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Abstract
Updating the rank-k truncated Singular Value De-
composition (SVD) of a matrix subject to the pe-
riodic addition of new rows (and/or columns) is
a major computational kernel in important real-
world applications such as latent semantic index-
ing and recommender systems. In this work we
propose a new algorithm to update the truncated
SVD of evolving matrices, i.e., matrices which
are periodically augmented with a new set of rows
(and/or columns). The proposed algorithm under-
takes a projection viewpoint and builds a pair of
subspaces which approximate the linear span of
the sought singular vectors of the evolving ma-
trix. We discuss and analyze two different choices
to form the projection subspace, with the second
approach being slower but leading to higher ac-
curacy. Experiments on matrices from different
applications suggest that the proposed algorithm
can lead to higher qualitative accuracy than previ-
ous state-of-the-art approaches, as well as more
accurate approximations of the truncated SVD.
Moreover, the new algorithm is generally faster
than other competitive approaches.

1. Introduction
This paper considers the problem of updating the rank-k
truncated SVD of a sparse matrix subject to additions of new
rows and/or columns. More specifically, letB ∈ Cm×n be a
matrix for which its rank-k (truncated) SVD Bk is available.
Our goal is to obtain an approximate rank-k SVD Ak of
matrix

A =

(
B
E

)
, or A =

(
B E

)
,
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whereE denotes the matrix of newly added rows or columns.
This process can be repeated several times, where at each
instance matrix A becomes matrix B in the next level. A
similar problem, not explored in this paper, is to approx-
imate the rank-k SVD of B after modifying its existing
entries, e.g., see (Zha & Simon, 1999).

Updating the SVD of evolving matrices is an important task
in several real-world applications. One such example is
Latent Semantic Indexing (LSI) in which the truncated SVD
of the current term-document matrix needs to be updated
as new terms/documents are added to the collection (Berry
et al., 1995; Deerwester et al., 1990; Zha & Simon, 1999;
Chen & Saad, 2009). Another example is the update of
latent-factor models of user-item rating matrices in top-N
recommendation (Cremonesi et al., 2010; Nikolakopoulos
et al., 2019; Sarwar et al., 2002). Additional applications
can be found in geostatistical screening (Horesh et al., 2015),
and dimensionality reduction (Chen & Saad, 2008).

The standard approach to update the truncated SVD is to
disregard any previously available information and apply
directly to matrix A an off-the-shelf, high-performance li-
brary (Baglama & Reichel, 2005; Hernandez et al., 2005;
Wu & Stathopoulos, 2015; Halko et al., 2011; Ubaru et al.,
2019). This approach might be feasible when the original
matrix is updated only once or twice, however becomes in-
creasingly impractical as multiple row/column updates take
place over time. Therefore, it becomes crucial to develop
algorithms which return a reasonable approximation of the
leading singular triplets while taking advantage of previ-
ous efforts. Such schemes have already been considered
extensively for the case of full SVD (Brand, 2003; Gu et al.,
1994; Moonen et al., 1992) and rank-k SVD (Berry et al.,
1995; Sarwar et al., 2002; Vecharynski & Saad, 2014; Zha
& Simon, 1999; Baker et al., 2012).

Contributions

1. We propose and analyze a projection scheme to update
the rank-k SVD of evolving matrices. Our scheme uses
a right singular projection subspace equal to Cn, and
only determines the left singular projection subspace.
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2. We propose and analyze two different options to set
the left singular projection subspace. In both cases, the
projected problem is solved in matrix-free fashion by
the Lanczos algorithm instead of dense SVD solver. A
complexity analysis is presented in the Supplementary
Material.

3. We present experiments performed on evolving ma-
trices originating from applications in LSI. These ex-
periments suggest that the proposed scheme can be
both faster and more accurate than state-of-the-art al-
gorithms. Applications in face recognition and the
Eigenfaces technique are also explored.

2. Background and notation
The (full) SVD of matrix B is denoted as B = UΣV H

where U ∈ Cm×m and V ∈ Cn×n are unitary matri-
ces whose jth column is equal to the left singular vec-
tor u(j) and right singular vector v(j), respectively. The
matrix Σ ∈ Rm×n has non-zero entries only along its
main diagonal, and these entries are equal to the singu-
lar values σ1 ≥ · · · ≥ σmin(m,n). Moreover, we define
the matrices Uj =

[
u(1), . . . , u(j)

]
, Vj =

[
v(1), . . . , v(j)

]
,

and Σj = diag (σ1, . . . , σj). The rank-k truncated SVD
of matrix B can then be written as Bk = UkΣkV

H
k =∑k

j=1 σju
(j)
(
v(j)
)H

. We follow the same notation for
matrix A with the exception that a circumflex is added
on top of each variable, i.e., Ak = ÛkΣ̂kV̂

H
k =∑k

j=1 σ̂j û
(j)
(
v̂(j)
)H

, with Ûj =
[
û(1), . . . , û(j)

]
, V̂j =[

v̂(1), . . . , v̂(j)
]
, and Σ̂j = diag (σ̂1, . . . , σ̂j).

The routines nr(K) and nnz(K) return the number of rows
and non-zero entries of matrix K, respectively. Throughout
this paper ‖ · ‖ will stand for the `2 norm when the input is
a vector, and the spectral norm when the input is a matrix.
Moreover, the term range(K) denotes the column space of
matrix K, and span(·) denotes the linear span of a set of
vectors. The identity matrix of size n will be denoted by In.

2.1. Related work.

The problem of updating the SVD of an evolving matrix has
been considered extensively in the context of LSI. Consider

first the case A =

(
B
E

)
, and let (I − VkV Hk )EH = QR

such that Q is orthonormal and R is upper trapezoidal. The
scheme in (Zha & Simon, 1999) writes(

B
E

)
≈
(
UkΣkV

H
k

E

)
=

(
Uk

Is

)(
Σk
EVk R

H

)(
Vk Q

)H
=

((
Uk

Is

)
F

)
Θ
((
Vk Q

)
G
)H

where the matrix product FΘGH denotes the compact SVD

of the matrix
(

Σk
EVk R

H

)
.

The above idea can be also applied to A =
(
B E

)
. Indeed,

if matricesQ andR are now determined as (I−UkUHk )E =
QR, we can approximate

(
B E

)
≈
(
UkΣkV

H
k E

)
=
(
Uk Q

)(Σk U
H
k E
R

)(
V Hk

Is

)
=
((
Uk Q

)
F
)

Θ

((
Vk

Is

)
G

)H

where the matrix product FΘG now denotes the compact

SVD of the matrix
(

Σk U
H
k E
R

)
.

When Bk coincides with the compact SVD of B, the above
schemes compute the exact rank-k SVD of A, and no ac-
cess to matrix B is required. Nonetheless, the application
of the method in (Zha & Simon, 1999) can be challenging.
For general updating problems, or problems where A does
not satisfy a “low-rank plus shift” structure (Zha & Zhang,
2000), replacingB byBk might not lead to a satisfactory ap-
proximation of Ak. Moreover, the memory/computational
cost associated with the computation of the QR and SVD de-
compositions in each one of the above two scenarios might
be prohibitive. The latter was recognized in (Vecharynski &
Saad, 2014) where it was proposed to adjust the method in
(Zha & Simon, 1999) by replacing matrices (I−VkV Hk )EH

and (I−UkUHk )E with a low-rank approximation computed
by applying the Golub-Kahan Lanczos bidiagonalization
procedure (Golub & Kahan, 1965). Similar ideas have been
suggested in (Yamazaki et al., 2017) and (Ubaru & Saad,
2019) where the Golub-Kahan Lanczos bidiagonalization
procedure was replaced by randomized SVD (Halko et al.,
2011; Ubaru et al., 2015) and graph coarsening (Ubaru &
Saad, 2019), respectively.

3. The projection viewpoint
The methods discussed in the previous section can be recog-
nized as instances of a Rayleigh-Ritz projection procedure
and can be summarized as follows (Vecharynski & Saad,
2014; Yamazaki et al., 2017):

1. Compute orthonormal matrices Z and W such that
range(Z) and range(WH) approximately capture
range(Ûk) and range(V̂ Hk ), respectively.

2. Compute [Θk, Fk, Gk] = svdk(ZHAW ) where
Θk, Fk, and Gk denote the k leading singular val-
ues and associated left and right singular vectors of
ZHAW , respectively.

3. Approximate Ak by the product (ZFk)Θk(WGk)H .
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Table 1. Different options to set the projection matrices Z and W
for the row updating problem.

Method Z W

(Berry et al., 1995) Vk

(Zha & Simon, 1999) Z =

(
Uk

Is

)
[Vk, Q]

(Vecharynski & Saad, 2014) [Vk, Xl]

Alg. 1 (option I) Z =

(
Uk

Is

)
In

Alg. 1 (option II) Z =

(
Uk, Xλ,r

Is

)
In

Ideally, the matrices Z and W should satisfy

span
(
û(1), . . . , û(k)

)
⊆ range(Z), and

span
(
v̂(1), . . . , v̂(k)

)
⊆ range(W ).

Moreover, the size of matrix ZHAW should be as small
as possible to avoid high computational costs during the
computation of [Θk, Fk, Gk] = svd(ZHAW ).

Table 1 summarizes a few options to set matrices Z and W
for the row updating problem. The method in (Vecharyn-
ski & Saad, 2014) considers the same matrix Z as in (Zha
& Simon, 1999) but sets W = [Vk, Xl] where Xl denotes
the l ∈ N leading left singular vectors of (I − VkV Hk )EH .
The choice of matrices Z and W listed under the option
“Algorithm 1” is explained in the next section. Note that the
first variant of Algorithm 1 uses the same Z as in (Zha &
Simon, 1999) and (Vecharynski & Saad, 2014) but different
W . This choice leads to higher accuracy than the scheme in
(Zha & Simon, 1999) which is also achieved asymptotically
faster. A detailed comparison is deferred to the Supple-
mentary Material. The second variant of Algorithm 1 is
generally slower but more accurate.

3.1. The proposed algorithm.

Consider again the SVD update of matrix A =

(
B
E

)
, with

E ∈ Cs×n. The right singular vectors of A trivially satisfy
v̂(i) ⊆ range(In), i = 1, . . . , n. Therefore, we can simply
set W = In and compute the k leading singular triplets(
θi, f

(i), g(i)
)

of the matrix ZHAW = ZHA. Indeed, this
choice of W is ideal in terms of accuracy while it also
removes the need to compute an approximate factorization
of matrix (I − VkV Hk )EH . On the other hand, the number
of columns in matrix ZHAW is now equal to n instead
of k + s in (Zha & Simon, 1999) and k + l, l � s, in
(Vecharynski & Saad, 2014; Yamazaki et al., 2017).

The approach proposed in this paper does not invoke any
dense SVD solvers; rather computes the singular values

of ZHA in a matrix-free fashion. Moreover, it skips the
computation of the right singular vectors Gk. Indeed, the
matrix Gk is only needed to approximate the k leading
singular vectors V̂k of A. Assuming that an approximation
Uk and Σk of the matrices Ûk and Σ̂k is available, V̂k can
be approximated as V k = AHUkΣ

−1
k .

Algorithm 1 The proposed algorithm (row updates).
1: Input: B, k
2: Solve [Uk,Σk, Vk] = svdk(B)
3: Receive matrix E
4: Build matrix Z as described in Section 4

5: Solve [Θk, Fk] = svdk(ZHA) where A =

(
B
E

)
6: Set Uk = ZFk and Σk = Θk

7: Set V k = AHUkΣ
−1
k

8: If new rows need to be added, set B ≡ A and repeat
from Step 3, else proceed to Step 9 and exit

9: Output: Uk ≈ Ûk,Σk ≈ Σ̂k, V k ≈ V̂k

The proposed algorithm is sketched in Algorithm 1. In
terms of computational cost, Steps 6 and 7 require approxi-
mately 2nnz(Z)k and (2nnz(A) + n)k Floating Point Op-
erations (FLOPS), respectively. The complexity of Step 5
will generally depend on the algorithm used to compute
the matrices Θk and Fk. We compute these by applying
the unrestarted Lanczos method to matrix ZHAAHZ in
a matrix-free fashion (Saad, 2011). The Lanczos process
terminates after δ ∈ N iterations, where δ typically is a
small multiple of k. The computational cost of Step 5 is
then roughly equal to 2mv(ZHA)δ + 2nr(ZH)δ2 FLOPS,
where mv(ZHA) denotes the FLOPS required to perform a
Matrix-Vector product (MV) with matrix ZHA. The exact
complexity of Lanczos will depend on the choice of matrix
Z. A detailed asymptotic analysis of the complexity of Al-
gorithm 1, as well as a comparison with the schemes in (Zha
& Simon, 1999) and (Vecharynski & Saad, 2014; Yamazaki
et al., 2017) are deferred to the Supplementary Material.

Throughout the remainder of this paper we focus on updat-

ing the rank-k SVD of row update problems A =

(
B
E

)
.

The discussion extends trivially to column update problems
of the form A =

(
B E

)
by converting the latter to a row

update problem of the matrix AH =

(
BH

EH

)
. A detailed

summary is provided in Algorithm 2. Note that by combin-
ing Algorithms 1 and 2 we can approximate the k leading
singular triplets of evolving matrices in which both new
rows and columns are added.
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Algorithm 2 The proposed algorithm (column updates).
1: Input: B, k
2: Solve [Uk,Σk, Vk] = svdk(B)
3: Receive matrix E
4: Build matrix Z as described in Section 4
5: Solve [Θk, Fk] = svdk(ZHAH) where A =

(
B E

)
6: Set V k = ZFk and Σk = Θk

7: Set Uk = AV kΣ
−1
k

8: If new columns need to be added, set B ≡ A and repeat
from Step 3, else proceed to Step 9 and exit

9: Output: Uk ≈ Ûk,Σk ≈ Σ̂k, V k ≈ V̂k

4. Building the projection matrix Z
The accuracy of the k approximate leading singular triplets
returned by Algorithm 1 depends on how well range(Z)
captures the singular vectors û(1), . . . , û(k) (Jia & Stew-
art, 2001; Nakatsukasa, 2017). Therefore, our focus now
turns in constructing a matrix Z such that the distance be-
tween the subspace range(Z) and the left singular vectors
û(1), . . . , û(k) is as small as possible.

4.1. Exploiting the left singular vectors of B.

The following proposition presents a closed-form expression

of the ith left singular vector of matrix A =

(
B
E

)
.

Proposition 1. The left singular vector û(i) associated with
singular value σ̂i is equal to

û(i) =

(
−(BBH − σ̂2

i Im)−1BEH ŷ(i)

ŷ(i)

)
,

where ŷ(i) satisfies the equation[
E

(
n∑
j=1

v(j)
(
v(j)
)H σ̂2

i

σ̂2
i − σ2

j

)
EH − σ̂2

i Is

]
ŷ(i) = 0,

and σj = 0 for any j = m+ 1, . . . , n (when n > m).

Proof. Deferred to the Supplementary Material.

The above representation of û(i) requires the solution of a
nonlinear eigenvalue problem to compute ŷ(i). Alternatively,
we can express û(i) as follows.

Proposition 2. The left singular vector û(i) associated with
singular value σ̂i is equal to

û(i) =

(
u(1), . . . , u(min(m,n))

Is

)
χ1,i

...
χmin(m,n),i

ŷ(i)

 ,

where the scalars χj,i are equal to

χj,i = −
(
Ev(j)

)H
ŷ(i)

σj
σ2
j − σ̂2

i

.

Proof. Deferred to the Supplementary Material.

Proposition 2 suggests that setting Z =(
u(1), . . . , u(min(m,n))

Is

)
should lead to an exact

(in the absence of round-off errors) computation of û(i). In
practice, we only have access to the k leading left singular
vectors of B, u(1), . . . , u(k). The following proposition
suggests that the distance between û(i) and the range space

of Z =

(
u(1), . . . , u(k)

Is

)
is at worst proportional to the

ratio
σk+1

σ2
k+1 − σ̂2

i

.

Proposition 3. Let matrix Z in Algorithm 1 be defined as

Z =

(
u(1), . . . , u(k)

Is

)
,

and set γ =
∥∥EH ŷ(i)∥∥.

Then, for any i = 1, . . . , k:

min
z∈range(Z)

‖û(i) − z‖ ≤
∣∣∣∣ γσk+1

σ2
k+1 − σ̂2

i

∣∣∣∣ .
Proof. Deferred to the Supplementary Material.

Proposition 3 implies that left singular vectors associated
with larger singular values of A are likely to be approxi-
mated more accurately.

4.1.1. THE STRUCTURE OF MATRIX ZHA.

Setting the projection matrix Z as in Proposition 3 gives

ZHA =
(
VkΣk E

H
)H

.

Therefore, each MV product with matrix ZHAAHZ re-
quires two MV products with matrices Σk, Vk and E, for a
total cost of about 4(nk + nnz(E)) FLOPS. Moreover, we
have nr(ZH) = s+k, and thus a rough estimate of the cost
of Step 5 in Algorithm 1 is 4(nk+ nnz(E))δ+ 2(s+ k)δ2

FLOPS.

4.2. Exploiting resolvent expansions.

The choice of Z presented in Section 4.1 will compute the
exact k leading singular triplets of A provided that the rank
of B is exactly k. Nonetheless, when the rank of B is
larger than k and the singular values σk+1, . . . , σmin(m,n)
are not small, the accuracy of the approximation returned
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by Algorithm 1 might not be high enough. This section
presents an approach to enhance the projection matrix Z.

Recall that the top part of û(i) is equal to f̂ (i) = −(BBH −
σ̂2
i Im)−1BEH ŷ(i). In practice, even if we knew the un-

known quantities σ̂2
i and ŷ(i), the application of matrix

(BBH − σ̂2
i Im)−1 for each i = 1, . . . , k, is too costly. The

idea presented in this section considers the approximation
of (BBH − σ̂2

i Im)−1 by (BBH − λIm)−1 for some fixed
scalar λ ∈ R.

Lemma 1. Let

B(λ) = (Im − UkUHk )(BBH − λIm)−1

such that λ > σ̂2
k. Then, we have that for any i = 1, . . . , k:

B(σ̂2
i ) = B(λ)

∞∑
ρ=0

[
(σ̂2
i − λ)B(λ)

]ρ
.

Proof. Deferred to the Supplementary Material.

Clearly, the closer λ is to σ̂2
i , the more accurate the approx-

imation in Lemma 1 should be. We can now provide an
expression for û(i) similar to that in Proposition 2.

Proposition 4. The left singular vector û(i) associated with
singular value σ̂i is equal to

û(i) =

(
u(1), . . . , u(k)

Is

)
χ1,i

...
χk,i
ŷ(i)


−

B(λ)
∞∑
ρ=0

[
(σ̂2
i − λ)B(λ)

]ρ
BEH ŷ(i)

 .

Proof. Deferred to the Supplementary Material.

Proposition 4 suggests a way to enhance the projection
matrix Z shown in Proposition 3. For example, we can

approximate B(λ)
∞∑
ρ=0

[
(σ̂2
i − λ)B(λ)

]ρ
by B(λ), which

gives the following bound for the distance of û(i) from
range(Z).

Proposition 5. Let matrix Z in Algorithm 1 be defined as

Z =

(
u(1), . . . , u(k) −B(λ)BEH

Is

)
and set γ =

∥∥EH ŷ(i)∥∥.

Then, for any λ ≥ σ̂2
1 and i = 1, . . . , k:

min
z∈range(Z)

‖û(i) − z‖ ≤

∣∣∣∣∣ γσk+1(σ̂2
i − λ)

(σ2
k+1 − σ̂2

i )
(
σ2
k+1 − λ

) ∣∣∣∣∣ .

Proof. Deferred to the Supplementary Material.

Compared to the bound shown in Proposition 3, the bound

in Proposition 5 is multiplied by
σ̂2
i − λ

σ2
k+1 − λ

. In practice, due

to cost considerations, we choose a single value of λ that is
more likely to satisfy the above consideration, e.g., λ ≥ σ̂1.

4.2.1. COMPUTING THE MATRIX B(λ)BEH .

The construction of matrix Z shown in Lemma 5 requires
the computation of the matrix −B(λ)BEH . The latter is
equal to the matrix X that satisfies the equation

− (BBH − λIm)X = (Im − UkUHk )BEH . (1)

The eigenvalues of the matrix −(BBH − λIm) are equal
to {λ − σ2

i }i=1,...,m, and for any λ > σ2
1 , the matrix

−(BBH − λIm) is positive definite. It is thus possible
to compute X by repeated applications of the Conjugate
Gradient method.1

Proposition 6. Let K = −(BBH − λIm) and ‖ej‖K
denote2 the K-norm of the error after j iterations
of the Conjugate Gradient method applied to the lin-
ear system −(BBH − λIm)x = b, where b ∈
range

(
(Im − UkUHk )BEH

)
. Then,

‖ej‖K ≤ 2

(√
κ− 1√
κ+ 1

)j
‖e0‖K ,

where κ =
σ2
min(m,n) − λ
σ2
k+1 − λ

is the effective condition number

and λ > σ̂2
1 ≥ σ2

1 .

Proof. Since b ∈ range((Im − UkUHk )BEH), the vector
x satisfies the equation

− (Im−UkUHk )(BBH −λIm)(Im−UkUHk )x = b. (2)

The proof can be found in (Saad et al., 2000).

Corollary 1. The effective condition number satisfies the

inequality κ ≤ λ

λ− σ2
k+1

.

Proposition 6 applies independently to each one of the s
right-hand sides in (1). Assuming that the matrix (Im −
UkU

H
k )BEH can be formed and stored, the effective con-

dition number can be reduced even further. For example,
solving (1) by the block Conjugate Gradient method leads to

1Linear systems with deflated right-hand sides can be also
found in sparse eigenvalue algorithms such as Jacobi-Davidson
(Sleijpen & Van der Vorst, 2000).

2We define ‖ej‖K =
√
eTj Kej
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an effective condition number κ =
σ2
min(m,n) − λ
σ2
k+s+1 − λ

(O’Leary,

1980). Additional techniques to solve linear systems with
multiple right-hand sides can be found in (Kalantzis et al.,
2013; 2018; Stathopoulos & Orginos, 2010). As the value
of λ increases, the effective condition number κ decreases.
Thus from a convergence viewpoint, it is better to choose
λ � σ̂2

i . On the other hand, increasing λ leads to worse
bounds in Proposition 5.

4.2.2. TRUNCATING THE MATRIX B(λ)BEH .

When the number of right-hand sides in (1), i.e., num-
ber of rows in matrix E, is too large, an alternative
is to consider −B(λ)BEH ≈ Xλ,rSλ,rY

H
λ,r, where

Xλ,rSλ,rY
H
λ,r denotes the rank-r truncated SVD of matrix

−B(λ)BEH . We can then replace −B(λ)BEH by Xλ,r,

since range
(
Xλ,rSλ,rY

H
λ,r

)
⊆ range (Xλ,r). The ma-

trix Xλ,r can be approximated by randomized SVD as de-
scribed in (Halko et al., 2011; Clarkson & Woodruff, 2009).
This approach replaces Xλ,r by the rank-r SVD of the ma-
trix B(λ)BEHR, where R is a real matrix with at least r
columns whose entries are i.i.d. Gaussian random variables
of zero mean and unit variance.

4.2.3. THE STRUCTURE OF MATRIX ZHA.

Setting the basis matrix Z as in Proposition 5 leads to

ZHA =
(
VkΣk B

HXλ,r E
H
)H

.

Each MV product with matrix ZHAAHZ requires two MV
products with matrices Σk, Vk, E and BHXλ,r, for a total
cost of 4(n(k + r) + nnz(E)) FLOPS. Moreover, we have
nr(ZH) = k + r + s, and thus a rough estimate of the cost
of Step 5 in Algorithm 1 is 4(n(k+ r) + nnz(E))δ+ 2(s+
k + r)δ2 FLOPS.

5. Experiments
In this section we benchmark the performance of Algo-
rithm 1 on problems from the areas of LSI and face recog-
nition. The experiments were conducted in a Matlab en-
vironment (version R2020a), using 64-bit arithmetic, on a
single core of a computing system equipped with an 2.5GHz
Quad-Core Intel Core i7 processor and 16 GB of system
memory. Due to space limitations we present results only
for the case of adding new rows. Results for problems
where we add new columns were very similar and thus omit-
ted. Open source implementation of the method is avail-
able at: https://github.com/nikolakopoulos/
TruncatedSVDupdates.

Our experiments are organized as follows. Let A ∈ Cm×n
denote the matrix whose rank-k SVD we seek to compute.

We first load the leading µ ∈ N rows of A and set this
submatrix equal to B, i.e., B = A(1 : µ, :) in Matlab-like
notation. Once we compute the rank-k SVD of matrix B,
we update it by adding the remaining m − µ rows of A
in φ ∈ N batches, one batch at a time. The number of
rows in each batch is equal to τ = b(m− µ)/φc with the
exception of the very last batch which is generally slightly
smaller in size. In matrix notation, during the first update
we approximate the k leading singular triplets of matrix

A(1) =

(
B ≡ A(1 : µ, :)

E ≡ A(µ+ 1 : µ+ τ, :)

)
, then of matrixA(2) =(

B ≡ A(1)

E ≡ A(µ+ τ + 1 : µ+ 2τ, :)

)
, etc. The default values

used throughout our experiments are µ = dm/10e and
φ = 10, i.e., the initial matrix B is formed by the leading
10% of the rows matrixA, and the remaining 90% of rows is
added in ten batches, with each batch roughly representing
9% of the total rows of matrix A.

Table 2. Text mining test matrices (obtained by http:
//web.eecs.utk.edu/research/lsi/ and
https://github.com/ZJULearning/MatlabFunc).

Matrix # of rows # of columns avg. nnz

MED 5,735 1,033 8.9
CRAN 4,563 1,398 17.8
CISI 5,544 1,460 12.2
Reuters-21578 18,933 8,293 20.6

5.1. Latent semantic indexing.

In this section we test the qualitative performance of Algo-
rithm 1 when applied to updating problems in LSI. Unless
mentioned otherwise, we will set the projection matrix Z as
in Proposition 3. As a baseline, we consider the SVD up-
dating algorithm of Zha and Simon (Zha & Simon, 1999), a
well-known algorithm for updating problems in LSI, which
we outline in detail in Section 2.1. We also consider the
modification of the latter suggested in (Vecharynski & Saad,
2014) in which the QR factorization of (Is − VkV Hk )EH is
replaced by a rank-l partial SVD. Based on a back-of-the-
envelope profiling and the settings suggested in (Vecharyn-
ski & Saad, 2014), we set l = 10.

Table 2 lists the test matrices considered throughout our ex-
periments along with their dimensions and average number
of nonzero entries per row. These test matrices represent
term-document matrices and are commonly used to bench-
mark the performance of text mining techniques. The first
three collections are equipped with a set of queries and a
corresponding list of relevant documents. Ideally, the rank-k
SVD of the term-document matrices should create a model
which, for each query, assigns the highest similarity scores
to the true relevant documents.

https://github.com/nikolakopoulos/TruncatedSVDupdates
https://github.com/nikolakopoulos/TruncatedSVDupdates
http://web.eecs.utk.edu/research/lsi/
http://web.eecs.utk.edu/research/lsi/
https://github.com/ZJULearning/MatlabFunc
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Table 3. Average precision (“prec”), mean-squared error (“MSE”), and corresponding wall-clock times (“time”).

MED CRAN CISI

Method prec time MSE prec time MSE prec time MSE

k = 25
ZhaSimon 38% 1.11 7.3e− 3 61% 0.70 1.8e− 2 59% 1.06 5.9e− 3

Alg. 1 59% 0.26 1.3e− 3 81% 0.24 2.1e− 3 89% 0.30 5.6e− 4

k = 50
ZhaSimon 40% 1.15 1.0e− 2 62% 0.76 2.3e− 2 60% 1.11 7.2e− 3

Alg. 1 66% 0.51 1.7e− 3 85% 0.49 2.3e− 3 91% 0.59 5.1e− 4

k = 100
ZhaSimon 42% 1.41 1.4e− 2 65% 0.96 2.9e− 2 61% 1.37 9.8e− 3

Alg. 1 75% 1.26 1.8e− 3 89% 1.27 2.8e− 3 94% 1.44 9.2e− 4

Table 3 lists the average precision returned by Algorithm
1 and the algorithm described in (Zha & Simon, 1999), as
k = 25, k = 50, and k = 100. These results were com-
puted using the 11-point interpolated precision (Kolda &
O’leary, 1998). Updating the SVD by Algorithm 1 leads to
higher accuracy compared to (Zha & Simon, 1999), regard-
less of the value of k. Moreover, Algorithm 1 is generally
faster, especially for lower values of k. The qualitative
results returned by the algorithm in (Vecharynski & Saad,
2014) are omitted since they were similar with those re-
turned by (Zha & Simon, 1999). Finally, we list the mean-
squared error (MSE) between the rank-k truncated SVD
Ak = ÛkΣ̂kV̂

H
k and its approximation UkΣkV

H

k returned
by both Algorithm 1 and (Zha & Simon, 1999).

Figure 1 plots the precision/recall curves produced by Al-
gorithm 1 and the algorithm in (Zha & Simon, 1999) for
datasets “MED”, “CRAN”, and “CISI”. In the context of
information retrieval, precision is a measure of output rel-
evancy, while recall is a measure of how many correctly
relevant results are returned. Algorithm 1 leads to bet-
ter qualitative results for all datasets as k = {25, 50}.
The precision/recall curves produced by Algorithm 1 as
k = {25, 50, 100} are also plotted together so as to high-
light the effects of the value of k (we omit dataset “CISI”
for reasons of economy of space).

Figure 2 plots the wall-clock time of Algorithm 1 and
the algorithms in (Zha & Simon, 1999) and (Vecharynski
& Saad, 2014), when applied to dataset ”Reuters”. For
the option of matrix Z listed in Proposition 5, we set
λ = 1.01σ̂2

1 , and the matrix Xλ,r is built by applying one
iteration of block Conjugate Gradient to approximate matrix
B(λ)BEHR, where R is an i.i.d. matrix real matrix with
at 2r columns, and r = 10. In the leftmost plot we vary
k = {25, 50, 75, 100, 125} and fix φ = 10, while in the
middle plot we vary φ = {2, 4, 6, 8, 10} and fix k = 50.
Consider first the case where we increase k. Algorithm
1 where Z is built as in Proposition 3 starts as the fastest
algorithm but loses ground to the algorithm in (Vecharynski
& Saad, 2014). Nonetheless, the latter can be slower than
Algorithm 1 when we increase the number ’l’ of computed

singular triplets of matrix (In − V V H)EH . In addition,
the accuracy in the approximation of the leading singular
triplets of A returned by the algorithms in (Zha & Simon,
1999) and (Vecharynski & Saad, 2014) is typically infe-
rior to that returned by Algorithm 1; we will return to this
shortly. Moving on to the middle plot, increasing φ has a
positive effect on methods such as those proposed in (Zha &
Simon, 1999) and (Vecharynski & Saad, 2014); especially
the former, since its complexity depends cubically on the
number of rows of matrix E. Algorithm 1 becomes rela-
tively slower, since each pass requires a Matrix-MultiVector
product with matrix A. On the other hand, smaller values of
φ, i.e., “thicker” updates, heavily favor Algorithm 1. Finally,
the rightmost plot shows the residual norm in the approxima-
tion of the k = 50 leading singular triplets. In this particular
example, Algorithm 1 achieves the same level of accuracy
regardless of the choice of Z. On the other hand, the accu-
racy achieved by the algorithms in (Zha & Simon, 1999) and
(Vecharynski & Saad, 2014) is rather low, indicating that
they might not be appropriate for general-purpose updating
problems.

Similarly, Figures 3 and 4 plots the relative singular value
error and residual norm (scaled by the corresponding singu-
lar value approximation) returned by applying Algorithm
1 to datasets “MED” and “CRAN” for the case k = 50.
To monitor the deterioration of accuracy as more updates
are added into the system, we plot the relative errors and
residual norms after the first, fifth, and tenth update. The
accuracy marked by the tenth update is the accuracy for the
singular triplets of the entire term-document matrix. Setting
Z as in Proposition 5, we see that accuracy deteriorates at a
slower. This is a behavior we verified for all datasets.

Table 4 lists the relative error and residual norm as-
sociated with the approximation of the singular triplet
(σ̂50, û

(50), v̂(50)) as r varies from ten to fifty in increments
of ten. As a reference, we list the same quantity for the

case Z =

(
Uk

Is

)
. As expected, enhancing the projection

matrix Z by Xλ,r leads to higher accuracy, especially for
higher values of r.
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Figure 1. Precision/recall curves produced by Algorithm 1 and the algorithm described in (Zha & Simon, 1999) as k = 25 and k = 50.
We also plot the precision/recall curves produced by Algorithm 1 as k varies.
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Figure 2. Left plot: wall-clock times as k = {25, 50, 75, 100, 125}. Middle plot: wall-clock times as the bottom m− µ rows of “Reuters”
dataset are added sequentially in φ = {2, 4, 6, 8, 10} batches. Right plot: residual norm of the approximation of the k = 50 leading
singular triplets of “Reuters” (φ = 10).
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Figure 3. Approximation of the leading k = 50 singular triplets
by Algorithm 1 (dataset “MED”) for both options of matrix Z.

5.2. Eigenfaces

In this section we consider SVD updating problems in the
context of face recognition. In particular, we consider the
Eigenfaces technique (Turk & Pentland, 1991; Sirovich &
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Figure 4. Approximation of the leading k = 50 singular triplets
by Algorithm 1 (dataset “CRAN”) for both options of matrix Z.

Kirby, 1987), and replace the standard approach to compute
the principal components (i.e., by computing eigenvectors
of the covariance matrix) by our SVD updating scheme.
Updating algorithms might be useful when the cost of stan-
dard PCA is too high, or the images dataset is so large that
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Table 4. Relative error and residual norm associated with the approximation of the singular triplet (σ̂50, û
(50), v̂(50)).

MED CRAN CISI

r err. res. err. res. err. res.

Z =

(
Uk Xλ,r

Is

) r = 10 0.036 0.234 0.026 0.176 0.025 0.214
r = 20 0.031 0.184 0.021 0.155 0.023 0.189
r = 30 0.021 0.114 0.017 0.134 0.017 0.161
r = 40 0.009 0.091 0.013 0.111 0.012 0.134
r = 50 0.004 0.053 0.007 0.098 0.007 0.081

Z =

(
Uk

Is

)
N/A 0.045 0.269 0.045 0.199 0.287 0.250

Table 5. Classification mean error-rate and standard deviation.

Yale AT&T

Method k = 25 k = 50 k = 25 k = 50

ZhaSimon 38.49± 6.89 36.89± 7.08 37.78± 6.01 35.20± 5.40
Alg. 1 29.60± 5.99 27.56± 5.86 6.17± 2.45 5.90± 2.89

Standard PCA 29.91± 5.68 27.78± 5.90 6.30± 2.40 5.60± 2.47

only a small portion of it can fit in system memory. Our
idea is to avoid forming the covariance matrix, and instead
apply Algorithm 1 to the training data after subtracting their
mean. The mean of each individual pixel across all images
in the training dataset is computed by performing a single
pass over the training dataset. Once the set of eigenfaces
is determined by Algorithm 1, test images are classified
by: (i) subtracting the mean and projecting them onto the
k computed eigenfaces, and (ii) classifying the test image
according to the class of those images in the training dataset
which are nearest neighbors of the test image in the projec-
tion subspace. For this task we use ρ-nearest neighbors with
ρ = 5 (Fix, 1985). The number of computed eigenfaces
is set as k = 25 and k = 50. A detailed description of
the Eigenfaces technique is outlined in the Supplementary
Material.

Our experiments are performed on the Yale and AT&T face
databases.3 The Yale face database consists of 165 gray
scale images of 15 individuals, each individual has 11 im-
ages, obtained under different lighting conditions and facial
expression. Similarly, the AT&T face database consists of
a total of 400 face images of 40 different people, captured
at different expressions and facial appearances. In both
datasets, the size of each image is 64× 64 pixels.

Table 5 lists the classification mean error-rate averaged over
fifty splits, where each split contains eight images per in-
dividual in the training set. The mean error-rate achieved

3These files were obtained in a Matlab-ready format
from http://www.cad.zju.edu.cn/home/dengcai/
Data/FaceData.html; see (Cai et al., 2007a;b)

by Algorithm 1 is almost identical to that obtained by stan-
dard PCA, which is ideal since Algorithm 1 operates on
the dataset in pieces and thus is more flexible. In contrast,
results obtained using the algorithm in (Zha & Simon, 1999)
are less accurate.

6. Conclusion
This paper presented an algorithm to update the rank-k
truncated SVD of matrices subject to a periodic addition
of rows/columns. The proposed algorithm builds on a
projection viewpoint and aims on building a pair of sub-
spaces which approximately include the linear span of the
k left/right leading singular vectors of the updated matrix.
We considered two different options to set these subspaces,
where the first approach aims on reducing the wall-clock
time of current state-of-the-art, while the second one aims
on increasing the accuracy of the returned approximate trun-
cated SVD. Experiments performed on matrices stemming
from applications in LSI and face recognition verified the
effectiveness of the proposed scheme in terms of speed as
well as numerical and qualitative accuracy.
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