Projection techniques to update the truncated SVD of evolving matrices with applications

Supplementary Material

Proofs
Proof of Proposition 1

The scalar-vector pair (52, (")) satisfies the equation (AAY —G21,,,,,)u™ = 0. If we partition the i’th left singular vector
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where for the case m < n, we have o; = O forany j = m +1,...,n. In case 0, = 0, the Moore-Penrose pseudoinverse

(BBH —521,,)1 is considered instead.

Proof of Proposition 2

Since the left singular vectors of B span R™, we can write
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The proof concludes by noticing that the top m x 1 part of @(*) can be written as
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Proof of Proposition 3
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The proof follows by noticing that due to Cauchy’s interlacing theorem we have o7 1 < G2, i =
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Proof of Lemma 1
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where o; = 0 for any j > min(m,n). Let us now define the scalar v; ; = Ugix Then,
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Since A\ > 77 > o7, it follows that for any j > k we have |v;;| < 1. Therefore, the geometric series converges and
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This concludes the proof.

Proof of Proposition 4

First, notice that
(BB" —521,,)"" = UU (BBY = 621,,) ™" + (I — ULU ) (BBY — 621,,)~".
Therefore, we can write
(BB — 57 1,n) "' BE"W = Up(S} — 57 10) " Si(BV) "5 + (I — Uk U ) (BB — 6} 1,,) "' BET ).

The left singular vector () can be then expressed as
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The proof concludes by noticing that by Lemma 1 we have B(5?) = B(\) 3° [(62 — \)B(\)]”.

Proof of Proposition 5

The proof exploits the formula
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It follows
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Asymptotic complexity

The asymptotic complexity analysis of the method in (Zha & Simon, 1999) is as follows. We need O (n32 + nsk) FLOPs to
form (I, — V;, V') E¥ and compute its QR decomposition. The SVD of the matrix Z# AW requires O ((k + s)*) FLOPs.
Finally, the cost to form the approximation of matrices U  and Vk is equal to O (k2 (m+n)+ nsk) FLOPs.

The asymptotic complexity analysis for the “SV” variant of the method in (Vecharynski & Saad, 2014) is as follows. We
need O ((nnz(E) + nk)d1 + (n + s)63) FLOPs to approximate the r leading singular triplets of (I, — Vi V;#)E*, where
01 € Z* is greater than or equal to r (i.e., J; is the number of Lanczos bidiagonalization steps). The cost to form and
compute the SVD of the matrix ZH# AW is equal to (k + s)(k +7)? +nnz(E)k +rs where the first term stands for the actual
SVD and the rest of the terms stand for the formation of the matrix Z H AW . Finally, the cost to form the approximation of
matrices Uy, and V;, is equal to O (k*(m + n) + nrk) FLOPs.

The asymptotic complexity analysis of Algorithm 1 is as follows. First, notice that Algorithm 1 requires no effort to build
W. For the case where Z is set as in Proposition 3, termed as “Alg. 1 (a)”, we also need no FLOPs to build Z. The cost
to solve the projected problem by unrestarted Lanczos is then equal to O ((nnz(E) + nk)d; + (k + s)03) FLOPs, where
d2 € Z* is greater than or equal to k (i.e., 92 is the number of steps in unrestarted Lanczos). Finally, the cost to form the
approximation of matrices Uy and V% is equal to O (k:Qm + (nnz(A) + n)k) FLOPs. For the case where Z is set as in
Proposition 5, termed as “Alg. 1 (b)”, we need

x = O (nnz(A)d3 + mé3)

FLOPs to build X ,., where 3 € Z* is greater than or equal to k (i.e., J3 is either the number of Lanczos bidiagonalization
steps or the number of columns of matrix R in randomized SVD).

Table 6. Detailed asymptotic complexity of Algorithm I and the schemes in (Zha & Simon, 1999) and (Vecharynski & Saad, 2014). All §
variables are replaced by k.

Scheme Building Z Building W Solving the projected problem Other

(Zha & Simon, 1999) - ns® + nsk (k +s)? k*(m + n) + nsk
(Vecharynski & Saad, 2014) - (nnz(E) 4 nk)k + (n + s)k* (k+8)(k+7)? 4+ nnz(E)k +rs k*(m +n) + nrk
Alg. 1 (a) - - (nnz(E) + nk)k + (k + s)k? k*m + (nnz(A) + n)k
Alg. 1 (b) X - (nz(E) 4+ (n +r)k)k + (k +r 4+ s)k*  k*m + (nnz(A) +n)k

The above discussion is summarized in Table 6 where we list the asymptotic complexity of Algorithm 1 and the schemes in
(Zha & Simon, 1999) and (Vecharynski & Saad, 2014). The complexities of the latter two schemes were also verified by
adjusting the complexity analysis from (Vecharynski & Saad, 2014). To allow for a practical comparison, we replaced all §
variables with k since in practice these variables are equal to at most a small integer multiple of k.
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Consider now a comparison between Algorithm 1 (a) and the method in (Zha & Simon, 1999). For all practical purposes,
these two schemes return identical approximations to Aj. Nonetheless, Algorithm 1 (a) requires no effort to build 1.
Moreover, the cost to solve the projected problem is linear with respect to s and cubic with respect to k, instead of cubic
with respect to the sum s + k in (Zha & Simon, 1999). The only scenario where Algorithm 1 can be potentially more
expensive than (Zha & Simon, 1999) is when matrix A is exceptionally dense, and both k and s are very small. Similar
observations can be made for the relation between Algorithm 1 (b) and the methods in (Vecharynski & Saad, 2014), although
the comparison is more involved.

Eigenfaces

A brief description of the eigenfaces technique is as follows.

1. Load the training dataset consisting of n images, where each image is of size /m x y/m pixels.

2. Let A € R™*™ denote the matrix where each column denotes a vectorized image of size v/m X /m pixels. Moreover,
let A=A— ze,TL, where z € R™ denotes the column mean, and e,, € R" denotes the vector of all ones.

3. Form the covariance matrix M = AT A/(n — 1), and compute its k leading eigenpairs (\;, (), i = 1,..., k. The
AL+ .o+ A

———————— is above a chosen threshold
A+ A,

value of k is set as the smallest integer such that the explained variance
ecR. Let X = [z, ... 2®)]

4. Compute the projection of the training dataset F' = AX.

5. For any new test image b € R™, compute its projection b=X T(b - 2).

6. Classify the test image b by p-Nearest Neighbor classification between b and the rows of matrix F.

Our implementation of the eigenfaces technique replaces Step 3 as follows. Instead of computing the covariance matrix
M, we set k a-priori and compute X by instead computing the k leading singular triplets of A”". Note that the left singular
vectors of AT and the eigenvectors of AT A are the same up to sign. Instead of using a standard SVD solver, we compute
the rank-k truncated SVD of A”" using our updating scheme. This can be especially useful for very large data collections.



