losses (Duchi
et al., 2010; McMahan, 2011; 2017) refer to the setting
where in each round, the algorithm is provided with a
function ft(θ) = `(θ; dt) + rt(θ) with rt : C → R+

being a convex regularizer that does not depend on the
data sample dt. The `1-regularizer, rt(θ) = ‖θ‖1, is per-
haps the most important practical example, playing a criti-
cal role in high-dimensional statistics (e.g., in the LASSO
method) (Bhlmann & van de Geer, 2011), as well as for ap-
plications like click-through-rate (CTR) prediction where
very sparse models are needed for efficiency (McMahan
et al., 2013). In order to operate on composite losses, we
simply replace Line 7 of Algorithm AFTRL with

θt+1 ← arg min
θ∈C
〈st, θ〉+

t∑
i=1

ri(θ) +
λ

2
‖θ‖22,

which can be solved in closed form in many important
cases such as `1 regularization. We obtain Corollary 4.2,
analogous to (McMahan, 2017, Theorem 1) in the non-
private case. We do not require any assumption (e.g., Lip-
schitzness) on the regularizers beyond convexity since we
only linearize the losses in Algorithm AFTRL. It is worth
mentioning that (Smith & Thakurta, 2013) is fundamen-
tally incompatible with this type of guarantee.
Corollary 4.2. Let θ be any model in C, [θ1, . . . , θn] be
the outputs of Algorithm AFTRL (Algorithm 1), and L be
a bound on the `2-Lipschitz constant of the loss functions.
W.p. at least 1−β over the randomness of the algorithm, for
any θ∗ ∈ C, assuming 0 ∈ C, we have: RD(AFTRL; θ∗) ≤

Lσ
√
pdlgne ln(n/β) + L2

λ
+

λ

2n
‖θ∗‖22 +

1

n

n∑
t=1

rt(θ
∗).

4.2. Stochastic Regret for Least-squared Losses

In this setting, for each data sample di = (xi, yi) (with
xi ∈ Rp and yi ∈ R) in the data set D = {d1, . . . , dn},
the corresponding loss takes the least-squares form5:

5A similar argument as in Theorem 4.3 can be used in the
setting where the loss functions are linear, `(θ; d) = 〈θ, d〉 with
d ∈ Rp and ‖d‖2 ≤ L.
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`(θ; di) = (yi − 〈xi, θ〉)2. We also assume that each data
sample di is drawn i.i.d. from some fixed distribution τ .

A straightforward modification of DP-FTRL, AFTRL-LS
(Algorithm 2 in Appendix C.2), achieves the following.
Theorem 4.3 (Stochastic regret for least-squared losses).
Let D = {(x1, y1), . . . , (xn, yn)} ∈ Dn be a data set
drawn i.i.d. from τ , let L = max

x∈D
‖x‖2, and let max

y∼D
|y| ≤

1. Let θ∗ ∈ C, µ = max
θ∈C
‖θ‖2, and ρ = max{µ, µ2}.

Then AFTRL-LS provides (ε, δ)-differentially privacy while
outputting [θ1, . . . , θn] s.t. w.p. at least 1 − β for any
θ∗ ∈ C, ED [RD(AFTRL-LS; θ∗)] =

O

(
L2ρ2

(√
ln(n)

n
+

√
p ln5(n/β) · ln(1/δ)

εn

))
.

The arguments of (Agarwal & Singh, 2017) can be ex-
tended to show a similar regret guarantee in expectation
only, whereas ours is a high-probability guarantee.

4.3. Excess Risk via Online-to-Batch Conversion

Using the online-to-batch conversion (Cesa-Bianchi et al.,
2002; Shalev-Shwartz et al., 2009), from Theorem 4.1, we
can obtain a population risk guarantee

O

((√
ln(1/β)
n +

√
p1/2 ln2(1/δ) ln(1/β)

εn

))
, where β is

the failure probability. (See Appendix C.3 for a
formal statement.) For least squares and linear
losses, using the regret guarantee in Theorem 4.3 and
online-to-batch conversion, one can actually achieve
the optimal population risk (up to logarithic factors)

O

(√
ln(n) ln(1/β)

n +

√
p ln5(n/β)·ln(1/δ)

εn

)
.

5. Empirical Evaluation
We provide an empirical evaluation of DP-FTRL on four
benchmark data sets, and compare its performance with the
state-of-the-art DP-SGD on three axes: (1) Privacy, mea-
sured as an (ε, δ)-DP guarantee on the mechanism, (2) Util-
ity, measured as (expected) test set accuracy for the trained
model under the DP guarantee, and (3) Computation cost,
which we measure in terms of mini-batch size and number
of training iterations. The code is open sourced6.

First, we evaluate the privacy/utility trade-offs provided by
each technique at fixed computation costs. Second, we
evaluate the privacy/computation trade-offs each technique
can provide at fixed utility targets. A natural application

6https://github.com/google-research/
federated/tree/master/dp_ftrl for FL experi-
ments, and https://github.com/google-research/
DP-FTRL for centralized learning.

for this is distributed frameworks such as FL, where the pri-
vacy budget and a desired utility threshold can be fixed, and
the goal is to satisfy both constraints with the least compu-
tation. Computational cost is of critical importance in FL,
as it can get challenging to find available clients with in-
creasing mini-batch size and/or number of training rounds.

We show the following results: (1) DP-FTRL provides su-
perior privacy/utility trade-offs than unamplified DP-SGD,
(2) For a modest increase in computation cost, DP-FTRL
(that does not use any privacy amplification) can match the
privacy/utility trade-offs of amplified DP-SGD for all pri-
vacy regimes, and further (3) For regimes with large pri-
vacy budgets, DP-FTRL achieves higher accuracy than am-
plified DP-SGD even at the same computation cost, (4) For
realistic data set sizes, DP-FTRL can provide superior pri-
vacy/computation trade-offs compared to DP-SGD.

5.1. Experimental Setup

Datasets: We conduct our evaluation on three image clas-
sification tasks, MNIST (LeCun et al., 1998), CIFAR-
10 (Krizhevsky, 2009), EMNIST (ByMerge split) (Cohen
et al., 2017); and a next word prediction task on StackOver-
flow data set (Overflow, 2018). Since StackOverflow is nat-
urally keyed by users, we assume training in a federated
learning setting, i.e., using the Federated Averaging opti-
mizer for training over users in StackOverflow. The privacy
guarantee is thus user-level, in contrast to the example-level
privacy for the other three datasets (see Definition 1.1).

For all experiments with DP, we set the privacy parameter δ
to 10−5 on MNIST and CIFAR-10, and 10−6 on EMNIST
and StackOverflow, s.t. δ < n−1, where n is the number of
users in StackOverflow (or examples in the other data sets).

Model Architectures: For all the image classification
tasks, we use small convolutional neural networks as in
prior work (Papernot et al., 2020b). For StackOverflow,
we use the one-layer LSTM network described in (Reddi
et al., 2020). See Appendix E.1 for more details.

Optimizers: We consider DP-FTRL with mini-batch
model updates, and multiple epochs. We provide a privacy
analysis for both the extensions in Appendix D. We also
consider its momentum variant DP-FTRLM. We find that
DP-FTRLM with momentum 0.9 always outperforms DP-
FTRL. Similarly, for DP-SGD (Google, 2019), we consider
its momentum variant (DP-SGDM), and report the best-
performing variant in each task. See Appendix E.2 for a
comparison of the two optimizers for both techniques.

5.2. Privacy/Utility Trade-offs with Fixed Computation

In Figure 1, we show accuracy / privacy tradeoffs (by vary-
ing the noise multiplier) at fixed computation costs. Since

https://github.com/google-research/federated/tree/master/dp_ftrl
https://github.com/google-research/federated/tree/master/dp_ftrl
https://github.com/google-research/DP-FTRL
https://github.com/google-research/DP-FTRL
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Figure 1. Privacy/accuracy trade-offs for DP-SGD (private baseline), DP-SGD without amplification (label “DP-SGD (no-amp)”), and
DP-FTRLM on MNIST (mini-batch size 250), CIFAR-10 (mini-batch size 500), and EMNIST (mini-batch size 500). “4x” in the label
denotes four times computation cost (by increasing batch size four times). Results for “DP-SGD 4x” are deferred to Appendix F.

both DP-FTRL and DP-SGD require clipping gradients
from each sample and adding noise to the aggregated up-
date in each iteration, we consider the number of iterations
and the minibatch size as a proxy for computation cost. For
each experiment, we run five independent trials, and plot
the mean and standard deviation of the final test accuracy
at different privacy levels. We provide details of hyperpa-
rameter tuning for all the techniques in Appendix F.1.

DP-SGD is the state-of-the-art technique used for private
deep learning, and amplification by subsampling (or shuf-
fling) forms a crucial component in its privacy analysis.
Thus, we take amplified DP-SGD (or its momentum vari-
ant when performance is better) at a fixed computation cost
as our baseline. We fix the (samples in mini-batch, train-
ing iterations) to (250, 4800) for MNIST, (500, 10000) for
CIFAR-10, and (500, 69750) for EMNIST. Our goal is to
achieve equal or better tradeoffs while processing data in an
arbitrary order (i.e., without relying on any amplification).

DP-SGD without any privacy amplification (“DP-SGD
(no-amp)”) cannot achieve this: For all the data sets, the
accuracy with DP-SGD (no-amp) at the highest ε in Fig-
ure 1 is worse than the accuracy of the DP-SGD baseline
even at its lowest ε. Further, if we increase the computa-
tion by four times (increasing the mini-batch size by four
times), the privacy/utility trade-offs of “DP-SGD (no-amp)
4x” are still substantially worse than the private baseline.7

For DP-FTRLM at the same computation cost as our DP-
SGD baseline, as the privacy parameter ε increases, the rel-
ative performance of DP-FTRLM improves for each data
set, even outperforming the baseline for larger values of
ε. Further, if we increase the batch size by four times

7For completeness, we provide plots with the full perfor-
mance of DP-SGD (no-amp), DP-SGD (no-amp) 4x, and DP-
SGD 4x, in Appendix F.2.

for DP-FTRLM, its privacy-utility trade-off almost always
matches or outperforms the amplified DP-SGD baseline,
affirmatively answering this paper’s primary question. In
particular, for CIFAR-10 (Figure 1b), “DP-FTRLM 4x”
provides superior performance than the DP-SGD baseline
even for the lowest ε.

We observe similar results for StackOverflow with user-
level DP in Figure 2a. We fix the computation cost to 100
clients per round (also referred to as the report goal), and
1600 training rounds. DP-SGDM (or more precisely in this
case, DP-FedAvg with server momentum) is our baseline.
For DP-SGDM without privacy amplification (DP-SGDM
no-amp), the privacy/accuracy trade-off never matches that
of the DP-SGDM baseline, and gets significantly worse for
lower ε. With a 4x increase in report goal, DP-SGDM no-
amp nearly matches the privacy/utility trade-off of the DP-
SGD baseline, outperforming it for larger ε.

For DP-FTRLM, with the same computation cost as the
DP-SGDM baseline, it outperforms the baseline for the
larger ε, whereas for the four-times increased report goal,
it provides a strictly better privacy/utility trade-off. We
conclude DP-FTRL provides superior privacy/utility trade-
offs than unamplified DP-SGD, and for a modest increase
in computation cost, it can match the performance of DP-
SGD, without the need for privacy amplification.

5.3. Privacy/Computation Trade-offs with Fixed Utility

For a sufficiently large data set / population, better privacy
vs. accuracy trade-offs can essentially always be achieved
at the cost of increased computation. Thus, in this sec-
tion we slice the privacy/utility/computation space by fix-
ing utility (accuracy) targets, and evaluating how much
computation (report goal) is necessary to achieve differ-
ent ε for StackOverflow. Our non-private baseline achieves
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Figure 2. (a) Accuracy on StackOverflow under different privacy epsilon by varying noise multiplier and batch sizes. (b) Test accuracy
of DP-SGDM and DP-FTRLM with various noise multipliers for StackOverflow. (c)Relationship between user-level privacy ε (when
δ ≈ 1/population) and computation cost (report goal) for two fixed accuracy targets (see legend) on the StackOverflow data set.

an accuracy of 25.15%, and we fix 24.5% (2.6% relative
loss) and 23% (8.6% relative loss) as our accuracy targets.
Note that from the accuracy-privacy trade-offs presented in
Figure 2a, achieving even 23% for either DP-SGD or DP-
FTRL will result in a large ε for the considered report goals.

For each target, we tune hyperparameters (see Ap-
pendix G.2 for details) for both DP-SGDM and DP-
FTRLM at a fixed computation cost to obtain the maximum
noise scale for each technique while ensuring the trained
models meet the accuracy target. Specifically, we fix a re-
port goal of 100 clients per round for 1600 training rounds,
and tune DP-SGD and DP-FTRL for 15 noise multipliers,
ranging from (0, 0.3) for DP-SGD, and (0, 1.13) for DP-
FTRL. At this report goal, for noise multiplier 0.3, DP-
SGD provides 18.89% accuracy at ε ∼ 19, whereas for
noise multiplier 1.13 DP-FTRL provides 19.74% accuracy
at ε ∼ 19. We provide the results in Figure 2b.

For each target accuracy, we choose the largest noise
multiplier for each technique that results in the trained
model achieving the accuracy target. For accuracies (23%,
24.5%), we select noise multipliers (0.015, 0.007) for DP-
SGDM, and (0.387, 0.149) for DP-FTRLM, respectively.
This data allows us to evaluate the privacy/computation
trade-offs for both techniques, assuming the accuracy stays
constant as we scale up the noise and report goal together
(maintaining a constant signal-to-noise ratio while improv-
ing ε). This assumption was introduced and validated by
(McMahan et al., 2017b), which showed that keeping the
clipping norm bound, training rounds, and the scale of the
noise added to the model update constant, increasing the
report goal does not change the final model accuracy. In
Appendix G.1, we independently corroborate this effect for
both DP-SGD and DP-FTRL on StackOverflow.

We plot the results in Figure 2c. For both the accuracy
targets, DP-FTRLM achieves any privacy ε ∈ (0, 50)
at a lower computational cost than DP-SGDM. In Ap-
pendix G.3, we provide a similar plot for a hypothetically
larger population, where we see that DP-FTRLM provides
superior performance than DP-SGDM for most of the con-
sidered privacy regimes.

6. Conclusion
In this paper we introduce the DP-FTRL algorithm, which
we show to have the tightest known regret guarantees under
DP, and have the best known excess population risk guar-
antees for a single pass algorithm on non-smooth convex
losses. For linear and least-squared losses, we show DP-
FTRL actually achieves the optimal population risk. Fur-
thermore, we show on benchmark data sets that DP-FTRL,
which does not rely on any privacy amplification, can out-
perform amplified DP-SGD at large values of ε, and be
competitive to it for all ranges of ε for a modest increase in
computation cost (batch size). This work leaves two main
open questions: i) Can DP-FTRL achieve the optimal ex-
cess population risk for all convex losses in a single pass?,
and ii) Can one tighten the empirical gap between DP-SGD
and DP-FTRL at smaller values of ε, possibly via a better
estimator of the gradient sums from the tree data structure?
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